PrusaSlicer-NonPlainar/tests/sla_print/sla_print_tests.cpp

255 lines
7.8 KiB
C++
Raw Normal View History

#include <unordered_set>
#include <unordered_map>
#include <random>
#include <cstdint>
#include "sla_test_utils.hpp"
#include <libslic3r/SLA/SupportTreeMesher.hpp>
#include <libslic3r/SLA/Concurrency.hpp>
namespace {
const char *const BELOW_PAD_TEST_OBJECTS[] = {
"20mm_cube.obj",
"V.obj",
};
const char *const AROUND_PAD_TEST_OBJECTS[] = {
"20mm_cube.obj",
"V.obj",
"frog_legs.obj",
"cube_with_concave_hole_enlarged.obj",
};
const char *const SUPPORT_TEST_MODELS[] = {
"cube_with_concave_hole_enlarged_standing.obj",
"A_upsidedown.obj",
"extruder_idler.obj"
};
} // namespace
2019-10-04 12:47:02 +00:00
TEST_CASE("Pillar pairhash should be unique", "[SLASupportGeneration]") {
test_pairhash<int, int>();
test_pairhash<int, long>();
test_pairhash<unsigned, unsigned>();
test_pairhash<unsigned, unsigned long>();
}
TEST_CASE("Support point generator should be deterministic if seeded",
"[SLASupportGeneration], [SLAPointGen]") {
TriangleMesh mesh = load_model("A_upsidedown.obj");
sla::IndexedMesh emesh{mesh};
sla::SupportTreeConfig supportcfg;
sla::SupportPointGenerator::Config autogencfg;
autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}};
TriangleMeshSlicer slicer{&mesh};
auto bb = mesh.bounding_box();
double zmin = bb.min.z();
double zmax = bb.max.z();
double gnd = zmin - supportcfg.object_elevation_mm;
auto layer_h = 0.05f;
auto slicegrid = grid(float(gnd), float(zmax), layer_h);
std::vector<ExPolygons> slices;
slicer.slice(slicegrid, SlicingMode::Regular, CLOSING_RADIUS, &slices, []{});
2020-01-15 16:44:15 +00:00
point_gen.seed(0);
point_gen.execute(slices, slicegrid);
auto get_chksum = [](const std::vector<sla::SupportPoint> &pts){
int64_t chksum = 0;
for (auto &pt : pts) {
auto p = scaled(pt.pos);
chksum += p.x() + p.y() + p.z();
}
return chksum;
};
int64_t checksum = get_chksum(point_gen.output());
size_t ptnum = point_gen.output().size();
REQUIRE(point_gen.output().size() > 0);
for (int i = 0; i < 20; ++i) {
point_gen.output().clear();
point_gen.seed(0);
2020-01-15 16:44:15 +00:00
point_gen.execute(slices, slicegrid);
REQUIRE(point_gen.output().size() == ptnum);
REQUIRE(checksum == get_chksum(point_gen.output()));
}
}
2019-10-04 12:47:02 +00:00
TEST_CASE("Flat pad geometry is valid", "[SLASupportGeneration]") {
sla::PadConfig padcfg;
// Disable wings
padcfg.wall_height_mm = .0;
for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}
2019-10-04 12:47:02 +00:00
TEST_CASE("WingedPadGeometryIsValid", "[SLASupportGeneration]") {
sla::PadConfig padcfg;
// Add some wings to the pad to test the cavity
padcfg.wall_height_mm = 1.;
for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}
2019-10-04 12:47:02 +00:00
TEST_CASE("FlatPadAroundObjectIsValid", "[SLASupportGeneration]") {
sla::PadConfig padcfg;
// Add some wings to the pad to test the cavity
padcfg.wall_height_mm = 0.;
// padcfg.embed_object.stick_stride_mm = 0.;
padcfg.embed_object.enabled = true;
padcfg.embed_object.everywhere = true;
for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}
2019-10-04 12:47:02 +00:00
TEST_CASE("WingedPadAroundObjectIsValid", "[SLASupportGeneration]") {
sla::PadConfig padcfg;
// Add some wings to the pad to test the cavity
padcfg.wall_height_mm = 1.;
padcfg.embed_object.enabled = true;
padcfg.embed_object.everywhere = true;
for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}
2019-10-04 12:47:02 +00:00
TEST_CASE("ElevatedSupportGeometryIsValid", "[SLASupportGeneration]") {
sla::SupportTreeConfig supportcfg;
2020-09-21 06:45:28 +00:00
supportcfg.object_elevation_mm = 10.;
2020-09-21 06:45:28 +00:00
for (auto fname : SUPPORT_TEST_MODELS) test_supports(fname, supportcfg);
}
2019-10-04 12:47:02 +00:00
TEST_CASE("FloorSupportGeometryIsValid", "[SLASupportGeneration]") {
sla::SupportTreeConfig supportcfg;
supportcfg.object_elevation_mm = 0;
for (auto &fname: SUPPORT_TEST_MODELS) test_supports(fname, supportcfg);
}
2019-10-04 12:47:02 +00:00
TEST_CASE("ElevatedSupportsDoNotPierceModel", "[SLASupportGeneration]") {
sla::SupportTreeConfig supportcfg;
for (auto fname : SUPPORT_TEST_MODELS)
test_support_model_collision(fname, supportcfg);
}
2019-10-04 12:47:02 +00:00
TEST_CASE("FloorSupportsDoNotPierceModel", "[SLASupportGeneration]") {
sla::SupportTreeConfig supportcfg;
supportcfg.object_elevation_mm = 0;
for (auto fname : SUPPORT_TEST_MODELS)
test_support_model_collision(fname, supportcfg);
}
2019-10-04 12:47:02 +00:00
TEST_CASE("InitializedRasterShouldBeNONEmpty", "[SLARasterOutput]") {
// Default Prusa SL1 display parameters
sla::RasterBase::Resolution res{2560, 1440};
sla::RasterBase::PixelDim pixdim{120. / res.width_px, 68. / res.height_px};
sla::RasterGrayscaleAAGammaPower raster(res, pixdim, {}, 1.);
2019-10-04 12:47:02 +00:00
REQUIRE(raster.resolution().width_px == res.width_px);
REQUIRE(raster.resolution().height_px == res.height_px);
REQUIRE(raster.pixel_dimensions().w_mm == Approx(pixdim.w_mm));
REQUIRE(raster.pixel_dimensions().h_mm == Approx(pixdim.h_mm));
}
2019-10-04 12:47:02 +00:00
TEST_CASE("MirroringShouldBeCorrect", "[SLARasterOutput]") {
sla::RasterBase::TMirroring mirrorings[] = {sla::RasterBase::NoMirror,
sla::RasterBase::MirrorX,
sla::RasterBase::MirrorY,
sla::RasterBase::MirrorXY};
sla::RasterBase::Orientation orientations[] =
{sla::RasterBase::roLandscape, sla::RasterBase::roPortrait};
for (auto orientation : orientations)
for (auto &mirror : mirrorings)
check_raster_transformations(orientation, mirror);
}
2019-10-04 12:47:02 +00:00
TEST_CASE("RasterizedPolygonAreaShouldMatch", "[SLARasterOutput]") {
double disp_w = 120., disp_h = 68.;
sla::RasterBase::Resolution res{2560, 1440};
sla::RasterBase::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
double gamma = 1.;
sla::RasterGrayscaleAAGammaPower raster(res, pixdim, {}, gamma);
auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
ExPolygon poly = square_with_hole(10.);
poly.translate(bb.center().x(), bb.center().y());
raster.draw(poly);
double a = poly.area() / (scaled<double>(1.) * scaled(1.));
double ra = raster_white_area(raster);
double diff = std::abs(a - ra);
2019-10-04 12:47:02 +00:00
REQUIRE(diff <= predict_error(poly, pixdim));
raster.clear();
poly = square_with_hole(60.);
poly.translate(bb.center().x(), bb.center().y());
raster.draw(poly);
a = poly.area() / (scaled<double>(1.) * scaled(1.));
ra = raster_white_area(raster);
diff = std::abs(a - ra);
2019-10-04 12:47:02 +00:00
REQUIRE(diff <= predict_error(poly, pixdim));
sla::RasterGrayscaleAA raster0(res, pixdim, {}, [](double) { return 0.; });
REQUIRE(raster_pxsum(raster0) == 0);
raster0.draw(poly);
ra = raster_white_area(raster);
REQUIRE(raster_pxsum(raster0) == 0);
}
TEST_CASE("Triangle mesh conversions should be correct", "[SLAConversions]")
{
sla::Contour3D cntr;
{
std::fstream infile{"extruder_idler_quads.obj", std::ios::in};
cntr.from_obj(infile);
}
}
TEST_CASE("halfcone test", "[halfcone]") {
sla::DiffBridge br{Vec3d{1., 1., 1.}, Vec3d{10., 10., 10.}, 0.25, 0.5};
TriangleMesh m = sla::to_triangle_mesh(sla::get_mesh(br, 45));
m.require_shared_vertices();
m.WriteOBJFile("Halfcone.obj");
}
TEST_CASE("Test concurrency")
{
std::vector<double> vals = grid(0., 100., 10.);
double ref = std::accumulate(vals.begin(), vals.end(), 0.);
double s = execution::accumulate(ex_tbb, vals.begin(), vals.end(), 0.);
REQUIRE(s == Approx(ref));
}