PrusaSlicer-NonPlainar/xs/src/libslic3r/Fill/FillRectilinear2.cpp

905 lines
38 KiB
C++
Raw Normal View History

#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include "../ClipperUtils.hpp"
#include "../ExPolygon.hpp"
#include "../PolylineCollection.hpp"
#include "../Surface.hpp"
#include "FillRectilinear2.hpp"
#ifdef SLIC3R_DEBUG
#include "SVG.hpp"
#endif
#if defined(SLIC3R_DEBUG) and defined(_WIN32)
#include <Windows.h>
#pragma comment(lib, "user32.lib")
static inline void assert_fail(const char *assertion, const char *file, unsigned line, const char *function)
{
printf("Assert: %s in function %s\nfile %s:%d\n", assertion, function, file, line);
if (IsDebuggerPresent()) {
DebugBreak();
} else {
ExitProcess(-1);
}
}
#undef assert
#define assert(expr) \
((expr) \
? static_cast<void>(0) \
: assert_fail (#expr, __FILE__, __LINE__, __FUNCTION__))
#endif /* SLIC3R_DEBUG */
namespace Slic3r {
template<typename T>
static inline T clamp(T low, T high, T x)
{
return std::max<T>(low, std::min<T>(high, x));
}
#ifndef sqr
template<typename T>
static inline T sqr(T x)
{
return x * x;
}
#endif
#ifndef mag2
static inline coordf_t mag2(const Point &p)
{
return sqr(coordf_t(p.x)) + sqr(coordf_t(p.y));
}
#endif
#ifndef mag
static inline coordf_t mag(const Point &p)
{
return std::sqrt(mag2(p));
}
#endif
enum Orientation
{
ORIENTATION_CCW = 1,
ORIENTATION_CW = -1,
ORIENTATION_COLINEAR = 0
};
// Return orientation of the three points (clockwise, counter-clockwise, colinear)
// The predicate is exact.
inline Orientation orient(const Point &a, const Point &b, const Point &c)
{
int64_t u = int64_t(b.x) * int64_t(c.y) - int64_t(b.y) * int64_t(c.x);
int64_t v = int64_t(a.x) * int64_t(c.y) - int64_t(a.y) * int64_t(c.x);
int64_t w = int64_t(a.x) * int64_t(b.y) - int64_t(a.y) * int64_t(b.x);
int64_t d = u - v + w;
return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
}
// Return orientation of the polygon.
// The input polygon must not contain duplicate points.
inline bool is_ccw(const Polygon &poly)
{
// The polygon shall be at least a triangle.
assert(poly.points.size() >= 3);
if (poly.points.size() < 3)
return false;
// 1) Find the lowest lexicographical point.
int imin = 0;
for (size_t i = 1; i < poly.points.size(); ++ i) {
const Point &pmin = poly.points[imin];
const Point &p = poly.points[i];
if (p.x < pmin.x || (p.x == pmin.x && p.y < pmin.y))
imin = i;
}
// 2) Detect its orientation.
size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1;
size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1);
Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points.
assert(o != ORIENTATION_COLINEAR);
return o == ORIENTATION_CCW;
}
/*
// Segment of a polygon, starting with p1, ending with p2.
// The indices seg1, seg2 address an end point of a starting resp. ending segment of a polygon.
struct PolygonSegment
{
Point p1;
size_t seg1;
Point p2;
size_t seg2;
};
PolygonSegment reverse_segment(const Polygon &poly, const PolygonSegment &seg)
{
PolygonSegment out;
out.p1 = seg.p2;
out.p2 = seg.p1;
out.seg1 = seg.seg2;
out.seg2 = seg.seg1;
}
*/
coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
{
if (seg1 == seg2)
// The points p1 and p2 reside on the same segment.
// Measure a linear segment.
return p1.distance_to(p2);
const Point *pPrev = &p1;
coordf_t len = 0;
if (seg1 < seg2) {
for (size_t i = seg1; i < seg2; ++ i) {
const Point &pThis = poly.points[i];
len += pPrev->distance_to(pThis);
pPrev = &pThis;
}
} else {
for (size_t i = seg1; i < poly.points.size(); ++ i) {
const Point &pThis = poly.points[i];
len += pPrev->distance_to(pThis);
pPrev = &pThis;
}
for (size_t i = 0; i < seg2; ++ i) {
const Point &pThis = poly.points[i];
len += pPrev->distance_to(pThis);
pPrev = &pThis;
}
}
len += pPrev->distance_to(p2);
return len;
}
void segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
if (seg1 == seg2)
// Nothing to append from this segment.
return;
if (seg1 < seg2) {
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
} else {
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
}
}
void segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
if (seg1 == seg2)
// Nothing to append from this segment.
return;
if (seg1 > seg2) {
out.reserve(out.size() + seg2 - seg1);
for (size_t i = seg1; i > seg2; -- i)
out.push_back(polygon.points[i - 1]);
} else {
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
for (size_t i = seg1; i > 0; -- i)
out.push_back(polygon.points[i - 1]);
for (size_t i = polygon.points.size(); i > seg2; -- i)
out.push_back(polygon.points[i - 1]);
}
}
class SegmentIntersection
{
public:
SegmentIntersection() :
iContour(0),
iSegment(0),
pos(0),
type(UNKNOWN),
consumed_vertical_up(false),
consumed_perimeter_right(false)
{}
size_t iContour;
size_t iSegment;
coord_t pos;
enum SegmentIntersectionType {
OUTER_LOW = 0,
OUTER_HIGH = 1,
INNER_LOW = 2,
INNER_HIGH = 3,
UNKNOWN = -1
};
SegmentIntersectionType type;
// Was this segment along the y axis consumed?
// Up means up along the vertical segment.
bool consumed_vertical_up;
// Was a segment of the inner perimeter contour consumed?
// Right means right from the vertical segment.
bool consumed_perimeter_right;
// For the INNER_LOW type, this point may be connected to another INNER_LOW point.
// For the INNER_HIGH type, this point may be connected to another INNER_HIGH point.
// If INNER_LOW is connected to INNER_HIGH or vice versa,
// one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; }
bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; }
bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; }
bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; }
bool operator<(const SegmentIntersection &other) const
{ return pos < other.pos; }
};
class SegmentedIntersectionLine
{
public:
size_t idx;
coord_t pos;
std::vector<SegmentIntersection> intersections;
};
struct ExPolygonWithOffset
{
public:
ExPolygonWithOffset(const ExPolygon &aexpolygon, coord_t aoffset) : expolygon(aexpolygon)
{
polygons_inner = offset((Polygons)expolygon, aoffset);
n_contours_outer = 1 + expolygon.holes.size();
n_contours_inner = polygons_inner.size();
n_contours = n_contours_outer + n_contours_inner;
polygons_inner_ccw.assign(polygons_inner.size(), false);
for (size_t i = 0; i < polygons_inner.size(); ++ i)
polygons_inner_ccw[i] = is_ccw(polygons_inner[i]);
#ifdef SLIC3R_DEBUG
// Verify orientation of the expolygon.
assert(is_ccw(expolygon.contour));
for (size_t i = 0; i < expolygon.holes.size(); ++ i)
assert(is_ccw(expolygon.holes[i]));
#endif /* SLIC3R_DEBUG */
}
// Outer contour of the expolygon.
bool is_contour_external(size_t idx) const { return idx == 0; }
// Any contour of the expolygon.
bool is_contour_outer(size_t idx) const { return idx < n_contours_inner; }
// Contour of the shrunk expolygon.
bool is_contour_inner(size_t idx) const { return idx >= n_contours_inner; }
const Polygon& contour(size_t idx) const {
return is_contour_external(idx) ? expolygon.contour :
(is_contour_outer(idx) ? expolygon.holes[idx - 1] : polygons_inner[idx - n_contours_inner]);
}
bool is_contour_ccw(size_t idx) const {
return is_contour_external(idx) || (is_contour_inner(idx) && polygons_inner_ccw[idx - n_contours_inner]);
}
const ExPolygon &expolygon;
Polygons polygons_inner;
size_t n_contours_outer;
size_t n_contours_inner;
size_t n_contours;
protected:
// For each polygon of polygons_inner, remember its orientation.
std::vector<unsigned char> polygons_inner_ccw;
};
// For a vertical line, an inner contour and an intersection point,
// find an intersection point on the previous / next vertical line.
// The intersection point is connected with the prev / next intersection point with iInnerContour.
// Return -1 if there is no such point.
inline int intersection_on_prev_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
if (++ iVerticalLineOther == segs.size())
// No successive vertical line.
return -1;
} else if (iVerticalLineOther -- == 0) {
// No preceding vertical line.
return -1;
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
// Resulting index of an intersection point on il2.
int out = -1;
int dmin = std::numeric_limits<int>::max();
for (size_t i = 0; i < il2.intersections.size(); ++ i) {
const SegmentIntersection &itsct2 = il2.intersections[i];
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
// The intersection points lie on the same contour and have the same orientation.
// Find the intersection point with a shortest paht.
int d = int(itsct.iSegment) - int(itsct2.iSegment);
if (ccw != dir_is_next)
d = - d;
if (d < 0)
d += int(poly.points.size());
if (d < dmin) {
out = i;
dmin = d;
}
}
}
return out;
}
inline int intersection_on_prev_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection)
{
return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
}
int intersection_on_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection)
{
return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true);
}
// Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
inline int intersection_unused_on_prev_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection)
{
int iIntersectionPrev = intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
if (iIntersectionPrev == -1)
return -1;
assert(iVerticalLine > 0);
const SegmentedIntersectionLine &il_prev = segs[iVerticalLine - 1];
const SegmentIntersection &itsct_prev = il_prev.intersections[iIntersectionPrev];
return itsct_prev.consumed_perimeter_right ? -1 : iIntersectionPrev;
}
// Find an intersection on a next line, but return -1, if the connecting segment of a perimeter was already extruded.
int intersection_unused_on_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection)
{
int iIntersectionNext = intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true);
if (iIntersectionNext == -1)
return -1;
assert(iVerticalLine + 1 < segs.size());
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
return itsct.consumed_perimeter_right ? -1 : iIntersectionNext;
}
inline coordf_t measure_perimeter_prev_next_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
if (++ iVerticalLineOther == segs.size())
// No successive vertical line.
return coordf_t(-1);
} else if (iVerticalLineOther -- == 0) {
// No preceding vertical line.
return coordf_t(-1);
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
assert(itsct.type == itsct2.type);
assert(itsct.iContour == itsct2.iContour);
assert(itsct.is_inner());
const bool forward = (itsct.is_low() == ccw) == dir_is_next;
Point p1(il.pos, itsct.pos);
Point p2(il2.pos, itsct2.pos);
return forward ?
segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
}
inline coordf_t measure_perimeter_prev_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2)
{
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false);
}
inline coordf_t measure_perimeter_next_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2)
{
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true);
}
inline void emit_perimeter_prev_next_segment(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
Polyline &out,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
++ iVerticalLineOther;
assert(iVerticalLineOther < segs.size());
} else {
assert(iVerticalLineOther > 0);
-- iVerticalLineOther;
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
assert(itsct.type == itsct2.type);
assert(itsct.iContour == itsct2.iContour);
assert(itsct.is_inner());
const bool forward = (itsct.is_low() == ccw) == dir_is_next;
out.points.push_back(Point(il.pos, itsct.pos));
if (forward)
segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
else
segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
out.points.push_back(Point(il2.pos, itsct2.pos));
}
Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParams &params)
{
// rotate polygons so that we can work with vertical lines here
ExPolygon expolygon = surface->expolygon;
std::pair<float, Point> rotate_vector = this->infill_direction(surface);
expolygon.rotate(- rotate_vector.first);
// No need to translate the polygon anyhow for the infill.
// The infill will be performed inside a bounding box of the expolygon and its absolute position does not matter.
// expolygon.translate(rotate_vector.second.x, rotate_vector.second.y);
this->_min_spacing = scale_(this->spacing);
assert(params.density > 0.0001f && params.density <= 1.f);
this->_line_spacing = coord_t(coordf_t(this->_min_spacing) / params.density);
this->_diagonal_distance = this->_line_spacing * 2;
BoundingBox bounding_box = expolygon.contour.bounding_box();
// define flow spacing according to requested density
if (params.density > 0.9999f && !params.dont_adjust) {
this->_line_spacing = this->adjust_solid_spacing(bounding_box.size().x, this->_line_spacing);
this->spacing = unscale(this->_line_spacing);
} else {
// extend bounding box so that our pattern will be aligned with other layers
bounding_box.merge(Point(
bounding_box.min.x - (bounding_box.min.x % this->_line_spacing),
bounding_box.min.y - (bounding_box.min.y % this->_line_spacing)));
}
// Intersect a set of euqally spaced vertical lines wiht expolygon.
size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + SCALED_EPSILON) / this->_line_spacing;
coord_t x0 = bounding_box.min.x + this->_line_spacing;
// On these polygons the infill lines will be connected.
ExPolygonWithOffset poly_with_offset(expolygon, - _min_spacing / 2);
#ifdef SLIC3R_DEBUG
char path[2048];
static int iRun = 0;
sprintf(path, "out/FillRectilinear2-%d.svg", iRun);
BoundingBox bbox_svg = expolygon.contour.bounding_box();
bbox_svg.min.x -= coord_t(1. / SCALING_FACTOR);
bbox_svg.min.y -= coord_t(1. / SCALING_FACTOR);
bbox_svg.max.x += coord_t(1. / SCALING_FACTOR);
bbox_svg.max.y += coord_t(1. / SCALING_FACTOR);
::Slic3r::SVG svg(path, bbox_svg);
svg.draw(expolygon.lines());
svg.draw(poly_with_offset.polygons_inner);
{
char path2[2048];
sprintf(path2, "out/FillRectilinear2-initial-%d.svg", iRun);
::Slic3r::SVG svg(path2, bbox_svg);
svg.draw(expolygon.lines());
svg.draw(poly_with_offset.polygons_inner);
svg.Close();
}
iRun ++;
#endif /* SLIC3R_DEBUG */
// For each contour
// Allocate the storage for the segments.
std::vector<SegmentedIntersectionLine> segs(n_vlines, SegmentedIntersectionLine());
for (size_t i = 0; i < n_vlines; ++ i) {
segs[i].idx = i;
segs[i].pos = x0 + i * this->_line_spacing;
}
for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
const Points &contour = poly_with_offset.contour(iContour);
if (contour.size() < 2)
continue;
// For each segment
for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) {
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
const Point &p1 = contour[iPrev];
const Point &p2 = contour[iSegment];
// Which of the equally spaced vertical lines is intersected by this segment?
coord_t l = p1.x;
coord_t r = p2.x;
if (l > r)
std::swap(l, r);
// il, ir are the left / right indices of vertical lines intersecting a segment
int il = (l - x0) / this->_line_spacing;
while (il * this->_line_spacing + x0 < l)
++ il;
il = std::max(int(0), il);
int ir = (r - x0 + this->_line_spacing) / this->_line_spacing;
while (ir * this->_line_spacing + x0 > r)
-- ir;
ir = std::min(int(segs.size()) - 1, ir);
if (il > ir)
// No vertical line intersects this segment.
continue;
assert(il >= 0 && il < segs.size());
assert(ir >= 0 && ir < segs.size());
if (l == r) {
// The segment is vertical.
SegmentIntersection is;
is.iContour = iContour;
is.iSegment = iSegment;
is.pos = p1.y;
segs[il].intersections.push_back(is);
is.pos = p2.y;
segs[il].intersections.push_back(is);
continue;
}
for (int i = il; i <= ir; ++ i) {
SegmentIntersection is;
is.iContour = iContour;
is.iSegment = iSegment;
assert(l <= segs[i].pos);
assert(r >= segs[i].pos);
// Calculate the intersection position in y axis. x is known.
double t = double(segs[i].pos - p1.x) / double(p2.x - p1.x);
assert(t > -0.000001 && t < 1.000001);
t = clamp(0., 1., t);
coord_t lo = p1.y;
coord_t hi = p2.y;
if (lo > hi)
std::swap(lo, hi);
is.pos = p1.y + coord_t(t * double(p2.y - p1.y));
assert(is.pos > lo - 0.000001 && is.pos < hi + 0.000001);
is.pos = clamp(lo, hi, is.pos);
segs[i].intersections.push_back(is);
}
}
}
// Sort the intersections along their segments, specify the intersection types.
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = segs[i_seg];
// Sort the intersection points. This needs to be verified, because the intersection points were calculated
// using imprecise arithmetics.
std::sort(sil.intersections.begin(), sil.intersections.end());
// Verify the order, bubble sort the intersections until sorted.
bool modified = false;
do {
modified = false;
for (size_t i = 1; i < sil.intersections.size(); ++ i) {
size_t iContour1 = sil.intersections[i-1].iContour;
size_t iContour2 = sil.intersections[i].iContour;
const Points &contour1 = poly_with_offset.contour(iContour1);
const Points &contour2 = poly_with_offset.contour(iContour2);
size_t iSegment1 = sil.intersections[i-1].iSegment;
size_t iPrev1 = ((iSegment1 == 0) ? contour1.size() : iSegment1) - 1;
size_t iSegment2 = sil.intersections[i].iSegment;
size_t iPrev2 = ((iSegment2 == 0) ? contour2.size() : iSegment2) - 1;
bool swap = false;
if (iContour1 == iContour2 && iSegment1 == iSegment2) {
// The same segment, it has to be vertical.
assert(iPrev1 == iPrev2);
swap = contour1[iPrev1].y > contour1[iContour1].y;
#ifdef SLIC3R_DEBUG
if (swap)
printf("Swapping when single vertical segment\n");
#endif
} else {
// Segments are in a general position. Here an exact airthmetics may come into play.
coord_t y1max = std::max(contour1[iPrev1].y, contour1[iSegment1].y);
coord_t y2min = std::min(contour2[iPrev2].y, contour2[iSegment2].y);
if (y1max < y2min) {
// The segments are separated, nothing to do.
} else {
// Use an exact predicate to verify, that segment1 is below segment2.
const Point *a = &contour1[iPrev1];
const Point *b = &contour1[iSegment1];
const Point *c = &contour2[iPrev2];
const Point *d = &contour2[iSegment2];
#ifdef SLIC3R_DEBUG
const Point x1(sil.pos, sil.intersections[i-1].pos);
const Point x2(sil.pos, sil.intersections[i ].pos);
bool successive = false;
#endif /* SLIC3R_DEBUG */
if (a->x > b->x)
std::swap(a, b);
if (c->x > d->x)
std::swap(c, d);
bool upper_more_left = false;
if (a->x > c->x) {
upper_more_left = true;
std::swap(a, c);
std::swap(b, d);
}
if (a == c || b == c) {
assert(iContour1 == iContour2);
assert(iSegment1 == iPrev2 || iPrev1 == iSegment2);
std::swap(c, d);
assert(a != c && b != c);
#ifdef SLIC3R_DEBUG
successive = true;
#endif /* SLIC3R_DEBUG */
}
Orientation o = orient(*a, *b, *c);
assert(! ORIENTATION_COLINEAR);
swap = upper_more_left != (o == ORIENTATION_CW);
#ifdef SLIC3R_DEBUG
if (swap)
printf(successive ?
"Swapping when iContour1 == iContour2 and successive segments\n" :
"Swapping when exact predicate\n");
#endif
}
}
if (swap) {
// Swap the intersection points, but keep the original positions, so they are sorted.
std::swap(sil.intersections[i-1], sil.intersections[i]);
std::swap(sil.intersections[i-1].pos, sil.intersections[i].pos);
modified = true;
}
}
} while (modified);
// Assign the intersection types.
for (size_t i = 0; i < sil.intersections.size(); ++ i) {
// What is the orientation of the segment at the intersection point?
size_t iContour = sil.intersections[i].iContour;
const Points &contour = poly_with_offset.contour(iContour);
size_t iSegment = sil.intersections[i].iSegment;
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
coord_t dir = contour[iSegment].x - contour[iPrev].x;
bool ccw = poly_with_offset.is_contour_ccw(iContour);
bool low = (dir > 0) == ccw;
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
(low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
}
}
#ifdef SLIC3R_DEBUG
// Verify the segments & paint them.
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = segs[i_seg];
// The intersection points have to be even.
assert((sil.intersections.size() & 1) == 0);
for (size_t i = 0; i < sil.intersections.size();) {
// An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
assert(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
size_t j = i + 1;
assert(j < sil.intersections.size());
assert(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
assert(j < sil.intersections.size());
assert((j & 1) == 1);
assert(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
assert(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
if (i + 1 == j) {
svg.draw(Line(Point(sil.pos, sil.intersections[i].pos), Point(sil.pos, sil.intersections[j].pos)), "blue");
} else {
svg.draw(Line(Point(sil.pos, sil.intersections[i].pos), Point(sil.pos, sil.intersections[i+1].pos)), "green");
svg.draw(Line(Point(sil.pos, sil.intersections[i+1].pos), Point(sil.pos, sil.intersections[j-1].pos)), (j - i + 1 > 4) ? "yellow" : "magenta");
svg.draw(Line(Point(sil.pos, sil.intersections[j-1].pos), Point(sil.pos, sil.intersections[j].pos)), "green");
}
i = j + 1;
}
}
svg.Close();
#endif /* SLIC3R_DEBUG */
// Now construct a graph.
// Find the first point.
//FIXME ideally one would plan the initial point to be closest to the current print head position.
size_t i_vline = 0;
size_t i_intersection = size_t(-1);
// Follow the line, connect the lines into a graph.
// Until no new line could be added to the output path:
Point pointLast;
Polylines polylines_out;
Polyline *polyline_current = NULL;
for (;;) {
if (i_intersection == size_t(-1)) {
// The path has been interrupted. Find a next starting point, closest to the previous extruder position.
coordf_t dist2min = std::numeric_limits<coordf_t>().max();
for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
const SegmentedIntersectionLine &seg = segs[i_vline2];
if (! seg.intersections.empty()) {
assert(seg.intersections.size() > 1);
// Even number of intersections with the loops.
assert((seg.intersections.size() & 1) == 0);
assert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
for (size_t i = 0; i < seg.intersections.size(); ++ i) {
const SegmentIntersection &intrsctn = seg.intersections[i];
if (intrsctn.is_outer()) {
assert(intrsctn.is_low() || i > 0);
bool consumed = intrsctn.is_low() ?
intrsctn.consumed_vertical_up :
seg.intersections[i-1].consumed_vertical_up;
if (! consumed) {
coordf_t dist2 = sqr(coordf_t(pointLast.x - seg.pos)) + sqr(coordf_t(pointLast.y - intrsctn.pos));
if (dist2 < dist2min) {
dist2min = dist2;
i_vline = i_vline2;
i_intersection = i;
if (polylines_out.empty()) {
// Initial state, take the first line, which is the first from the left.
goto found;
}
}
}
}
}
}
}
if (i_intersection == size_t(-1))
// We are finished.
break;
found:
// Start a new path.
polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back();
}
// From the initial point (i_vline, i_intersection), follow a path.
SegmentedIntersectionLine &seg = segs[i_vline];
SegmentIntersection *intrsctn = &seg.intersections[i_intersection];
// consumed_vertical_up(false),
// consumed_perimeter_right(false)
bool going_up = intrsctn->is_low();
bool try_connect = false;
if (going_up) {
assert(! intrsctn->consumed_vertical_up);
assert(i_intersection + 1 < seg.intersections.size());
// Emit a point
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos));
// Consume the complete vertical segment up to the outer contour.
do {
intrsctn->consumed_vertical_up = true;
++ intrsctn;
++ i_intersection;
assert(i_intersection < seg.intersections.size());
} while (intrsctn->type != SegmentIntersection::OUTER_HIGH);
if ((intrsctn - 1)->is_inner()) {
// Step back.
-- intrsctn;
-- i_intersection;
assert(intrsctn->type == SegmentIntersection::INNER_HIGH);
try_connect = true;
}
} else {
// Going down.
assert(intrsctn->is_high());
assert(i_intersection > 0);
assert(! (intrsctn - 1)->consumed_vertical_up);
// Emit a point
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos));
// Consume the complete vertical segment up to the outer contour.
do {
assert(i_intersection > 0);
-- intrsctn;
-- i_intersection;
intrsctn->consumed_vertical_up = true;
} while (intrsctn->type != SegmentIntersection::OUTER_LOW);
if ((intrsctn + 1)->is_inner()) {
// Step back.
++ intrsctn;
++ i_intersection;
assert(intrsctn->type == SegmentIntersection::INNER_LOW);
try_connect = true;
}
}
if (try_connect) {
// Decide, whether to finish the segment, or whether to follow the perimeter.
int iPrev = intersection_unused_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
int iNext = intersection_unused_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
if (iPrev != -1 || iNext != -1) {
// Zig zag
coord_t distPrev = (iPrev == -1) ? std::numeric_limits<coord_t>::max() :
measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev);
coord_t distNext = (iNext == -1) ? std::numeric_limits<coord_t>::max() :
measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
// Take the shorter path.
bool take_next = (iPrev != -1 && iNext != -1) ? (distNext < distPrev) : distNext != -1;
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos));
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
// Advance to the neighbor line.
if (take_next) {
++ i_vline;
i_intersection = iNext;
} else {
-- i_vline;
i_intersection = iPrev;
}
continue;
}
// Take the complete line up to the outer contour.
if (going_up)
++ intrsctn;
else
-- intrsctn;
}
// Finish the vertical line, pick a new starting point.
pointLast = Point(seg.pos, intrsctn->pos);
polyline_current->points.push_back(pointLast);
intrsctn = NULL;
i_intersection = -1;
polyline_current = NULL;
}
// paths must be rotated back
for (Polylines::iterator it = polylines_out.begin(); it != polylines_out.end(); ++ it) {
// No need to translate, the absolute position is irrelevant.
// it->translate(- rotate_vector.second.x, - rotate_vector.second.y);
it->rotate(rotate_vector.first);
}
return polylines_out;
}
} // namespace Slic3r