PrusaSlicer-NonPlainar/src/slic3r/GUI/PresetHints.cpp

276 lines
16 KiB
C++
Raw Normal View History

#include <cassert>
#include "libslic3r/Flow.hpp"
#include "libslic3r/libslic3r.h"
#include "PresetBundle.hpp"
#include "PresetHints.hpp"
#include <wx/intl.h>
#include "GUI.hpp"
#include "I18N.hpp"
namespace Slic3r {
#define MIN_BUF_LENGTH 4096
std::string PresetHints::cooling_description(const Preset &preset)
{
std::string out;
if (preset.config.opt_bool("cooling", 0)) {
int slowdown_below_layer_time = preset.config.opt_int("slowdown_below_layer_time", 0);
int min_fan_speed = preset.config.opt_int("min_fan_speed", 0);
int max_fan_speed = preset.config.opt_int("max_fan_speed", 0);
int min_print_speed = int(preset.config.opt_float("min_print_speed", 0) + 0.5);
int fan_below_layer_time = preset.config.opt_int("fan_below_layer_time", 0);
out += (boost::format(_utf8(L("If estimated layer time is below ~%1%s, "
"fan will run at %2%%% and print speed will be reduced "
"so that no less than %3%s are spent on that layer "
"(however, speed will never be reduced below %4%mm/s).")))
% slowdown_below_layer_time % max_fan_speed % slowdown_below_layer_time % min_print_speed).str();
if (fan_below_layer_time > slowdown_below_layer_time) {
out += (boost::format(_utf8(L("\nIf estimated layer time is greater, but still below ~%1%s, "
"fan will run at a proportionally decreasing speed between %2%%% and %3%%%.")))
% fan_below_layer_time % max_fan_speed % min_fan_speed).str();
}
out += _utf8(L("\nDuring the other layers, fan")) + " ";
} else {
out = _utf8(L("Fan")) + " ";
}
if (preset.config.opt_bool("fan_always_on", 0)) {
int disable_fan_first_layers = preset.config.opt_int("disable_fan_first_layers", 0);
int min_fan_speed = preset.config.opt_int("min_fan_speed", 0);
out += (boost::format(_utf8(L("will always run at %1%%%"))) % min_fan_speed).str() + " ";
if (disable_fan_first_layers > 1)
out += (boost::format(_utf8(L("except for the first %1% layers."))) % disable_fan_first_layers).str();
else if (disable_fan_first_layers == 1)
out += _utf8(L("except for the first layer."));
} else
out += _utf8(L("will be turned off."));
return out;
}
static const ConfigOptionFloatOrPercent& first_positive(const ConfigOptionFloatOrPercent *v1, const ConfigOptionFloatOrPercent &v2, const ConfigOptionFloatOrPercent &v3)
{
return (v1 != nullptr && v1->value > 0) ? *v1 : ((v2.value > 0) ? v2 : v3);
}
std::string PresetHints::maximum_volumetric_flow_description(const PresetBundle &preset_bundle)
{
// Find out, to which nozzle index is the current filament profile assigned.
int idx_extruder = 0;
int num_extruders = (int)preset_bundle.filament_presets.size();
for (; idx_extruder < num_extruders; ++ idx_extruder)
if (preset_bundle.filament_presets[idx_extruder] == preset_bundle.filaments.get_selected_preset().name)
break;
if (idx_extruder == num_extruders)
// The current filament preset is not active for any extruder.
idx_extruder = -1;
const DynamicPrintConfig &print_config = preset_bundle.prints .get_edited_preset().config;
const DynamicPrintConfig &filament_config = preset_bundle.filaments.get_edited_preset().config;
const DynamicPrintConfig &printer_config = preset_bundle.printers .get_edited_preset().config;
// Current printer values.
float nozzle_diameter = (float)printer_config.opt_float("nozzle_diameter", idx_extruder);
// Print config values
double layer_height = print_config.opt_float("layer_height");
double first_layer_height = print_config.get_abs_value("first_layer_height", layer_height);
double support_material_speed = print_config.opt_float("support_material_speed");
double support_material_interface_speed = print_config.get_abs_value("support_material_interface_speed", support_material_speed);
double bridge_speed = print_config.opt_float("bridge_speed");
double bridge_flow_ratio = print_config.opt_float("bridge_flow_ratio");
double perimeter_speed = print_config.opt_float("perimeter_speed");
double external_perimeter_speed = print_config.get_abs_value("external_perimeter_speed", perimeter_speed);
double gap_fill_speed = print_config.opt_float("gap_fill_speed");
double infill_speed = print_config.opt_float("infill_speed");
double small_perimeter_speed = print_config.get_abs_value("small_perimeter_speed", perimeter_speed);
double solid_infill_speed = print_config.get_abs_value("solid_infill_speed", infill_speed);
double top_solid_infill_speed = print_config.get_abs_value("top_solid_infill_speed", solid_infill_speed);
// Maximum print speed when auto-speed is enabled by setting any of the above speed values to zero.
double max_print_speed = print_config.opt_float("max_print_speed");
// Maximum volumetric speed allowed for the print profile.
double max_volumetric_speed = print_config.opt_float("max_volumetric_speed");
const auto &extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("extrusion_width");
const auto &external_perimeter_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("external_perimeter_extrusion_width");
const auto &first_layer_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("first_layer_extrusion_width");
const auto &infill_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("infill_extrusion_width");
const auto &perimeter_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("perimeter_extrusion_width");
const auto &solid_infill_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("solid_infill_extrusion_width");
const auto &support_material_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("support_material_extrusion_width");
const auto &top_infill_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("top_infill_extrusion_width");
const auto &first_layer_speed = *print_config.option<ConfigOptionFloatOrPercent>("first_layer_speed");
// Index of an extruder assigned to a feature. If set to 0, an active extruder will be used for a multi-material print.
// If different from idx_extruder, it will not be taken into account for this hint.
auto feature_extruder_active = [idx_extruder, num_extruders](int i) {
return i <= 0 || i > num_extruders || idx_extruder == -1 || idx_extruder == i - 1;
};
bool perimeter_extruder_active = feature_extruder_active(print_config.opt_int("perimeter_extruder"));
bool infill_extruder_active = feature_extruder_active(print_config.opt_int("infill_extruder"));
bool solid_infill_extruder_active = feature_extruder_active(print_config.opt_int("solid_infill_extruder"));
bool support_material_extruder_active = feature_extruder_active(print_config.opt_int("support_material_extruder"));
bool support_material_interface_extruder_active = feature_extruder_active(print_config.opt_int("support_material_interface_extruder"));
// Current filament values
double filament_diameter = filament_config.opt_float("filament_diameter", 0);
double filament_crossection = M_PI * 0.25 * filament_diameter * filament_diameter;
double extrusion_multiplier = filament_config.opt_float("extrusion_multiplier", 0);
// The following value will be annotated by this hint, so it does not take part in the calculation.
// double filament_max_volumetric_speed = filament_config.opt_float("filament_max_volumetric_speed", 0);
std::string out;
for (size_t idx_type = (first_layer_extrusion_width.value == 0) ? 1 : 0; idx_type < 3; ++ idx_type) {
// First test the maximum volumetric extrusion speed for non-bridging extrusions.
bool first_layer = idx_type == 0;
bool bridging = idx_type == 2;
const ConfigOptionFloatOrPercent *first_layer_extrusion_width_ptr = (first_layer && first_layer_extrusion_width.value > 0) ?
&first_layer_extrusion_width : nullptr;
const float lh = float(first_layer ? first_layer_height : layer_height);
const float bfr = bridging ? bridge_flow_ratio : 0.f;
double max_flow = 0.;
std::string max_flow_extrusion_type;
auto limit_by_first_layer_speed = [&first_layer_speed, first_layer](double speed_normal, double speed_max) {
if (first_layer && first_layer_speed.value > 0)
// Apply the first layer limit.
speed_normal = first_layer_speed.get_abs_value(speed_normal);
return (speed_normal > 0.) ? speed_normal : speed_max;
};
if (perimeter_extruder_active) {
double external_perimeter_rate = Flow::new_from_config_width(frExternalPerimeter,
first_positive(first_layer_extrusion_width_ptr, external_perimeter_extrusion_width, extrusion_width),
nozzle_diameter, lh, bfr).mm3_per_mm() *
(bridging ? bridge_speed :
limit_by_first_layer_speed(std::max(external_perimeter_speed, small_perimeter_speed), max_print_speed));
if (max_flow < external_perimeter_rate) {
max_flow = external_perimeter_rate;
max_flow_extrusion_type = _utf8(L("external perimeters"));
}
double perimeter_rate = Flow::new_from_config_width(frPerimeter,
first_positive(first_layer_extrusion_width_ptr, perimeter_extrusion_width, extrusion_width),
nozzle_diameter, lh, bfr).mm3_per_mm() *
(bridging ? bridge_speed :
limit_by_first_layer_speed(std::max(perimeter_speed, small_perimeter_speed), max_print_speed));
if (max_flow < perimeter_rate) {
max_flow = perimeter_rate;
max_flow_extrusion_type = _utf8(L("perimeters"));
}
}
if (! bridging && infill_extruder_active) {
double infill_rate = Flow::new_from_config_width(frInfill,
first_positive(first_layer_extrusion_width_ptr, infill_extrusion_width, extrusion_width),
nozzle_diameter, lh, bfr).mm3_per_mm() * limit_by_first_layer_speed(infill_speed, max_print_speed);
if (max_flow < infill_rate) {
max_flow = infill_rate;
max_flow_extrusion_type = _utf8(L("infill"));
}
}
if (solid_infill_extruder_active) {
double solid_infill_rate = Flow::new_from_config_width(frInfill,
first_positive(first_layer_extrusion_width_ptr, solid_infill_extrusion_width, extrusion_width),
nozzle_diameter, lh, 0).mm3_per_mm() *
(bridging ? bridge_speed : limit_by_first_layer_speed(solid_infill_speed, max_print_speed));
if (max_flow < solid_infill_rate) {
max_flow = solid_infill_rate;
max_flow_extrusion_type = _utf8(L("solid infill"));
}
if (! bridging) {
double top_solid_infill_rate = Flow::new_from_config_width(frInfill,
first_positive(first_layer_extrusion_width_ptr, top_infill_extrusion_width, extrusion_width),
nozzle_diameter, lh, bfr).mm3_per_mm() * limit_by_first_layer_speed(top_solid_infill_speed, max_print_speed);
if (max_flow < top_solid_infill_rate) {
max_flow = top_solid_infill_rate;
max_flow_extrusion_type = _utf8(L("top solid infill"));
}
}
}
if (support_material_extruder_active) {
double support_material_rate = Flow::new_from_config_width(frSupportMaterial,
first_positive(first_layer_extrusion_width_ptr, support_material_extrusion_width, extrusion_width),
nozzle_diameter, lh, bfr).mm3_per_mm() *
(bridging ? bridge_speed : limit_by_first_layer_speed(support_material_speed, max_print_speed));
if (max_flow < support_material_rate) {
max_flow = support_material_rate;
max_flow_extrusion_type = _utf8(L("support"));
}
}
if (support_material_interface_extruder_active) {
double support_material_interface_rate = Flow::new_from_config_width(frSupportMaterialInterface,
first_positive(first_layer_extrusion_width_ptr, support_material_extrusion_width, extrusion_width),
nozzle_diameter, lh, bfr).mm3_per_mm() *
(bridging ? bridge_speed : limit_by_first_layer_speed(support_material_interface_speed, max_print_speed));
if (max_flow < support_material_interface_rate) {
max_flow = support_material_interface_rate;
max_flow_extrusion_type = _utf8(L("support interface"));
}
}
//FIXME handle gap_fill_speed
if (! out.empty())
out += "\n";
out += (first_layer ? _utf8(L("First layer volumetric")) : (bridging ? _utf8(L("Bridging volumetric")) : _utf8(L("Volumetric"))));
out += " " + _utf8(L("flow rate is maximized")) + " ";
bool limited_by_max_volumetric_speed = max_volumetric_speed > 0 && max_volumetric_speed < max_flow;
out += (limited_by_max_volumetric_speed ?
_utf8(L("by the print profile maximum")) :
(_utf8(L("when printing"))+ " " + max_flow_extrusion_type))
+ " " + _utf8(L("with a volumetric rate"))+ " ";
if (limited_by_max_volumetric_speed)
max_flow = max_volumetric_speed;
out += (boost::format(_utf8(L("%3.2f mm³/s at filament speed %3.2f mm/s."))) % max_flow % (max_flow / filament_crossection)).str();
}
return out;
}
std::string PresetHints::recommended_thin_wall_thickness(const PresetBundle &preset_bundle)
{
const DynamicPrintConfig &print_config = preset_bundle.prints .get_edited_preset().config;
const DynamicPrintConfig &printer_config = preset_bundle.printers .get_edited_preset().config;
float layer_height = float(print_config.opt_float("layer_height"));
int num_perimeters = print_config.opt_int("perimeters");
bool thin_walls = print_config.opt_bool("thin_walls");
float nozzle_diameter = float(printer_config.opt_float("nozzle_diameter", 0));
std::string out;
if (layer_height <= 0.f){
out += _utf8(L("Recommended object thin wall thickness: Not available due to invalid layer height."));
return out;
}
Flow external_perimeter_flow = Flow::new_from_config_width(
frExternalPerimeter,
*print_config.opt<ConfigOptionFloatOrPercent>("external_perimeter_extrusion_width"),
nozzle_diameter, layer_height, false);
Flow perimeter_flow = Flow::new_from_config_width(
frPerimeter,
*print_config.opt<ConfigOptionFloatOrPercent>("perimeter_extrusion_width"),
nozzle_diameter, layer_height, false);
if (num_perimeters > 0) {
int num_lines = std::min(num_perimeters * 2, 10);
out += (boost::format(_utf8(L("Recommended object thin wall thickness for layer height %.2f and"))) % layer_height).str() + " ";
// Start with the width of two closely spaced
double width = external_perimeter_flow.width + external_perimeter_flow.spacing();
for (int i = 2; i <= num_lines; thin_walls ? ++ i : i += 2) {
if (i > 2)
out += ", ";
out += (boost::format(_utf8(L("%d lines: %.2f mm"))) % i % width).str() + " ";
width += perimeter_flow.spacing() * (thin_walls ? 1.f : 2.f);
}
}
return out;
}
}; // namespace Slic3r