PrusaSlicer-NonPlainar/xs/src/libslic3r/Format/PRUS.cpp

379 lines
16 KiB
C++
Raw Normal View History

#ifdef SLIC3R_PRUS
#include <string.h>
#include <wx/string.h>
#include <wx/wfstream.h>
#include <wx/zipstrm.h>
#include <Eigen/Geometry>
#include "../libslic3r.h"
#include "../Model.hpp"
#include "PRUS.hpp"
#if 0
// Enable debugging and assert in this file.
#define DEBUG
#define _DEBUG
#undef NDEBUG
#endif
#include <assert.h>
namespace Slic3r
{
struct StlHeader
{
char comment[80];
uint32_t nTriangles;
};
static_assert(sizeof(StlHeader) == 84, "StlHeader size not correct");
// Buffered line reader for the wxInputStream.
class LineReader
{
public:
LineReader(wxInputStream &input_stream, const char *initial_data, int initial_len) :
m_input_stream(input_stream),
m_pos(0),
m_len(initial_len)
{
assert(initial_len >= 0 && initial_len < m_bufsize);
memcpy(m_buffer, initial_data, initial_len);
}
const char* next_line() {
for (;;) {
// Skip empty lines.
while (m_pos < m_len && (m_buffer[m_pos] == '\r' || m_buffer[m_pos] == '\n'))
++ m_pos;
if (m_pos == m_len) {
// Empty buffer, fill it from the input stream.
m_pos = 0;
m_input_stream.Read(m_buffer, m_bufsize - 1);
m_len = m_input_stream.LastRead();
assert(m_len >= 0 && m_len < m_bufsize);
if (m_len == 0)
// End of file.
return nullptr;
// Skip empty lines etc.
continue;
}
// The buffer is nonempty and it does not start with end of lines. Find the first end of line.
int end = m_pos + 1;
while (end < m_len && m_buffer[end] != '\r' && m_buffer[end] != '\n')
++ end;
if (end == m_len && ! m_input_stream.Eof() && m_len < m_bufsize) {
// Move the buffer content to the buffer start and fill the rest of the buffer.
assert(m_pos > 0);
memmove(m_buffer, m_buffer + m_pos, m_len - m_pos);
m_len -= m_pos;
assert(m_len >= 0 && m_len < m_bufsize);
m_pos = 0;
m_input_stream.Read(m_buffer + m_len, m_bufsize - 1 - m_len);
int new_data = m_input_stream.LastRead();
if (new_data > 0) {
m_len += new_data;
assert(m_len >= 0 && m_len < m_bufsize);
continue;
}
}
char *ptr_out = m_buffer + m_pos;
m_pos = end + 1;
m_buffer[end] = 0;
if (m_pos >= m_len) {
m_pos = 0;
m_len = 0;
}
return ptr_out;
}
}
int next_line_scanf(const char *format, ...)
{
const char *line = next_line();
if (line == nullptr)
return -1;
int result;
va_list arglist;
va_start(arglist, format);
result = vsscanf(line, format, arglist);
va_end(arglist);
return result;
}
private:
wxInputStream &m_input_stream;
static const int m_bufsize = 4096;
char m_buffer[m_bufsize];
int m_pos = 0;
int m_len = 0;
};
// Load a PrusaControl project file into a provided model.
bool load_prus(const char *path, Model *model)
{
// To receive the content of the zipped 'scene.xml' file.
std::vector<char> scene_xml_data;
wxFFileInputStream in(path);
wxZipInputStream zip(in);
std::unique_ptr<wxZipEntry> entry;
size_t num_models = 0;
std::map<int, ModelObject*> group_to_model_object;
while (entry.reset(zip.GetNextEntry()), entry.get() != NULL) {
wxString name = entry->GetName();
if (name == "scene.xml") {
if (! scene_xml_data.empty()) {
// scene.xml has been found more than once in the archive.
return false;
}
size_t size_last = 0;
size_t size_incr = 4096;
scene_xml_data.resize(size_incr);
while (! zip.Read(scene_xml_data.data() + size_last, size_incr).Eof()) {
size_last += zip.LastRead();
if (scene_xml_data.size() < size_last + size_incr)
scene_xml_data.resize(size_last + size_incr);
}
size_last += size_last + zip.LastRead();
if (scene_xml_data.size() == size_last)
scene_xml_data.resize(size_last + 1);
else if (scene_xml_data.size() > size_last + 1)
scene_xml_data.erase(scene_xml_data.begin() + size_last + 1, scene_xml_data.end());
scene_xml_data[size_last] = 0;
}
else if (name.EndsWith(".stl") || name.EndsWith(".STL")) {
// Find the model entry in the XML data.
const wxScopedCharBuffer name_utf8 = name.ToUTF8();
char model_name_tag[1024];
sprintf(model_name_tag, "<model name=\"%s\">", name_utf8.data());
const char *model_xml = strstr(scene_xml_data.data(), model_name_tag);
const char *zero_tag = "<zero>";
const char *zero_xml = strstr(scene_xml_data.data(), zero_tag);
float trafo[3][4] = { 0 };
double instance_rotation = 0.;
double instance_scaling_factor = 1.f;
Pointf instance_offset(0., 0.);
bool trafo_set = false;
unsigned int group_id = (unsigned int)-1;
unsigned int extruder_id = (unsigned int)-1;
ModelObject *model_object = nullptr;
if (model_xml != nullptr) {
model_xml += strlen(model_name_tag);
const char *position_tag = "<position>";
const char *position_xml = strstr(model_xml, position_tag);
const char *rotation_tag = "<rotation>";
const char *rotation_xml = strstr(model_xml, rotation_tag);
const char *scale_tag = "<scale>";
const char *scale_xml = strstr(model_xml, scale_tag);
float position[3], rotation[3], scale[3], zero[3];
if (position_xml != nullptr && rotation_xml != nullptr && scale_xml != nullptr && zero_xml != nullptr &&
sscanf(position_xml+strlen(position_tag),
"[%f, %f, %f]", position, position+1, position+2) == 3 &&
sscanf(rotation_xml+strlen(rotation_tag),
"[%f, %f, %f]", rotation, rotation+1, rotation+2) == 3 &&
sscanf(scale_xml+strlen(scale_tag),
"[%f, %f, %f]", scale, scale+1, scale+2) == 3 &&
sscanf(zero_xml+strlen(zero_tag),
"[%f, %f, %f]", zero, zero+1, zero+2) == 3) {
if (scale[0] == scale[1] && scale[1] == scale[2]) {
instance_scaling_factor = scale[0];
scale[0] = scale[1] = scale[2] = 1.;
}
if (rotation[0] == 0. && rotation[1] == 0.) {
instance_rotation = - rotation[2];
rotation[2] = 0.;
}
Eigen::Matrix3f mat_rot, mat_scale, mat_trafo;
mat_rot = Eigen::AngleAxisf(-rotation[2], Eigen::Vector3f::UnitZ()) *
Eigen::AngleAxisf(-rotation[1], Eigen::Vector3f::UnitY()) *
Eigen::AngleAxisf(-rotation[0], Eigen::Vector3f::UnitX());
mat_scale = Eigen::Scaling(scale[0], scale[1], scale[2]);
mat_trafo = mat_rot * mat_scale;
for (size_t r = 0; r < 3; ++ r) {
for (size_t c = 0; c < 3; ++ c)
trafo[r][c] += mat_trafo(r, c);
}
instance_offset.x = position[0] - zero[0];
instance_offset.y = position[1] - zero[1];
trafo[2][3] = position[2] / instance_scaling_factor;
trafo_set = true;
}
const char *group_tag = "<group>";
const char *group_xml = strstr(model_xml, group_tag);
const char *extruder_tag = "<extruder>";
const char *extruder_xml = strstr(model_xml, extruder_tag);
if (group_xml != nullptr) {
int group = atoi(group_xml + strlen(group_tag));
if (group > 0) {
group_id = group;
auto it = group_to_model_object.find(group_id);
if (it != group_to_model_object.end())
model_object = it->second;
}
}
if (extruder_xml != nullptr) {
int e = atoi(extruder_xml + strlen(extruder_tag));
if (e > 0)
extruder_id = e;
}
}
if (trafo_set) {
// Extract the STL.
StlHeader header;
TriangleMesh mesh;
bool mesh_valid = false;
bool stl_ascii = false;
if (!zip.Read((void*)&header, sizeof(StlHeader)).Eof()) {
if (strncmp(header.comment, "solid ", 6) == 0)
stl_ascii = true;
else {
// Header has been extracted. Now read the faces.
stl_file &stl = mesh.stl;
stl.error = 0;
stl.stats.type = inmemory;
stl.stats.number_of_facets = header.nTriangles;
stl.stats.original_num_facets = header.nTriangles;
stl_allocate(&stl);
if (header.nTriangles > 0 && zip.ReadAll((void*)stl.facet_start, 50 * header.nTriangles)) {
if (sizeof(stl_facet) > SIZEOF_STL_FACET) {
// The stl.facet_start is not packed tightly. Unpack the array of stl_facets.
unsigned char *data = (unsigned char*)stl.facet_start;
for (size_t i = header.nTriangles - 1; i > 0; -- i)
memmove(data + i * sizeof(stl_facet), data + i * SIZEOF_STL_FACET, SIZEOF_STL_FACET);
}
// All the faces have been read.
stl_get_size(&stl);
mesh.repair();
// Transform the model.
stl_transform(&stl, &trafo[0][0]);
if (std::abs(stl.stats.min.z) < EPSILON)
stl.stats.min.z = 0.;
// Add a mesh to a model.
if (mesh.facets_count() > 0)
mesh_valid = true;
}
}
} else
stl_ascii = true;
if (stl_ascii) {
// Try to parse ASCII STL.
char normal_buf[3][32];
stl_facet facet;
std::vector<stl_facet> facets;
LineReader line_reader(zip, (char*)&header, zip.LastRead());
std::string solid_name;
facet.extra[0] = facet.extra[1] = 0;
for (;;) {
const char *line = line_reader.next_line();
if (line == nullptr)
// End of file.
break;
if (strncmp(line, "solid", 5) == 0) {
// Opening the "solid" block.
if (! solid_name.empty()) {
// Error, solid block is already open.
facets.clear();
break;
}
solid_name = line + 5;
if (solid_name.empty())
solid_name = "unknown";
continue;
}
if (strncmp(line, "endsolid", 8) == 0) {
// Closing the "solid" block.
if (solid_name.empty()) {
// Error, no solid block is open.
facets.clear();
break;
}
solid_name.clear();
continue;
}
// Line has to start with the word solid.
int res_normal = sscanf(line, " facet normal %31s %31s %31s", normal_buf[0], normal_buf[1], normal_buf[2]);
assert(res_normal == 3);
int res_outer_loop = line_reader.next_line_scanf(" outer loop");
assert(res_outer_loop == 0);
int res_vertex1 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[0].x, &facet.vertex[0].y, &facet.vertex[0].z);
assert(res_vertex1 == 3);
int res_vertex2 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[1].x, &facet.vertex[1].y, &facet.vertex[1].z);
assert(res_vertex2 == 3);
int res_vertex3 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[2].x, &facet.vertex[2].y, &facet.vertex[2].z);
assert(res_vertex3 == 3);
int res_endloop = line_reader.next_line_scanf(" endloop");
assert(res_endloop == 0);
int res_endfacet = line_reader.next_line_scanf(" endfacet");
if (res_normal != 3 || res_outer_loop != 0 || res_vertex1 != 3 || res_vertex2 != 3 || res_vertex3 != 3 || res_endloop != 0 || res_endfacet != 0) {
// perror("Something is syntactically very wrong with this ASCII STL!");
facets.clear();
break;
}
// The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
if (sscanf(normal_buf[0], "%f", &facet.normal.x) != 1 ||
sscanf(normal_buf[1], "%f", &facet.normal.y) != 1 ||
sscanf(normal_buf[2], "%f", &facet.normal.z) != 1) {
// Normal was mangled. Maybe denormals or "not a number" were stored?
// Just reset the normal and silently ignore it.
memset(&facet.normal, 0, sizeof(facet.normal));
}
facets.emplace_back(facet);
}
if (! facets.empty() && solid_name.empty()) {
stl_file &stl = mesh.stl;
stl.stats.type = inmemory;
stl.stats.number_of_facets = facets.size();
stl.stats.original_num_facets = facets.size();
stl_allocate(&stl);
memcpy((void*)stl.facet_start, facets.data(), facets.size() * 50);
stl_get_size(&stl);
mesh.repair();
// Transform the model.
stl_transform(&stl, &trafo[0][0]);
// Add a mesh to a model.
if (mesh.facets_count() > 0)
mesh_valid = true;
}
}
if (mesh_valid) {
// Add this mesh to the model.
ModelVolume *volume = nullptr;
if (model_object == nullptr) {
// This is a first mesh of a group. Create a new object & volume.
model_object = model->add_object(name_utf8.data(), path, std::move(mesh));
volume = model_object->volumes.front();
ModelInstance *instance = model_object->add_instance();
instance->rotation = instance_rotation;
instance->scaling_factor = instance_scaling_factor;
instance->offset = instance_offset;
++ num_models;
if (group_id != (size_t)-1)
group_to_model_object[group_id] = model_object;
} else {
// This is not the 1st mesh of a group. Add it to the ModelObject.
volume = model_object->add_volume(std::move(mesh));
volume->name = name_utf8.data();
}
// Set the extruder to the volume.
if (extruder_id != (unsigned int)-1) {
char str_extruder[64];
sprintf(str_extruder, "%ud", extruder_id);
volume->config.set_deserialize("extruder", str_extruder);
}
}
}
}
}
return num_models > 0;
}
}; // namespace Slic3r
#endif /* SLIC3R_PRUS */