PrusaSlicer-NonPlainar/tests/libnest2d/libnest2d_tests_main.cpp

1234 lines
32 KiB
C++
Raw Normal View History

#include <catch_main.hpp>
#include <fstream>
#include <cstdint>
#include <libnest2d/libnest2d.hpp>
#include "printer_parts.hpp"
//#include <libnest2d/geometry_traits_nfp.hpp>
#include "../tools/svgtools.hpp"
#include <libnest2d/utils/rotcalipers.hpp>
#if defined(_MSC_VER) && defined(__clang__)
#define BOOST_NO_CXX17_HDR_STRING_VIEW
#endif
#include "boost/multiprecision/integer.hpp"
#include "boost/rational.hpp"
//#include "../tools/libnfpglue.hpp"
//#include "../tools/nfp_svgnest_glue.hpp"
namespace libnest2d {
#if !defined(_MSC_VER) && defined(__SIZEOF_INT128__) && !defined(__APPLE__)
using LargeInt = __int128;
#else
using LargeInt = boost::multiprecision::int128_t;
template<> struct _NumTag<LargeInt> { using Type = ScalarTag; };
#endif
template<class T> struct _NumTag<boost::rational<T>> { using Type = RationalTag; };
using RectangleItem = libnest2d::Rectangle;
namespace nfp {
template<class S>
struct NfpImpl<S, NfpLevel::CONVEX_ONLY>
{
NfpResult<S> operator()(const S &sh, const S &other)
{
return nfpConvexOnly<S, boost::rational<LargeInt>>(sh, other);
}
};
}
}
namespace {
using namespace libnest2d;
template<int64_t SCALE = 1, class It>
void exportSVG(const char *loc, It from, It to) {
static const char* svg_header =
R"raw(<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg height="500" width="500" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
)raw";
// for(auto r : result) {
std::fstream out(loc, std::fstream::out);
if(out.is_open()) {
out << svg_header;
// Item rbin( RectangleItem(bin.width(), bin.height()) );
// for(unsigned j = 0; j < rbin.vertexCount(); j++) {
// auto v = rbin.vertex(j);
// setY(v, -getY(v)/SCALE + 500 );
// setX(v, getX(v)/SCALE);
// rbin.setVertex(j, v);
// }
// out << shapelike::serialize<Formats::SVG>(rbin.rawShape()) << std::endl;
for(auto it = from; it != to; ++it) {
const Item &itm = *it;
Item tsh(itm.transformedShape());
for(unsigned j = 0; j < tsh.vertexCount(); j++) {
auto v = tsh.vertex(j);
setY(v, -getY(v)/SCALE + 500);
setX(v, getX(v)/SCALE);
tsh.setVertex(j, v);
}
out << shapelike::serialize<Formats::SVG>(tsh.rawShape()) << std::endl;
}
out << "\n</svg>" << std::endl;
}
out.close();
// i++;
// }
}
template<int64_t SCALE = 1>
void exportSVG(std::vector<std::reference_wrapper<Item>>& result, int idx = 0) {
exportSVG<SCALE>((std::string("out") + std::to_string(idx) + ".svg").c_str(),
result.begin(), result.end());
}
}
static std::vector<libnest2d::Item>& prusaParts() {
using namespace libnest2d;
static std::vector<Item> ret;
if(ret.empty()) {
ret.reserve(PRINTER_PART_POLYGONS.size());
for(auto& inp : PRINTER_PART_POLYGONS) {
auto inp_cpy = inp;
if (ClosureTypeV<PathImpl> == Closure::OPEN)
inp_cpy.points.pop_back();
if constexpr (!libnest2d::is_clockwise<libnest2d::PathImpl>())
std::reverse(inp_cpy.begin(), inp_cpy.end());
ret.emplace_back(inp_cpy);
}
}
return ret;
}
TEST_CASE("Angles", "[Geometry]")
{
using namespace libnest2d;
Degrees deg(180);
Radians rad(deg);
Degrees deg2(rad);
REQUIRE(Approx(rad) == Pi);
REQUIRE(Approx(deg) == 180);
REQUIRE(Approx(deg2) == 180);
REQUIRE(Approx(rad) == Radians(deg));
REQUIRE(Approx(Degrees(rad)) == deg);
REQUIRE(rad == deg);
Segment seg = {{0, 0}, {12, -10}};
REQUIRE(Degrees(seg.angleToXaxis()) > 270);
REQUIRE(Degrees(seg.angleToXaxis()) < 360);
seg = {{0, 0}, {12, 10}};
REQUIRE(Degrees(seg.angleToXaxis()) > 0);
REQUIRE(Degrees(seg.angleToXaxis()) < 90);
seg = {{0, 0}, {-12, 10}};
REQUIRE(Degrees(seg.angleToXaxis()) > 90);
REQUIRE(Degrees(seg.angleToXaxis()) < 180);
seg = {{0, 0}, {-12, -10}};
REQUIRE(Degrees(seg.angleToXaxis()) > 180);
REQUIRE(Degrees(seg.angleToXaxis()) < 270);
seg = {{0, 0}, {1, 0}};
REQUIRE(Degrees(seg.angleToXaxis()) == Approx(0.));
seg = {{0, 0}, {0, 1}};
REQUIRE(Degrees(seg.angleToXaxis()) == Approx(90.));
seg = {{0, 0}, {-1, 0}};
REQUIRE(Degrees(seg.angleToXaxis()) == Approx(180.));
seg = {{0, 0}, {0, -1}};
REQUIRE(Degrees(seg.angleToXaxis()) == Approx(270.));
}
// Simple TEST_CASE, does not use gmock
TEST_CASE("ItemCreationAndDestruction", "[Nesting]")
{
using namespace libnest2d;
Item sh = { {0, 0}, {1, 0}, {1, 1}, {0, 1} };
REQUIRE(sh.vertexCount() == 4u);
Item sh2 ({ {0, 0}, {1, 0}, {1, 1}, {0, 1} });
REQUIRE(sh2.vertexCount() == 4u);
// copy
Item sh3 = sh2;
REQUIRE(sh3.vertexCount() == 4u);
sh2 = {};
REQUIRE(sh2.vertexCount() == 0u);
REQUIRE(sh3.vertexCount() == 4u);
}
TEST_CASE("boundingCircle", "[Geometry]") {
using namespace libnest2d;
using placers::boundingCircle;
PolygonImpl p = {{{0, 10}, {10, 0}, {0, -10}, {0, 10}}, {}};
Circle c = boundingCircle(p);
REQUIRE(getX(c.center()) == 0);
REQUIRE(getY(c.center()) == 0);
REQUIRE(c.radius() == Approx(10));
shapelike::translate(p, PointImpl{10, 10});
c = boundingCircle(p);
REQUIRE(getX(c.center()) == 10);
REQUIRE(getY(c.center()) == 10);
REQUIRE(c.radius() == Approx(10));
auto parts = prusaParts();
int i = 0;
for(auto& part : parts) {
c = boundingCircle(part.transformedShape());
if(std::isnan(c.radius())) std::cout << "fail: radius is nan" << std::endl;
else for(auto v : shapelike::contour(part.transformedShape()) ) {
auto d = pointlike::distance(v, c.center());
if(d > c.radius() ) {
auto e = std::abs( 1.0 - d/c.radius());
REQUIRE(e <= 1e-3);
}
}
i++;
}
}
TEST_CASE("Distance", "[Geometry]") {
using namespace libnest2d;
Point p1 = {0, 0};
Point p2 = {10, 0};
Point p3 = {10, 10};
REQUIRE(pointlike::distance(p1, p2) == Approx(10));
REQUIRE(pointlike::distance(p1, p3) == Approx(sqrt(200)));
Segment seg(p1, p3);
// REQUIRE(pointlike::distance(p2, seg) == Approx(7.0710678118654755));
auto result = pointlike::horizontalDistance(p2, seg);
auto check = [](TCompute<Coord> val, TCompute<Coord> expected) {
if(std::is_floating_point<TCompute<Coord>>::value)
REQUIRE(static_cast<double>(val) ==
Approx(static_cast<double>(expected)));
else
REQUIRE(val == expected);
};
REQUIRE(result.second);
check(result.first, 10);
result = pointlike::verticalDistance(p2, seg);
REQUIRE(result.second);
check(result.first, -10);
result = pointlike::verticalDistance(Point{10, 20}, seg);
REQUIRE(result.second);
check(result.first, 10);
Point p4 = {80, 0};
Segment seg2 = { {0, 0}, {0, 40} };
result = pointlike::horizontalDistance(p4, seg2);
REQUIRE(result.second);
check(result.first, 80);
result = pointlike::verticalDistance(p4, seg2);
// Point should not be related to the segment
REQUIRE_FALSE(result.second);
}
TEST_CASE("Area", "[Geometry]") {
using namespace libnest2d;
RectangleItem rect(10, 10);
REQUIRE(rect.area() == Approx(100));
RectangleItem rect2 = {100, 100};
REQUIRE(rect2.area() == Approx(10000));
Item item = {
{61, 97},
{70, 151},
{176, 151},
{189, 138},
{189, 59},
{70, 59},
{61, 77},
{61, 97}
};
REQUIRE(std::abs(shapelike::area(item.transformedShape())) > 0 );
}
TEST_CASE("IsPointInsidePolygon", "[Geometry]") {
using namespace libnest2d;
RectangleItem rect(10, 10);
Point p = {1, 1};
REQUIRE(rect.isInside(p));
p = {11, 11};
REQUIRE_FALSE(rect.isInside(p));
p = {11, 12};
REQUIRE_FALSE(rect.isInside(p));
p = {3, 3};
REQUIRE(rect.isInside(p));
}
//TEST_CASE(GeometryAlgorithms, Intersections) {
// using namespace binpack2d;
// RectangleItem rect(70, 30);
// rect.translate({80, 60});
// RectangleItem rect2(80, 60);
// rect2.translate({80, 0});
//// REQUIRE_FALSE(Item::intersects(rect, rect2));
// Segment s1({0, 0}, {10, 10});
// Segment s2({1, 1}, {11, 11});
// REQUIRE_FALSE(ShapeLike::intersects(s1, s1));
// REQUIRE_FALSE(ShapeLike::intersects(s1, s2));
//}
TEST_CASE("LeftAndDownPolygon", "[Geometry]")
{
using namespace libnest2d;
Box bin(100, 100);
BottomLeftPlacer placer(bin);
PathImpl pitem = {{70, 75}, {88, 60}, {65, 50}, {60, 30}, {80, 20},
{42, 20}, {35, 35}, {35, 55}, {40, 75}};
PathImpl pleftControl = {{40, 75}, {35, 55}, {35, 35},
{42, 20}, {0, 20}, {0, 75}};
PathImpl pdownControl = {{88, 60}, {88, 0}, {35, 0}, {35, 35},
{42, 20}, {80, 20}, {60, 30}, {65, 50}};
if constexpr (!is_clockwise<PathImpl>()) {
std::reverse(sl::begin(pitem), sl::end(pitem));
std::reverse(sl::begin(pleftControl), sl::end(pleftControl));
std::reverse(sl::begin(pdownControl), sl::end(pdownControl));
}
if constexpr (ClosureTypeV<PathImpl> == Closure::CLOSED) {
sl::addVertex(pitem, sl::front(pitem));
sl::addVertex(pleftControl, sl::front(pleftControl));
sl::addVertex(pdownControl, sl::front(pdownControl));
}
Item item{pitem}, leftControl{pleftControl}, downControl{pdownControl};
Item leftp(placer.leftPoly(item));
auto valid = sl::isValid(leftp.rawShape());
std::vector<std::reference_wrapper<Item>> to_export{ leftp, leftControl };
exportSVG<1>("leftp.svg", to_export.begin(), to_export.end());
REQUIRE(valid.first);
REQUIRE(leftp.vertexCount() == leftControl.vertexCount());
for(unsigned long i = 0; i < leftControl.vertexCount(); i++) {
REQUIRE(getX(leftp.vertex(i)) == getX(leftControl.vertex(i)));
REQUIRE(getY(leftp.vertex(i)) == getY(leftControl.vertex(i)));
}
Item downp(placer.downPoly(item));
REQUIRE(shapelike::isValid(downp.rawShape()).first);
REQUIRE(downp.vertexCount() == downControl.vertexCount());
for(unsigned long i = 0; i < downControl.vertexCount(); i++) {
REQUIRE(getX(downp.vertex(i)) == getX(downControl.vertex(i)));
REQUIRE(getY(downp.vertex(i)) == getY(downControl.vertex(i)));
}
}
TEST_CASE("ArrangeRectanglesTight", "[Nesting][NotWorking]")
{
using namespace libnest2d;
std::vector<RectangleItem> rects = {
{80, 80},
{60, 90},
{70, 30},
{80, 60},
{60, 60},
{60, 40},
{40, 40},
{10, 10},
{10, 10},
{10, 10},
{10, 10},
{10, 10},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{20, 20} };
Box bin(210, 250, {105, 125});
REQUIRE(bin.width() == 210);
REQUIRE(bin.height() == 250);
REQUIRE(getX(bin.center()) == 105);
REQUIRE(getY(bin.center()) == 125);
_Nester<BottomLeftPlacer, FirstFitSelection> arrange(bin);
arrange.execute(rects.begin(), rects.end());
auto max_group = std::max_element(rects.begin(), rects.end(),
[](const Item &i1, const Item &i2) {
return i1.binId() < i2.binId();
});
int groups = max_group == rects.end() ? 0 : max_group->binId() + 1;
REQUIRE(groups == 1u);
REQUIRE(
std::all_of(rects.begin(), rects.end(), [](const RectangleItem &itm) {
return itm.binId() != BIN_ID_UNSET;
}));
// check for no intersections, no containment:
// exportSVG<1>("arrangeRectanglesTight.svg", rects.begin(), rects.end());
bool valid = true;
for(Item& r1 : rects) {
for(Item& r2 : rects) {
if(&r1 != &r2 ) {
valid = !Item::intersects(r1, r2) || Item::touches(r1, r2);
REQUIRE(valid);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
REQUIRE(valid);
}
}
}
}
TEST_CASE("ArrangeRectanglesLoose", "[Nesting]")
{
using namespace libnest2d;
// std::vector<Rectangle> rects = { {40, 40}, {10, 10}, {20, 20} };
std::vector<RectangleItem> rects = {
{80, 80},
{60, 90},
{70, 30},
{80, 60},
{60, 60},
{60, 40},
{40, 40},
{10, 10},
{10, 10},
{10, 10},
{10, 10},
{10, 10},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{20, 20} };
Box bin(210, 250, {105, 125});
REQUIRE(bin.width() == 210);
REQUIRE(bin.height() == 250);
REQUIRE(getX(bin.center()) == 105);
REQUIRE(getY(bin.center()) == 125);
Coord min_obj_distance = 5;
_Nester<BottomLeftPlacer, FirstFitSelection> arrange(bin, min_obj_distance);
arrange.execute(rects.begin(), rects.end());
auto max_group = std::max_element(rects.begin(), rects.end(),
[](const Item &i1, const Item &i2) {
return i1.binId() < i2.binId();
});
auto groups = size_t(max_group == rects.end() ? 0 : max_group->binId() + 1);
REQUIRE(groups == 1u);
REQUIRE(
std::all_of(rects.begin(), rects.end(), [](const RectangleItem &itm) {
return itm.binId() != BIN_ID_UNSET;
}));
// check for no intersections, no containment:
bool valid = true;
for(Item& r1 : rects) {
for(Item& r2 : rects) {
if(&r1 != &r2 ) {
valid = !Item::intersects(r1, r2);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
REQUIRE(valid);
}
}
}
}
TEST_CASE("BottomLeftStressTest", "[Geometry][NotWorking]") {
using namespace libnest2d;
const Coord SCALE = 1000000;
auto& input = prusaParts();
Box bin(210*SCALE, 250*SCALE);
BottomLeftPlacer placer(bin);
auto it = input.begin();
auto next = it;
int i = 0;
while(it != input.end() && ++next != input.end()) {
placer.pack(*it);
placer.pack(*next);
auto result = placer.getItems();
bool valid = true;
if(result.size() == 2) {
Item& r1 = result[0];
Item& r2 = result[1];
valid = !Item::intersects(r1, r2) || Item::touches(r1, r2);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
if(!valid) {
std::cout << "error index: " << i << std::endl;
exportSVG<SCALE>(result, i);
}
REQUIRE(valid);
} else {
std::cout << "something went terribly wrong!" << std::endl;
FAIL();
}
placer.clearItems();
it++;
i++;
}
}
TEST_CASE("convexHull", "[Geometry]") {
using namespace libnest2d;
PathImpl poly = PRINTER_PART_POLYGONS[0];
auto chull = sl::convexHull(poly);
REQUIRE(chull.size() == poly.size());
}
TEST_CASE("PrusaPartsShouldFitIntoTwoBins", "[Nesting]") {
// Get the input items and define the bin.
std::vector<Item> input = prusaParts();
auto bin = Box(250000000, 210000000);
// Do the nesting. Check in each step if the remaining items are less than
// in the previous step. (Some algorithms can place more items in one step)
size_t pcount = input.size();
size_t bins = libnest2d::nest(input, bin, 0, {},
ProgressFunction{[&pcount](unsigned cnt) {
REQUIRE(cnt < pcount);
pcount = cnt;
}});
// For prusa parts, 2 bins should be enough...
REQUIRE(bins > 0u);
REQUIRE(bins <= 2u);
// All parts should be processed by the algorithm
REQUIRE(
std::all_of(input.begin(), input.end(), [](const Item &itm) {
return itm.binId() != BIN_ID_UNSET;
}));
// Gather the items into piles of arranged polygons...
using Pile = TMultiShape<PolygonImpl>;
std::vector<Pile> piles(bins);
for (auto &itm : input)
piles[size_t(itm.binId())].emplace_back(itm.transformedShape());
// Now check all the piles, the bounding box of each pile should be inside
// the defined bin.
for (auto &pile : piles) {
auto bb = sl::boundingBox(pile);
REQUIRE(sl::isInside(bb, bin));
}
// Check the area of merged pile vs the sum of area of all the parts
// They should match, otherwise there is an overlap which should not happen.
for (auto &pile : piles) {
double area_sum = 0.;
for (auto &obj : pile)
area_sum += sl::area(obj);
auto pile_m = nfp::merge(pile);
double area_merge = sl::area(pile_m);
REQUIRE(area_sum == Approx(area_merge));
}
}
TEST_CASE("EmptyItemShouldBeUntouched", "[Nesting]") {
auto bin = Box(250000000, 210000000); // dummy bin
std::vector<Item> items;
items.emplace_back(Item{}); // Emplace empty item
items.emplace_back(Item{ {0, 200} }); // Emplace zero area item
size_t bins = libnest2d::nest(items, bin);
REQUIRE(bins == 0u);
for (auto &itm : items) REQUIRE(itm.binId() == BIN_ID_UNSET);
}
TEST_CASE("LargeItemShouldBeUntouched", "[Nesting]") {
auto bin = Box(250000000, 210000000); // dummy bin
std::vector<Item> items;
items.emplace_back(RectangleItem{250000001, 210000001}); // Emplace large item
size_t bins = libnest2d::nest(items, bin);
REQUIRE(bins == 0u);
REQUIRE(items.front().binId() == BIN_ID_UNSET);
}
TEST_CASE("Items can be preloaded", "[Nesting]") {
auto bin = Box({0, 0}, {250000000, 210000000}); // dummy bin
std::vector<Item> items;
items.reserve(2);
NestConfig<> cfg;
cfg.placer_config.alignment = NestConfig<>::Placement::Alignment::DONT_ALIGN;
items.emplace_back(RectangleItem{10000000, 10000000});
Item &fixed_rect = items.back();
fixed_rect.translate(bin.center());
items.emplace_back(RectangleItem{20000000, 20000000});
Item &movable_rect = items.back();
movable_rect.translate(bin.center());
SECTION("Preloaded Item should be untouched") {
fixed_rect.markAsFixedInBin(0);
size_t bins = libnest2d::nest(items, bin, 0, cfg);
REQUIRE(bins == 1);
REQUIRE(fixed_rect.binId() == 0);
REQUIRE(getX(fixed_rect.translation()) == getX(bin.center()));
REQUIRE(getY(fixed_rect.translation()) == getY(bin.center()));
REQUIRE(movable_rect.binId() == 0);
REQUIRE(getX(movable_rect.translation()) != getX(bin.center()));
REQUIRE(getY(movable_rect.translation()) != getY(bin.center()));
}
SECTION("Preloaded Item should not affect free bins") {
fixed_rect.markAsFixedInBin(1);
size_t bins = libnest2d::nest(items, bin, 0, cfg);
REQUIRE(bins == 2);
REQUIRE(fixed_rect.binId() == 1);
REQUIRE(getX(fixed_rect.translation()) == getX(bin.center()));
REQUIRE(getY(fixed_rect.translation()) == getY(bin.center()));
REQUIRE(movable_rect.binId() == 0);
auto bb = movable_rect.boundingBox();
REQUIRE(getX(bb.center()) == getX(bin.center()));
REQUIRE(getY(bb.center()) == getY(bin.center()));
}
}
namespace {
struct ItemPair {
Item orbiter;
Item stationary;
};
std::vector<ItemPair> nfp_testdata = {
{
{
{80, 50},
{100, 70},
{120, 50}
},
{
{10, 10},
{10, 40},
{40, 40},
{40, 10}
}
},
{
{
{80, 50},
{60, 70},
{80, 90},
{120, 90},
{140, 70},
{120, 50}
},
{
{10, 10},
{10, 40},
{40, 40},
{40, 10}
}
},
{
{
{40, 10},
{30, 10},
{20, 20},
{20, 30},
{30, 40},
{40, 40},
{50, 30},
{50, 20}
},
{
{80, 0},
{80, 30},
{110, 30},
{110, 0}
}
},
{
{
{117, 107},
{118, 109},
{120, 112},
{122, 113},
{128, 113},
{130, 112},
{132, 109},
{133, 107},
{133, 103},
{132, 101},
{130, 98},
{128, 97},
{122, 97},
{120, 98},
{118, 101},
{117, 103}
},
{
{102, 116},
{111, 126},
{114, 126},
{144, 106},
{148, 100},
{148, 85},
{147, 84},
{102, 84}
}
},
{
{
{99, 122},
{108, 140},
{110, 142},
{139, 142},
{151, 122},
{151, 102},
{142, 70},
{139, 68},
{111, 68},
{108, 70},
{99, 102}
},
{
{107, 124},
{128, 125},
{133, 125},
{136, 124},
{140, 121},
{142, 119},
{143, 116},
{143, 109},
{141, 93},
{139, 89},
{136, 86},
{134, 85},
{108, 85},
{107, 86}
}
},
{
{
{91, 100},
{94, 144},
{117, 153},
{118, 153},
{159, 112},
{159, 110},
{156, 66},
{133, 57},
{132, 57},
{91, 98}
},
{
{101, 90},
{103, 98},
{107, 113},
{114, 125},
{115, 126},
{135, 126},
{136, 125},
{144, 114},
{149, 90},
{149, 89},
{148, 87},
{145, 84},
{105, 84},
{102, 87},
{101, 89}
}
}
};
std::vector<ItemPair> nfp_concave_testdata = {
{ // ItemPair
{
{
{533726, 142141},
{532359, 143386},
{530141, 142155},
{528649, 160091},
{533659, 157607},
{538669, 160091},
{537178, 142155},
{534959, 143386}
}
},
{
{
{118305, 11603},
{118311, 26616},
{113311, 26611},
{109311, 29604},
{109300, 44608},
{109311, 49631},
{113300, 52636},
{118311, 52636},
{118308, 103636},
{223830, 103636},
{236845, 90642},
{236832, 11630},
{232825, 11616},
{210149, 11616},
{211308, 13625},
{209315, 17080},
{205326, 17080},
{203334, 13629},
{204493, 11616}
}
},
}
};
template<nfp::NfpLevel lvl, Coord SCALE>
void testNfp(const std::vector<ItemPair>& testdata) {
using namespace libnest2d;
Box bin(210*SCALE, 250*SCALE);
int TEST_CASEcase = 0;
auto& exportfun = exportSVG<SCALE>;
auto onetest = [&](Item& orbiter, Item& stationary, unsigned /*testidx*/){
TEST_CASEcase++;
orbiter.translate({210*SCALE, 0});
auto&& nfp = nfp::noFitPolygon<lvl>(stationary.rawShape(),
orbiter.transformedShape());
placers::correctNfpPosition(nfp, stationary, orbiter);
auto valid = shapelike::isValid(nfp.first);
/*Item infp(nfp.first);
if(!valid.first) {
std::cout << "TEST_CASE instance: " << TEST_CASEidx << " "
<< valid.second << std::endl;
std::vector<std::reference_wrapper<Item>> inp = {std::ref(infp)};
exportfun(inp, bin, TEST_CASEidx);
}*/
REQUIRE(valid.first);
Item infp(nfp.first);
int i = 0;
auto rorbiter = orbiter.transformedShape();
auto vo = nfp::referenceVertex(rorbiter);
REQUIRE(stationary.isInside(infp));
for(auto v : infp) {
auto dx = getX(v) - getX(vo);
auto dy = getY(v) - getY(vo);
Item tmp = orbiter;
tmp.translate({dx, dy});
bool touching = Item::touches(tmp, stationary);
if(!touching || !valid.first) {
std::vector<std::reference_wrapper<Item>> inp = {
std::ref(stationary), std::ref(tmp), std::ref(infp)
};
exportfun(inp, TEST_CASEcase*i++);
}
REQUIRE(touching);
}
};
unsigned tidx = 0;
for(auto& td : testdata) {
auto orbiter = td.orbiter;
auto stationary = td.stationary;
if (!libnest2d::is_clockwise<PolygonImpl>()) {
auto porb = orbiter.rawShape();
auto pstat = stationary.rawShape();
std::reverse(sl::begin(porb), sl::end(porb));
std::reverse(sl::begin(pstat), sl::end(pstat));
orbiter = Item{porb};
stationary = Item{pstat};
}
onetest(orbiter, stationary, tidx++);
}
tidx = 0;
for(auto& td : testdata) {
auto orbiter = td.stationary;
auto stationary = td.orbiter;
if (!libnest2d::is_clockwise<PolygonImpl>()) {
auto porb = orbiter.rawShape();
auto pstat = stationary.rawShape();
std::reverse(sl::begin(porb), sl::end(porb));
std::reverse(sl::begin(pstat), sl::end(pstat));
orbiter = Item{porb};
stationary = Item{pstat};
}
onetest(orbiter, stationary, tidx++);
}
}
}
TEST_CASE("nfpConvexConvex", "[Geometry]") {
testNfp<nfp::NfpLevel::CONVEX_ONLY, 1>(nfp_testdata);
}
//TEST_CASE(GeometryAlgorithms, nfpConcaveConcave) {
// TEST_CASENfp<NfpLevel::BOTH_CONCAVE, 1000>(nfp_concave_TEST_CASEdata);
//}
TEST_CASE("pointOnPolygonContour", "[Geometry]") {
using namespace libnest2d;
RectangleItem input(10, 10);
placers::EdgeCache<PolygonImpl> ecache(input);
auto first = *input.begin();
REQUIRE(getX(first) == getX(ecache.coords(0)));
REQUIRE(getY(first) == getY(ecache.coords(0)));
if constexpr (ClosureTypeV<PolygonImpl> == Closure::CLOSED) {
auto last = *std::prev(input.end());
REQUIRE(getX(last) == getX(ecache.coords(1.0)));
REQUIRE(getY(last) == getY(ecache.coords(1.0)));
} else {
auto last = *input.begin();
REQUIRE(getX(last) == getX(ecache.coords(1.0)));
REQUIRE(getY(last) == getY(ecache.coords(1.0)));
}
for(int i = 0; i <= 100; i++) {
auto v = ecache.coords(i*(0.01));
REQUIRE(shapelike::touches(v, input.transformedShape()));
}
}
TEST_CASE("mergePileWithPolygon", "[Geometry]") {
using namespace libnest2d;
RectangleItem rect1(10, 15);
RectangleItem rect2(15, 15);
RectangleItem rect3(20, 15);
rect2.translate({10, 0});
rect3.translate({25, 0});
TMultiShape<PolygonImpl> pile;
pile.push_back(rect1.transformedShape());
pile.push_back(rect2.transformedShape());
auto result = nfp::merge(pile, rect3.transformedShape());
REQUIRE(result.size() == 1);
RectangleItem ref(45, 15);
REQUIRE(shapelike::area(result.front()) == Approx(ref.area()));
}
namespace {
long double refMinAreaBox(const PolygonImpl& p) {
auto it = sl::cbegin(p), itx = std::next(it);
long double min_area = std::numeric_limits<long double>::max();
auto update_min = [&min_area, &it, &itx, &p]() {
Segment s(*it, *itx);
PolygonImpl rotated = p;
sl::rotate(rotated, -s.angleToXaxis());
auto bb = sl::boundingBox(rotated);
auto area = cast<long double>(sl::area(bb));
if(min_area > area) min_area = area;
};
while(itx != sl::cend(p)) {
update_min();
++it; ++itx;
}
it = std::prev(sl::cend(p)); itx = sl::cbegin(p);
update_min();
return min_area;
}
template<class T> struct BoostGCD {
T operator()(const T &a, const T &b) { return boost::gcd(a, b); }
};
using Unit = int64_t;
using Ratio = boost::rational<boost::multiprecision::int128_t>;
}
//TEST_CASE(GeometryAlgorithms, MinAreaBBCClk) {
// auto u = [](ClipperLib::cInt n) { return n*1000000; };
// PolygonImpl poly({ {u(0), u(0)}, {u(4), u(1)}, {u(2), u(4)}});
// long double arearef = refMinAreaBox(poly);
// long double area = minAreaBoundingBox<PolygonImpl, Unit, Ratio>(poly).area();
// REQUIRE(std::abs(area - arearef) <= 500e6 );
//}
TEST_CASE("MinAreaBBWithRotatingCalipers", "[Geometry]") {
long double err_epsilon = 500e6l;
for(PathImpl rinput : PRINTER_PART_POLYGONS) {
PolygonImpl poly(rinput);
long double arearef = refMinAreaBox(poly);
auto bb = minAreaBoundingBox<PathImpl, Unit, Ratio>(rinput);
long double area = cast<long double>(bb.area());
bool succ = std::abs(arearef - area) < err_epsilon;
REQUIRE(succ);
}
for(PathImpl rinput : STEGOSAUR_POLYGONS) {
// rinput.pop_back();
std::reverse(rinput.begin(), rinput.end());
PolygonImpl poly(removeCollinearPoints<PathImpl, PointImpl, Unit>(rinput, 1000000));
long double arearef = refMinAreaBox(poly);
auto bb = minAreaBoundingBox<PolygonImpl, Unit, Ratio>(poly);
long double area = cast<long double>(bb.area());
bool succ = std::abs(arearef - area) < err_epsilon;
REQUIRE(succ);
}
}
template<class It> MultiPolygon merged_pile(It from, It to, int bin_id)
{
MultiPolygon pile;
pile.reserve(size_t(to - from));
for (auto it = from; it != to; ++it) {
if (it->binId() == bin_id) pile.emplace_back(it->transformedShape());
}
return nfp::merge(pile);
}
TEST_CASE("Test for bed center distance optimization", "[Nesting], [NestKernels]")
{
static const constexpr Slic3r::ClipperLib::cInt W = 10000000;
// Get the input items and define the bin.
std::vector<RectangleItem> input(9, {W, W});
auto bin = Box::infinite();
NfpPlacer::Config pconfig;
pconfig.object_function = [](const Item &item) -> double {
return pl::magnsq<PointImpl, double>(item.boundingBox().center());
};
size_t bins = nest(input, bin, 0, NestConfig{pconfig});
REQUIRE(bins == 1);
// Gather the items into piles of arranged polygons...
MultiPolygon pile;
pile.reserve(input.size());
for (auto &itm : input) {
REQUIRE(itm.binId() == 0);
pile.emplace_back(itm.transformedShape());
}
MultiPolygon m = merged_pile(input.begin(), input.end(), 0);
REQUIRE(m.size() == 1);
REQUIRE(sl::area(m) == Approx(9. * W * W));
}
TEST_CASE("Test for biggest bounding box area", "[Nesting], [NestKernels]")
{
static const constexpr Slic3r::ClipperLib::cInt W = 10000000;
static const constexpr size_t N = 100;
// Get the input items and define the bin.
std::vector<RectangleItem> input(N, {W, W});
auto bin = Box::infinite();
NfpPlacer::Config pconfig;
pconfig.rotations = {0.};
Box pile_box;
pconfig.before_packing =
[&pile_box](const MultiPolygon &pile,
const _ItemGroup<PolygonImpl> &/*packed_items*/,
const _ItemGroup<PolygonImpl> &/*remaining_items*/) {
pile_box = sl::boundingBox(pile);
};
pconfig.object_function = [&pile_box](const Item &item) -> double {
Box b = sl::boundingBox(item.boundingBox(), pile_box);
double area = b.area<double>() / (double(W) * W);
return -area;
};
size_t bins = nest(input, bin, 0, NestConfig{pconfig});
// To debug:
exportSVG<1000000>("out", input.begin(), input.end());
REQUIRE(bins == 1);
MultiPolygon pile = merged_pile(input.begin(), input.end(), 0);
Box bb = sl::boundingBox(pile);
// Here the result shall be a stairway of boxes
REQUIRE(pile.size() == N);
REQUIRE(bb.area() == double(N) * N * W * W);
}