2020-06-11 14:09:51 +00:00
|
|
|
#include <stack>
|
|
|
|
|
|
|
|
#include <libslic3r/Geometry.hpp>
|
|
|
|
#include <libslic3r/Line.hpp>
|
|
|
|
#include <libslic3r/Polygon.hpp>
|
|
|
|
#include <libslic3r/SVG.hpp>
|
|
|
|
|
|
|
|
namespace boost { namespace polygon {
|
|
|
|
|
|
|
|
// The following code for the visualization of the boost Voronoi diagram is based on:
|
|
|
|
//
|
|
|
|
// Boost.Polygon library voronoi_graphic_utils.hpp header file
|
|
|
|
// Copyright Andrii Sydorchuk 2010-2012.
|
|
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
template <typename CT>
|
|
|
|
class voronoi_visual_utils {
|
|
|
|
public:
|
|
|
|
// Discretize parabolic Voronoi edge.
|
|
|
|
// Parabolic Voronoi edges are always formed by one point and one segment
|
|
|
|
// from the initial input set.
|
|
|
|
//
|
|
|
|
// Args:
|
|
|
|
// point: input point.
|
|
|
|
// segment: input segment.
|
|
|
|
// max_dist: maximum discretization distance.
|
|
|
|
// discretization: point discretization of the given Voronoi edge.
|
|
|
|
//
|
|
|
|
// Template arguments:
|
|
|
|
// InCT: coordinate type of the input geometries (usually integer).
|
|
|
|
// Point: point type, should model point concept.
|
|
|
|
// Segment: segment type, should model segment concept.
|
|
|
|
//
|
|
|
|
// Important:
|
|
|
|
// discretization should contain both edge endpoints initially.
|
|
|
|
template <class InCT1, class InCT2,
|
|
|
|
template<class> class Point,
|
|
|
|
template<class> class Segment>
|
|
|
|
static
|
|
|
|
typename enable_if<
|
|
|
|
typename gtl_and<
|
|
|
|
typename gtl_if<
|
|
|
|
typename is_point_concept<
|
|
|
|
typename geometry_concept< Point<InCT1> >::type
|
|
|
|
>::type
|
|
|
|
>::type,
|
|
|
|
typename gtl_if<
|
|
|
|
typename is_segment_concept<
|
|
|
|
typename geometry_concept< Segment<InCT2> >::type
|
|
|
|
>::type
|
|
|
|
>::type
|
|
|
|
>::type,
|
|
|
|
void
|
|
|
|
>::type discretize(
|
|
|
|
const Point<InCT1>& point,
|
|
|
|
const Segment<InCT2>& segment,
|
|
|
|
const CT max_dist,
|
|
|
|
std::vector< Point<CT> >* discretization) {
|
|
|
|
// Apply the linear transformation to move start point of the segment to
|
|
|
|
// the point with coordinates (0, 0) and the direction of the segment to
|
|
|
|
// coincide the positive direction of the x-axis.
|
|
|
|
CT segm_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
|
|
|
|
CT segm_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
|
|
|
|
CT sqr_segment_length = segm_vec_x * segm_vec_x + segm_vec_y * segm_vec_y;
|
|
|
|
|
|
|
|
// Compute x-coordinates of the endpoints of the edge
|
|
|
|
// in the transformed space.
|
|
|
|
CT projection_start = sqr_segment_length *
|
|
|
|
get_point_projection((*discretization)[0], segment);
|
|
|
|
CT projection_end = sqr_segment_length *
|
|
|
|
get_point_projection((*discretization)[1], segment);
|
|
|
|
|
|
|
|
// Compute parabola parameters in the transformed space.
|
|
|
|
// Parabola has next representation:
|
|
|
|
// f(x) = ((x-rot_x)^2 + rot_y^2) / (2.0*rot_y).
|
|
|
|
CT point_vec_x = cast(x(point)) - cast(x(low(segment)));
|
|
|
|
CT point_vec_y = cast(y(point)) - cast(y(low(segment)));
|
|
|
|
CT rot_x = segm_vec_x * point_vec_x + segm_vec_y * point_vec_y;
|
|
|
|
CT rot_y = segm_vec_x * point_vec_y - segm_vec_y * point_vec_x;
|
|
|
|
|
|
|
|
// Save the last point.
|
|
|
|
Point<CT> last_point = (*discretization)[1];
|
|
|
|
discretization->pop_back();
|
|
|
|
|
|
|
|
// Use stack to avoid recursion.
|
|
|
|
std::stack<CT> point_stack;
|
|
|
|
point_stack.push(projection_end);
|
|
|
|
CT cur_x = projection_start;
|
|
|
|
CT cur_y = parabola_y(cur_x, rot_x, rot_y);
|
|
|
|
|
|
|
|
// Adjust max_dist parameter in the transformed space.
|
|
|
|
const CT max_dist_transformed = max_dist * max_dist * sqr_segment_length;
|
|
|
|
while (!point_stack.empty()) {
|
|
|
|
CT new_x = point_stack.top();
|
|
|
|
CT new_y = parabola_y(new_x, rot_x, rot_y);
|
|
|
|
|
|
|
|
// Compute coordinates of the point of the parabola that is
|
|
|
|
// furthest from the current line segment.
|
|
|
|
CT mid_x = (new_y - cur_y) / (new_x - cur_x) * rot_y + rot_x;
|
|
|
|
CT mid_y = parabola_y(mid_x, rot_x, rot_y);
|
|
|
|
|
|
|
|
// Compute maximum distance between the given parabolic arc
|
|
|
|
// and line segment that discretize it.
|
|
|
|
CT dist = (new_y - cur_y) * (mid_x - cur_x) -
|
|
|
|
(new_x - cur_x) * (mid_y - cur_y);
|
|
|
|
dist = dist * dist / ((new_y - cur_y) * (new_y - cur_y) +
|
|
|
|
(new_x - cur_x) * (new_x - cur_x));
|
|
|
|
if (dist <= max_dist_transformed) {
|
|
|
|
// Distance between parabola and line segment is less than max_dist.
|
|
|
|
point_stack.pop();
|
|
|
|
CT inter_x = (segm_vec_x * new_x - segm_vec_y * new_y) /
|
|
|
|
sqr_segment_length + cast(x(low(segment)));
|
|
|
|
CT inter_y = (segm_vec_x * new_y + segm_vec_y * new_x) /
|
|
|
|
sqr_segment_length + cast(y(low(segment)));
|
|
|
|
discretization->push_back(Point<CT>(inter_x, inter_y));
|
|
|
|
cur_x = new_x;
|
|
|
|
cur_y = new_y;
|
|
|
|
} else {
|
|
|
|
point_stack.push(mid_x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update last point.
|
|
|
|
discretization->back() = last_point;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Compute y(x) = ((x - a) * (x - a) + b * b) / (2 * b).
|
|
|
|
static CT parabola_y(CT x, CT a, CT b) {
|
|
|
|
return ((x - a) * (x - a) + b * b) / (b + b);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get normalized length of the distance between:
|
|
|
|
// 1) point projection onto the segment
|
|
|
|
// 2) start point of the segment
|
|
|
|
// Return this length divided by the segment length. This is made to avoid
|
|
|
|
// sqrt computation during transformation from the initial space to the
|
|
|
|
// transformed one and vice versa. The assumption is made that projection of
|
|
|
|
// the point lies between the start-point and endpoint of the segment.
|
|
|
|
template <class InCT,
|
|
|
|
template<class> class Point,
|
|
|
|
template<class> class Segment>
|
|
|
|
static
|
|
|
|
typename enable_if<
|
|
|
|
typename gtl_and<
|
|
|
|
typename gtl_if<
|
|
|
|
typename is_point_concept<
|
|
|
|
typename geometry_concept< Point<int> >::type
|
|
|
|
>::type
|
|
|
|
>::type,
|
|
|
|
typename gtl_if<
|
|
|
|
typename is_segment_concept<
|
|
|
|
typename geometry_concept< Segment<long> >::type
|
|
|
|
>::type
|
|
|
|
>::type
|
|
|
|
>::type,
|
|
|
|
CT
|
|
|
|
>::type get_point_projection(
|
|
|
|
const Point<CT>& point, const Segment<InCT>& segment) {
|
|
|
|
CT segment_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
|
|
|
|
CT segment_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
|
|
|
|
CT point_vec_x = x(point) - cast(x(low(segment)));
|
|
|
|
CT point_vec_y = y(point) - cast(y(low(segment)));
|
|
|
|
CT sqr_segment_length =
|
|
|
|
segment_vec_x * segment_vec_x + segment_vec_y * segment_vec_y;
|
|
|
|
CT vec_dot = segment_vec_x * point_vec_x + segment_vec_y * point_vec_y;
|
|
|
|
return vec_dot / sqr_segment_length;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename InCT>
|
|
|
|
static CT cast(const InCT& value) {
|
|
|
|
return static_cast<CT>(value);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} } // namespace boost::polygon
|
|
|
|
|
|
|
|
|
|
|
|
namespace Slic3r
|
|
|
|
{
|
|
|
|
|
|
|
|
// The following code for the visualization of the boost Voronoi diagram is based on:
|
|
|
|
//
|
|
|
|
// Boost.Polygon library voronoi_visualizer.cpp file
|
|
|
|
// Copyright Andrii Sydorchuk 2010-2012.
|
|
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
namespace Voronoi { namespace Internal {
|
|
|
|
|
|
|
|
using VD = Geometry::VoronoiDiagram;
|
|
|
|
typedef double coordinate_type;
|
|
|
|
typedef boost::polygon::point_data<coordinate_type> point_type;
|
|
|
|
typedef boost::polygon::segment_data<coordinate_type> segment_type;
|
|
|
|
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
|
|
|
|
typedef VD::cell_type cell_type;
|
|
|
|
typedef VD::cell_type::source_index_type source_index_type;
|
|
|
|
typedef VD::cell_type::source_category_type source_category_type;
|
|
|
|
typedef VD::edge_type edge_type;
|
|
|
|
typedef VD::cell_container_type cell_container_type;
|
|
|
|
typedef VD::cell_container_type vertex_container_type;
|
|
|
|
typedef VD::edge_container_type edge_container_type;
|
|
|
|
typedef VD::const_cell_iterator const_cell_iterator;
|
|
|
|
typedef VD::const_vertex_iterator const_vertex_iterator;
|
|
|
|
typedef VD::const_edge_iterator const_edge_iterator;
|
|
|
|
|
|
|
|
static const std::size_t EXTERNAL_COLOR = 1;
|
|
|
|
|
|
|
|
inline void color_exterior(const VD::edge_type* edge)
|
|
|
|
{
|
|
|
|
if (edge->color() == EXTERNAL_COLOR)
|
|
|
|
return;
|
|
|
|
edge->color(EXTERNAL_COLOR);
|
|
|
|
edge->twin()->color(EXTERNAL_COLOR);
|
|
|
|
const VD::vertex_type* v = edge->vertex1();
|
|
|
|
if (v == NULL || !edge->is_primary())
|
|
|
|
return;
|
|
|
|
v->color(EXTERNAL_COLOR);
|
|
|
|
const VD::edge_type* e = v->incident_edge();
|
|
|
|
do {
|
|
|
|
color_exterior(e);
|
|
|
|
e = e->rot_next();
|
|
|
|
} while (e != v->incident_edge());
|
|
|
|
}
|
|
|
|
|
|
|
|
inline point_type retrieve_point(const Points &points, const std::vector<segment_type> &segments, const cell_type& cell)
|
|
|
|
{
|
|
|
|
assert(cell.source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_END_POINT ||
|
|
|
|
cell.source_category() == boost::polygon::SOURCE_CATEGORY_SINGLE_POINT);
|
|
|
|
return cell.source_category() == boost::polygon::SOURCE_CATEGORY_SINGLE_POINT ?
|
|
|
|
Voronoi::Internal::point_type(double(points[cell.source_index()].x()), double(points[cell.source_index()].y())) :
|
|
|
|
(cell.source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ?
|
|
|
|
low(segments[cell.source_index()]) : high(segments[cell.source_index()]);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void clip_infinite_edge(const Points &points, const std::vector<segment_type> &segments, const edge_type& edge, coordinate_type bbox_max_size, std::vector<point_type>* clipped_edge)
|
|
|
|
{
|
|
|
|
const cell_type& cell1 = *edge.cell();
|
|
|
|
const cell_type& cell2 = *edge.twin()->cell();
|
|
|
|
point_type origin, direction;
|
|
|
|
// Infinite edges could not be created by two segment sites.
|
|
|
|
if (! cell1.contains_point() && ! cell2.contains_point()) {
|
|
|
|
printf("Error! clip_infinite_edge - infinite edge separates two segment cells\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (cell1.contains_point() && cell2.contains_point()) {
|
|
|
|
point_type p1 = retrieve_point(points, segments, cell1);
|
|
|
|
point_type p2 = retrieve_point(points, segments, cell2);
|
|
|
|
origin.x((p1.x() + p2.x()) * 0.5);
|
|
|
|
origin.y((p1.y() + p2.y()) * 0.5);
|
|
|
|
direction.x(p1.y() - p2.y());
|
|
|
|
direction.y(p2.x() - p1.x());
|
|
|
|
} else {
|
|
|
|
origin = cell1.contains_segment() ? retrieve_point(points, segments, cell2) : retrieve_point(points, segments, cell1);
|
|
|
|
segment_type segment = cell1.contains_segment() ? segments[cell1.source_index()] : segments[cell2.source_index()];
|
|
|
|
coordinate_type dx = high(segment).x() - low(segment).x();
|
|
|
|
coordinate_type dy = high(segment).y() - low(segment).y();
|
|
|
|
if ((low(segment) == origin) ^ cell1.contains_point()) {
|
|
|
|
direction.x(dy);
|
|
|
|
direction.y(-dx);
|
|
|
|
} else {
|
|
|
|
direction.x(-dy);
|
|
|
|
direction.y(dx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
coordinate_type koef = bbox_max_size / (std::max)(fabs(direction.x()), fabs(direction.y()));
|
|
|
|
if (edge.vertex0() == NULL) {
|
|
|
|
clipped_edge->push_back(point_type(
|
|
|
|
origin.x() - direction.x() * koef,
|
|
|
|
origin.y() - direction.y() * koef));
|
|
|
|
} else {
|
|
|
|
clipped_edge->push_back(
|
|
|
|
point_type(edge.vertex0()->x(), edge.vertex0()->y()));
|
|
|
|
}
|
|
|
|
if (edge.vertex1() == NULL) {
|
|
|
|
clipped_edge->push_back(point_type(
|
|
|
|
origin.x() + direction.x() * koef,
|
|
|
|
origin.y() + direction.y() * koef));
|
|
|
|
} else {
|
|
|
|
clipped_edge->push_back(
|
|
|
|
point_type(edge.vertex1()->x(), edge.vertex1()->y()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void sample_curved_edge(const Points &points, const std::vector<segment_type> &segments, const edge_type& edge, std::vector<point_type> &sampled_edge, coordinate_type max_dist)
|
|
|
|
{
|
|
|
|
point_type point = edge.cell()->contains_point() ?
|
|
|
|
retrieve_point(points, segments, *edge.cell()) :
|
|
|
|
retrieve_point(points, segments, *edge.twin()->cell());
|
|
|
|
segment_type segment = edge.cell()->contains_point() ?
|
|
|
|
segments[edge.twin()->cell()->source_index()] :
|
|
|
|
segments[edge.cell()->source_index()];
|
|
|
|
::boost::polygon::voronoi_visual_utils<coordinate_type>::discretize(point, segment, max_dist, &sampled_edge);
|
|
|
|
}
|
|
|
|
|
|
|
|
} /* namespace Internal */ } // namespace Voronoi
|
|
|
|
|
|
|
|
BoundingBox get_extents(const Lines &lines);
|
|
|
|
|
|
|
|
static inline void dump_voronoi_to_svg(
|
|
|
|
const char *path,
|
|
|
|
const Geometry::VoronoiDiagram &vd,
|
|
|
|
const Points &points,
|
|
|
|
const Lines &lines,
|
|
|
|
const Polygons &offset_curves = Polygons(),
|
|
|
|
const Lines &helper_lines = Lines(),
|
2020-06-16 11:13:51 +00:00
|
|
|
double scale = 0)
|
2020-06-11 14:09:51 +00:00
|
|
|
{
|
2020-06-16 11:13:51 +00:00
|
|
|
BoundingBox bbox;
|
|
|
|
bbox.merge(get_extents(points));
|
|
|
|
bbox.merge(get_extents(lines));
|
|
|
|
bbox.merge(get_extents(offset_curves));
|
|
|
|
bbox.merge(get_extents(helper_lines));
|
|
|
|
bbox.min -= (0.01 * bbox.size().cast<double>()).cast<coord_t>();
|
|
|
|
bbox.max += (0.01 * bbox.size().cast<double>()).cast<coord_t>();
|
|
|
|
|
|
|
|
if (scale == 0)
|
|
|
|
scale =
|
|
|
|
// 0.1
|
|
|
|
0.01
|
|
|
|
* std::min(bbox.size().x(), bbox.size().y());
|
|
|
|
else
|
|
|
|
scale /= SCALING_FACTOR;
|
|
|
|
|
2020-06-11 14:09:51 +00:00
|
|
|
const std::string inputSegmentPointColor = "lightseagreen";
|
2020-06-16 11:13:51 +00:00
|
|
|
const coord_t inputSegmentPointRadius = coord_t(0.09 * scale);
|
2020-06-11 14:09:51 +00:00
|
|
|
const std::string inputSegmentColor = "lightseagreen";
|
2020-06-16 11:13:51 +00:00
|
|
|
const coord_t inputSegmentLineWidth = coord_t(0.03 * scale);
|
2020-06-11 14:09:51 +00:00
|
|
|
|
|
|
|
const std::string voronoiPointColor = "black";
|
2020-06-16 11:13:51 +00:00
|
|
|
const coord_t voronoiPointRadius = coord_t(0.06 * scale);
|
2020-06-11 14:09:51 +00:00
|
|
|
const std::string voronoiLineColorPrimary = "black";
|
|
|
|
const std::string voronoiLineColorSecondary = "green";
|
|
|
|
const std::string voronoiArcColor = "red";
|
2020-06-16 11:13:51 +00:00
|
|
|
const coord_t voronoiLineWidth = coord_t(0.02 * scale);
|
2020-06-11 14:09:51 +00:00
|
|
|
|
|
|
|
const std::string offsetCurveColor = "magenta";
|
2020-06-16 11:13:51 +00:00
|
|
|
const coord_t offsetCurveLineWidth = coord_t(0.02 * scale);
|
2020-06-11 14:09:51 +00:00
|
|
|
|
|
|
|
const std::string helperLineColor = "orange";
|
2020-06-16 11:13:51 +00:00
|
|
|
const coord_t helperLineWidth = coord_t(0.04 * scale);
|
2020-06-11 14:09:51 +00:00
|
|
|
|
|
|
|
const bool internalEdgesOnly = false;
|
|
|
|
const bool primaryEdgesOnly = false;
|
|
|
|
|
|
|
|
::Slic3r::SVG svg(path, bbox);
|
|
|
|
|
|
|
|
// For clipping of half-lines to some reasonable value.
|
|
|
|
// The line will then be clipped by the SVG viewer anyway.
|
|
|
|
const double bbox_dim_max = double(std::max(bbox.size().x(), bbox.size().y()));
|
|
|
|
// For the discretization of the Voronoi parabolic segments.
|
2020-06-16 11:13:51 +00:00
|
|
|
const double discretization_step = 0.0002 * bbox_dim_max;
|
2020-06-11 14:09:51 +00:00
|
|
|
|
|
|
|
// Make a copy of the input segments with the double type.
|
|
|
|
std::vector<Voronoi::Internal::segment_type> segments;
|
|
|
|
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++ it)
|
|
|
|
segments.push_back(Voronoi::Internal::segment_type(
|
|
|
|
Voronoi::Internal::point_type(double(it->a(0)), double(it->a(1))),
|
|
|
|
Voronoi::Internal::point_type(double(it->b(0)), double(it->b(1)))));
|
|
|
|
|
|
|
|
// Color exterior edges.
|
|
|
|
for (boost::polygon::voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it)
|
|
|
|
if (!it->is_finite())
|
|
|
|
Voronoi::Internal::color_exterior(&(*it));
|
|
|
|
|
|
|
|
// Draw the end points of the input polygon.
|
|
|
|
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) {
|
|
|
|
svg.draw(it->a, inputSegmentPointColor, inputSegmentPointRadius);
|
|
|
|
svg.draw(it->b, inputSegmentPointColor, inputSegmentPointRadius);
|
|
|
|
}
|
|
|
|
// Draw the input polygon.
|
|
|
|
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it)
|
|
|
|
svg.draw(Line(Point(coord_t(it->a(0)), coord_t(it->a(1))), Point(coord_t(it->b(0)), coord_t(it->b(1)))), inputSegmentColor, inputSegmentLineWidth);
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
// Draw voronoi vertices.
|
|
|
|
for (boost::polygon::voronoi_diagram<double>::const_vertex_iterator it = vd.vertices().begin(); it != vd.vertices().end(); ++it)
|
|
|
|
if (! internalEdgesOnly || it->color() != Voronoi::Internal::EXTERNAL_COLOR)
|
|
|
|
svg.draw(Point(coord_t(it->x()), coord_t(it->y())), voronoiPointColor, voronoiPointRadius);
|
|
|
|
|
|
|
|
for (boost::polygon::voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it) {
|
|
|
|
if (primaryEdgesOnly && !it->is_primary())
|
|
|
|
continue;
|
|
|
|
if (internalEdgesOnly && (it->color() == Voronoi::Internal::EXTERNAL_COLOR))
|
|
|
|
continue;
|
|
|
|
std::vector<Voronoi::Internal::point_type> samples;
|
|
|
|
std::string color = voronoiLineColorPrimary;
|
|
|
|
if (!it->is_finite()) {
|
|
|
|
Voronoi::Internal::clip_infinite_edge(points, segments, *it, bbox_dim_max, &samples);
|
|
|
|
if (! it->is_primary())
|
|
|
|
color = voronoiLineColorSecondary;
|
|
|
|
} else {
|
|
|
|
// Store both points of the segment into samples. sample_curved_edge will split the initial line
|
|
|
|
// until the discretization_step is reached.
|
|
|
|
samples.push_back(Voronoi::Internal::point_type(it->vertex0()->x(), it->vertex0()->y()));
|
|
|
|
samples.push_back(Voronoi::Internal::point_type(it->vertex1()->x(), it->vertex1()->y()));
|
|
|
|
if (it->is_curved()) {
|
|
|
|
Voronoi::Internal::sample_curved_edge(points, segments, *it, samples, discretization_step);
|
|
|
|
color = voronoiArcColor;
|
|
|
|
} else if (! it->is_primary())
|
|
|
|
color = voronoiLineColorSecondary;
|
|
|
|
}
|
|
|
|
for (std::size_t i = 0; i + 1 < samples.size(); ++i)
|
|
|
|
svg.draw(Line(Point(coord_t(samples[i].x()), coord_t(samples[i].y())), Point(coord_t(samples[i+1].x()), coord_t(samples[i+1].y()))), color, voronoiLineWidth);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
svg.draw_outline(offset_curves, offsetCurveColor, offsetCurveLineWidth);
|
|
|
|
svg.draw(helper_lines, helperLineColor, helperLineWidth);
|
|
|
|
|
|
|
|
svg.Close();
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace Slic3r
|