PrusaSlicer-NonPlainar/src/libslic3r/MultiPoint.cpp

291 lines
7.1 KiB
C++
Raw Normal View History

#include "MultiPoint.hpp"
#include "BoundingBox.hpp"
namespace Slic3r {
MultiPoint::operator Points() const
{
return this->points;
}
void MultiPoint::scale(double factor)
{
for (Point &pt : points)
pt *= factor;
}
void MultiPoint::scale(double factor_x, double factor_y)
{
for (Point &pt : points)
{
pt(0) *= factor_x;
pt(1) *= factor_y;
}
}
void MultiPoint::translate(double x, double y)
{
Vector v(x, y);
for (Point &pt : points)
pt += v;
}
void MultiPoint::translate(const Point &v)
2014-11-09 14:27:34 +00:00
{
for (Point &pt : points)
pt += v;
2014-11-09 14:27:34 +00:00
}
void MultiPoint::rotate(double cos_angle, double sin_angle)
{
for (Point &pt : this->points) {
double cur_x = double(pt(0));
double cur_y = double(pt(1));
pt(0) = coord_t(round(cos_angle * cur_x - sin_angle * cur_y));
pt(1) = coord_t(round(cos_angle * cur_y + sin_angle * cur_x));
}
}
void MultiPoint::rotate(double angle, const Point &center)
{
double s = sin(angle);
double c = cos(angle);
for (Point &pt : points) {
Vec2crd v(pt - center);
pt(0) = (coord_t)round(double(center(0)) + c * v[0] - s * v[1]);
pt(1) = (coord_t)round(double(center(1)) + c * v[1] + s * v[0]);
}
}
void MultiPoint::reverse()
{
std::reverse(this->points.begin(), this->points.end());
}
Point MultiPoint::first_point() const
{
return this->points.front();
}
double
MultiPoint::length() const
{
Lines lines = this->lines();
double len = 0;
for (Lines::iterator it = lines.begin(); it != lines.end(); ++it) {
len += it->length();
}
return len;
}
int
MultiPoint::find_point(const Point &point) const
{
for (const Point &pt : this->points)
if (pt == point)
return &pt - &this->points.front();
return -1; // not found
}
bool
MultiPoint::has_boundary_point(const Point &point) const
{
double dist = (point.projection_onto(*this) - point).cast<double>().norm();
return dist < SCALED_EPSILON;
}
BoundingBox
MultiPoint::bounding_box() const
{
return BoundingBox(this->points);
}
2016-04-15 16:01:08 +00:00
bool
MultiPoint::has_duplicate_points() const
{
for (size_t i = 1; i < points.size(); ++i)
if (points[i-1] == points[i])
2016-04-15 16:01:08 +00:00
return true;
return false;
}
bool
MultiPoint::remove_duplicate_points()
{
2016-04-15 16:01:08 +00:00
size_t j = 0;
for (size_t i = 1; i < points.size(); ++i) {
if (points[j] == points[i]) {
2016-04-15 16:01:08 +00:00
// Just increase index i.
} else {
++ j;
if (j < i)
points[j] = points[i];
}
}
2016-04-15 16:01:08 +00:00
if (++ j < points.size()) {
points.erase(points.begin() + j, points.end());
return true;
}
return false;
}
2016-03-19 14:33:58 +00:00
bool
MultiPoint::intersection(const Line& line, Point* intersection) const
{
Lines lines = this->lines();
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) {
if (it->intersection(line, intersection)) return true;
}
return false;
}
bool MultiPoint::first_intersection(const Line& line, Point* intersection) const
{
bool found = false;
double dmin = 0.;
for (const Line &l : this->lines()) {
Point ip;
if (l.intersection(line, &ip)) {
if (! found) {
found = true;
dmin = (line.a - ip).cast<double>().norm();
*intersection = ip;
} else {
double d = (line.a - ip).cast<double>().norm();
if (d < dmin) {
dmin = d;
*intersection = ip;
}
}
}
}
return found;
}
2016-09-26 10:44:45 +00:00
//FIXME This is very inefficient in term of memory use.
// The recursive algorithm shall run in place, not allocating temporary data in each recursion.
Points
MultiPoint::_douglas_peucker(const Points &points, const double tolerance)
{
2016-09-26 10:44:45 +00:00
assert(points.size() >= 2);
Points results;
double dmax = 0;
size_t index = 0;
Line full(points.front(), points.back());
for (Points::const_iterator it = points.begin() + 1; it != points.end(); ++it) {
// we use shortest distance, not perpendicular distance
double d = full.distance_to(*it);
if (d > dmax) {
index = it - points.begin();
dmax = d;
}
}
if (dmax >= tolerance) {
Points dp0;
dp0.reserve(index + 1);
dp0.insert(dp0.end(), points.begin(), points.begin() + index + 1);
2016-09-26 10:44:45 +00:00
// Recursive call.
Points dp1 = MultiPoint::_douglas_peucker(dp0, tolerance);
results.reserve(results.size() + dp1.size() - 1);
results.insert(results.end(), dp1.begin(), dp1.end() - 1);
dp0.clear();
2016-09-26 10:44:45 +00:00
dp0.reserve(points.size() - index);
dp0.insert(dp0.end(), points.begin() + index, points.end());
2016-09-26 10:44:45 +00:00
// Recursive call.
dp1 = MultiPoint::_douglas_peucker(dp0, tolerance);
results.reserve(results.size() + dp1.size());
results.insert(results.end(), dp1.begin(), dp1.end());
} else {
results.push_back(points.front());
results.push_back(points.back());
}
return results;
}
void MultiPoint3::translate(double x, double y)
{
for (Vec3crd &p : points) {
p(0) += x;
p(1) += y;
}
}
void MultiPoint3::translate(const Point& vector)
{
this->translate(vector(0), vector(1));
}
double MultiPoint3::length() const
{
double len = 0.0;
for (const Line3& line : this->lines())
len += line.length();
return len;
}
BoundingBox3 MultiPoint3::bounding_box() const
{
return BoundingBox3(points);
}
bool MultiPoint3::remove_duplicate_points()
{
size_t j = 0;
for (size_t i = 1; i < points.size(); ++i) {
if (points[j] == points[i]) {
// Just increase index i.
} else {
++ j;
if (j < i)
points[j] = points[i];
}
}
if (++j < points.size())
{
points.erase(points.begin() + j, points.end());
return true;
}
return false;
}
BoundingBox get_extents(const MultiPoint &mp)
{
return BoundingBox(mp.points);
}
BoundingBox get_extents_rotated(const Points &points, double angle)
{
BoundingBox bbox;
if (! points.empty()) {
double s = sin(angle);
double c = cos(angle);
Points::const_iterator it = points.begin();
double cur_x = (double)(*it)(0);
double cur_y = (double)(*it)(1);
bbox.min(0) = bbox.max(0) = (coord_t)round(c * cur_x - s * cur_y);
bbox.min(1) = bbox.max(1) = (coord_t)round(c * cur_y + s * cur_x);
for (++it; it != points.end(); ++it) {
double cur_x = (double)(*it)(0);
double cur_y = (double)(*it)(1);
coord_t x = (coord_t)round(c * cur_x - s * cur_y);
coord_t y = (coord_t)round(c * cur_y + s * cur_x);
bbox.min(0) = std::min(x, bbox.min(0));
bbox.min(1) = std::min(y, bbox.min(1));
bbox.max(0) = std::max(x, bbox.max(0));
bbox.max(1) = std::max(y, bbox.max(1));
}
bbox.defined = true;
}
return bbox;
}
BoundingBox get_extents_rotated(const MultiPoint &mp, double angle)
{
return get_extents_rotated(mp.points, angle);
}
}