915 lines
50 KiB
C++
915 lines
50 KiB
C++
![]() |
#include "Print.hpp"
|
||
|
#include "I18N.hpp"
|
||
|
|
||
|
#include <boost/log/trivial.hpp>
|
||
|
|
||
|
#include <tbb/parallel_for.h>
|
||
|
|
||
|
//! macro used to mark string used at localization, return same string
|
||
|
#define L(s) Slic3r::I18N::translate(s)
|
||
|
|
||
|
namespace Slic3r {
|
||
|
|
||
|
static inline LayerPtrs new_layers(
|
||
|
PrintObject *print_object,
|
||
|
// Object layers (pairs of bottom/top Z coordinate), without the raft.
|
||
|
const std::vector<coordf_t> &object_layers,
|
||
|
// Reserve object layers for the raft. Last layer of the raft is the contact layer.
|
||
|
size_t first_layer_id)
|
||
|
{
|
||
|
LayerPtrs out;
|
||
|
out.reserve(object_layers.size());
|
||
|
auto id = int(first_layer_id);
|
||
|
Layer *prev = nullptr;
|
||
|
for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
|
||
|
coordf_t lo = object_layers[i_layer];
|
||
|
coordf_t hi = object_layers[i_layer + 1];
|
||
|
coordf_t slice_z = 0.5 * (lo + hi);
|
||
|
Layer *layer = new Layer(id ++, print_object, hi - lo, hi + m_slicing_params.object_print_z_min, slice_z);
|
||
|
out.emplace_back(layer);
|
||
|
if (prev != nullptr) {
|
||
|
prev->upper_layer = layer;
|
||
|
layer->lower_layer = prev;
|
||
|
}
|
||
|
prev = layer;
|
||
|
}
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
template<LayerContainer>
|
||
|
static inline std::vector<float> zs_from_layers(const LayerContainer &layers)
|
||
|
{
|
||
|
std::vector<float> zs;
|
||
|
zs.reserve(layers.size());
|
||
|
for (const Layer *l : layers)
|
||
|
zs.emplace_back((float)l->slice_z);
|
||
|
return zs;
|
||
|
}
|
||
|
|
||
|
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
|
||
|
static void fix_mesh_connectivity(TriangleMesh &mesh)
|
||
|
{
|
||
|
auto nr_degenerated = mesh.stl.stats.degenerate_facets;
|
||
|
stl_check_facets_exact(&mesh.stl);
|
||
|
if (nr_degenerated != mesh.stl.stats.degenerate_facets)
|
||
|
// stl_check_facets_exact() removed some newly degenerated faces. Some faces could become degenerate after some mesh transformation.
|
||
|
stl_generate_shared_vertices(&mesh.stl, mesh.its);
|
||
|
}
|
||
|
|
||
|
struct SliceVolumeParams
|
||
|
{
|
||
|
const SlicingMode mode { SlicingMode::Regular };
|
||
|
// For vase mode: below this layer a different slicing mode will be used to produce a single contour.
|
||
|
// 0 = ignore.
|
||
|
const size_t slicing_mode_normal_below_layer { 0 };
|
||
|
// Mode to apply below slicing_mode_normal_below_layer. Ignored if slicing_mode_nromal_below_layer == 0.
|
||
|
const SlicingMode mode_below { SlicingMode::Regular };
|
||
|
|
||
|
// Morphological closing operation when creating output expolygons.
|
||
|
const float closing_radius { 0 };
|
||
|
// Positive offset applied when creating output expolygons.
|
||
|
const float extra_offset { 0 };
|
||
|
// Resolution for contour simplification.
|
||
|
// 0 = don't simplify.
|
||
|
const double resolution { 0 };
|
||
|
|
||
|
// Transformation of the object owning the ModelVolume.
|
||
|
Transform3d object_trafo;
|
||
|
};
|
||
|
|
||
|
// Slice single triangle mesh.
|
||
|
static std::vector<ExPolygons> slice_volume(
|
||
|
const ModelVolume &volume,
|
||
|
const std::vector<float> &z,
|
||
|
const SliceVolumeParams ¶ms,
|
||
|
const TriangleMeshSlicer::throw_on_cancel_callback_type &throw_on_cancel_callback)
|
||
|
{
|
||
|
std::vector<ExPolygons> layers;
|
||
|
if (! z.empty()) {
|
||
|
TriangleMesh mesh(volume.mesh());
|
||
|
mesh.transform(params.object_trafo * volume.get_matrix(), true);
|
||
|
if (mesh.repaired)
|
||
|
fix_mesh_connectivity(mesh);
|
||
|
if (mesh.stl.stats.number_of_facets > 0) {
|
||
|
// perform actual slicing
|
||
|
TriangleMeshSlicer mesh_slicer;
|
||
|
// TriangleMeshSlicer needs the shared vertices.
|
||
|
mesh.require_shared_vertices();
|
||
|
mesh_slicer.init(&mesh, throw_on_cancel_callback);
|
||
|
//FIXME simplify contours
|
||
|
mesh_slicer.slice(z, mode, params.slicing_mode_normal_below_layer, params.mode_below, params.closing_radius, params.extra_offset, &layers, throw_on_cancel_callback);
|
||
|
throw_on_cancel_callback();
|
||
|
}
|
||
|
}
|
||
|
return layers;
|
||
|
}
|
||
|
|
||
|
// Slice single triangle mesh.
|
||
|
// Filter the zs not inside the ranges. The ranges are closed at the bottom and open at the top, they are sorted lexicographically and non overlapping.
|
||
|
static std::vector<ExPolygons> slice_volume(
|
||
|
const ModelVolume &volume,
|
||
|
const std::vector<float> &z,
|
||
|
const std::vector<t_layer_height_range> &ranges,
|
||
|
const SliceVolumeParams ¶ms,
|
||
|
const TriangleMeshSlicer::throw_on_cancel_callback_type &throw_on_cancel_callback)
|
||
|
{
|
||
|
std::vector<ExPolygons> out;
|
||
|
if (! z.empty() && ! ranges.empty()) {
|
||
|
if (ranges.size() == 1 && z.front() >= ranges.front().first && z.back() < ranges.front().second) {
|
||
|
// All layers fit into a single range.
|
||
|
out = slice_volume(volume, z, params, throw_on_cancel_callback);
|
||
|
} else {
|
||
|
std::vector<float> z_filtered;
|
||
|
std::vector<std::pair<size_t, size_t>> n_filtered;
|
||
|
z_filtered.reserve(z.size());
|
||
|
n_filtered.reserve(2 * ranges.size());
|
||
|
size_t i = 0;
|
||
|
for (const t_layer_height_range &range : ranges) {
|
||
|
for (; i < z.size() && z[i] < range.first; ++ i) ;
|
||
|
size_t first = i;
|
||
|
for (; i < z.size() && z[i] < range.second; ++ i)
|
||
|
z_filtered.emplace_back(z[i]);
|
||
|
if (i > first)
|
||
|
n_filtered.emplace_back(std::make_pair(first, i));
|
||
|
}
|
||
|
if (! n_filtered.empty()) {
|
||
|
std::vector<ExPolygons> layers = slice_volume(volume, z_filtered, params, throw_on_cancel_callback);
|
||
|
out.assign(z.size(), ExPolygons());
|
||
|
i = 0;
|
||
|
for (const std::pair<size_t, size_t> &span : n_filtered)
|
||
|
for (size_t j = span.first; j < span.second; ++ j)
|
||
|
out[j] = std::move(layers[i ++]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
struct VolumeSlices
|
||
|
{
|
||
|
ObjectID volume_id;
|
||
|
std::vector<ExPolygons> slices;
|
||
|
};
|
||
|
|
||
|
static inline bool model_volume_needs_slicing(const ModelVolume &mv)
|
||
|
{
|
||
|
ModelVolumeType type = mv.type();
|
||
|
return type == ModelVolumeType::MODEL_PART || type == ModelVolumeType::NEGATIVE_VOLUME || type == ModelVolumeType::PARAMETER_MODIFIER;
|
||
|
}
|
||
|
|
||
|
// Slice printable volumes, negative volumes and modifier volumes, sorted by ModelVolume::id().
|
||
|
// Apply closing radius.
|
||
|
// Apply positive XY compensation to ModelVolumeType::MODEL_PART and ModelVolumeType::PARAMETER_MODIFIER, not to ModelVolumeType::NEGATIVE_VOLUME.
|
||
|
// Apply contour simplification.
|
||
|
static std::vector<VolumeSlices> slice_volumes(
|
||
|
const PrintConfig &print_config,
|
||
|
const PrintObjectConfig &print_object_config,
|
||
|
const Transform3d &object_trafo,
|
||
|
ModelVolumePtrs model_volumes,
|
||
|
const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges;
|
||
|
const std::vector<float> &zs,
|
||
|
const TriangleMeshSlicer::throw_on_cancel_callback_type &throw_on_cancel_callback)
|
||
|
{
|
||
|
model_volumes_sort_by_id(model_volumes);
|
||
|
|
||
|
std::vector<VolumeSlices> out;
|
||
|
out.reserve(model_volumes.size());
|
||
|
|
||
|
std::vector<t_layer_height_range> slicing_ranges;
|
||
|
if (layer_ranges.size() > 1)
|
||
|
slicing_ranges.reserve(layer_ranges.size());
|
||
|
|
||
|
SliceVolumeParams params_base;
|
||
|
params_base.closing_radius = float(print_object_config.slice_closing_radius.value);
|
||
|
params_base.extra_offset = 0;
|
||
|
params_base.object_trafo = object_trafo;
|
||
|
params_base.resolution = print_config.resolution;
|
||
|
|
||
|
const float extra_offset = print_object_config.xy_size_compensation > 0 ? float(print_object_config.xy_size_compensation.value) : 0.f;
|
||
|
|
||
|
for (const ModelVolume *model_volume : model_volumes)
|
||
|
if (model_volume_needs_slicing(*model_volume)) {
|
||
|
SliceVolumeParams params { params_base };
|
||
|
if (! model_volume->is_negative_volume())
|
||
|
params.extra_offset = extra_ofset;
|
||
|
if (layer_ranges.size() == 1) {
|
||
|
if (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges.front(); layer_range.has_volume(model_volume->id())) {
|
||
|
if (model_volume->is_model_part() && print_config.spiral_vase) {
|
||
|
auto it = std::find_first(layer_range.volume_regions.begin(), layer_range.volume_regions.end(),
|
||
|
[model_volume](const auto &slice){ return model_volume == slice.model_volume; });
|
||
|
params.mode = SlicingMode::PositiveLargestContour;
|
||
|
// Slice the bottom layers with SlicingMode::Regular.
|
||
|
// This needs to be in sync with LayerRegion::make_perimeters() spiral_vase!
|
||
|
params.mode_below = SlicingMode::Regular;
|
||
|
const PrintRegionConfig ®ion_config = it->region->config();
|
||
|
slicing_mode_normal_below_layer = size_t(region_config.bottom_solid_layers.value);
|
||
|
for (; slicing_mode_normal_below_layer < zs.size() && zs[slicing_mode_normal_below_layer] < region_config.bottom_solid_min_thickness - EPSILON;
|
||
|
++ slicing_mode_normal_below_layer);
|
||
|
}
|
||
|
out.push_back({
|
||
|
model_volume->id(),
|
||
|
slice_volume(*model_volume, zs, params, throw_on_cancel_callback)
|
||
|
});
|
||
|
}
|
||
|
} else {
|
||
|
assert(! spiral_vase);
|
||
|
slicing_ranges.clear();
|
||
|
for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
|
||
|
if (layer_range.has_volume(model_volume->id()))
|
||
|
slicing_ranges.emplace_back(layer_range.layer_height_range);
|
||
|
if (! slicing_ranges.empty())
|
||
|
out.push_back({
|
||
|
model_volume->id(),
|
||
|
slice_volume(*model_volume, zs, slicing_ranges, params, throw_on_cancel_callback)
|
||
|
});
|
||
|
}
|
||
|
if (! out.empty() && out.back().slices.empty())
|
||
|
out.pop_back();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline VolumeSlices& volume_slices_find_by_id(std::vector<VolumeSlices> &volume_slices, const ObjectID id)
|
||
|
{
|
||
|
auto it = lower_bound_by_predicate(volume_slices.begin(), volume_slices.end(), [id](const VolumeSlices &vs) { return vs.volume_id < id; });
|
||
|
assert(it != volume_slices.end() && it->volume_id == id);
|
||
|
return *it;
|
||
|
}
|
||
|
|
||
|
static inline bool overlap_in_xy(const BoundingBoxf3 &l, const BoundingBoxf3 &r)
|
||
|
{
|
||
|
return ! (l.max.x() < r.min.x() || l.min.x() > r.max.x() ||
|
||
|
l.max.y() < r.min.y() || l.min.y() > r.max.y());
|
||
|
}
|
||
|
|
||
|
static std::vector<std::vector<ExPolygons>> slices_to_regions(
|
||
|
ModelVolumePtrs model_volumes,
|
||
|
const PrintObjectRegions &print_object_regions,
|
||
|
const std::vector<float> &zs,
|
||
|
std::vector<VolumeSlices> &&volume_slices,
|
||
|
// If clipping is disabled, then ExPolygons produced by different volumes will never be merged, thus they will be allowed to overlap.
|
||
|
// It is up to the model designer to handle these overlaps.
|
||
|
const bool clip_multipart_objects,
|
||
|
const TriangleMeshSlicer::throw_on_cancel_callback_type &throw_on_cancel_callback)
|
||
|
{
|
||
|
model_volumes_sort_by_id(model_volumes);
|
||
|
|
||
|
std::vector<std::vector<ExPolygons>> slices_by_region(print_object_regions.all_regions.size(), std::vector<ExPolygons>(zs.size(), ExPolygons()));
|
||
|
|
||
|
// First shuffle slices into regions if there is no overlap with another region possible, collect zs of the complex cases.
|
||
|
std::vector<float> zs_complex;
|
||
|
{
|
||
|
size_t z_idx = 0;
|
||
|
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
|
||
|
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.first; ++ z_idx) ;
|
||
|
if (layer_range.volume_regions.empty()) {
|
||
|
} else if (layer_range.volume_regions.size() == 1) {
|
||
|
const ModelVolume *model_volume = layer_range.volume_regions.model_volume;
|
||
|
assert(model_volume != nullptr);
|
||
|
if (model_volume->is_model_part()) {
|
||
|
VolumeSlices &slices_src = volume_slices_find_by_id(volume_slices, model_volume->id());
|
||
|
auto &slices_dst = slices_by_region[layer_range.volume_regions.front().region->print_object_region_id()];
|
||
|
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx)
|
||
|
slices_dst[z_idx] = std::move(slices_src[z_idx]);
|
||
|
}
|
||
|
} else {
|
||
|
zs_complex.reserve(zs.size());
|
||
|
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx) {
|
||
|
float z = zs[z_idx];
|
||
|
int idx_first_printable_region = -1;
|
||
|
bool complex = false;
|
||
|
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region) {
|
||
|
const PrintObjectRegions::VolumeRegion ®ion = layer_range.volume_regions[idx_region];
|
||
|
if (region.bbox.min().z() >= z && region.bbox.max().z() <= z) {
|
||
|
if (idx_first_printable_region == -1 && region.model_volume->is_model_part())
|
||
|
idx_first_printable_region = idx_region;
|
||
|
else if (idx_first_printable_region != -1) {
|
||
|
// Test for overlap with some other region.
|
||
|
for (int idx_region2 = idx_first_printable_region; idx_region2 < idx_region; ++ idx_region2) {
|
||
|
const PrintObjectRegions::VolumeRegion ®ion2 = layer_range.volume_regions[idx_region2];
|
||
|
if (region2.bbox.min().z() >= z && region2.bbox.max().z() <= z && overlap_in_xy(*region.bbox, *region2.bbox)) {
|
||
|
complex = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (complex)
|
||
|
zs_complex.emplace_back(z);
|
||
|
else if (idx_first_printable_region) {
|
||
|
const PrintObjectRegions::VolumeRegion ®ion = layer_range.volume_regions[idx_first_printable_region];
|
||
|
slices_by_region[region.region->print_object_region_id()][z_idx] = std::move(volume_slices_find_by_id(volume_slices, region.model_volume->id()).slices[z_idx]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
throw_on_cancel_callback();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Second perform region clipping and assignment in parallel.
|
||
|
if (! zs_complex.empty()) {
|
||
|
struct SliceEntry {
|
||
|
VolumeSlices* volume_slices;
|
||
|
int prev_same_region { -1 };
|
||
|
};
|
||
|
std::vector<std::vector<SliceEntry>> layer_ranges_regions_to_slices(print_object_regions.layer_ranges.size(), std::vector<VolumeSlices*>());
|
||
|
std::vector<int> last_volume_idx_of_region;
|
||
|
for (PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
|
||
|
std::vector<SliceEntry> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[&layer_range - print_object_regions.layer_ranges.data()];
|
||
|
layer_range_regions_to_slices.reserve(layer_range.volume_regions.size());
|
||
|
last_volume_idx_of_region.assign(print_object_regions.layer_ranges.all_regions.size(), -1);
|
||
|
for (PrintObjectRegions::VolumeRegion ®ion : layer_range.volume_regions) {
|
||
|
int region_id = region.region->print_object_region_id();
|
||
|
layer_range_regions_to_slices.emplace_back({ &volume_slices_find_by_id(volume_slices, region.model_volume->id()), last_volume_idx_of_region[region_id] });
|
||
|
last_volume_idx_of_region[region_id] = ®ion - layer_range.volume_regions.data();
|
||
|
}
|
||
|
}
|
||
|
tbb::parallel_for(
|
||
|
tbb::blocked_range<size_t>(0, zs_complex.size()),
|
||
|
[&slices_by_region, &model_volumes, &print_object_regions, &zs_complex, &layer_ranges_regions_to_slices, clip_multipart_objects, &throw_on_cancel_callback]
|
||
|
(const tbb::blocked_range<size_t> &range) {
|
||
|
float z = zs_complex[*range.begin()];
|
||
|
it_layer_range = lower_bound_by_predicate(print_object_regions.layer_ranges.begin(), print_object_regions.layer_ranges.end(),
|
||
|
[z](const PrintObjectRegions::LayerRangeRegions &lr){ lr.layer_height_range.first < z; });
|
||
|
assert(it_layer_range != print_object_regions.layer_ranges.end() && it_layer_range->layer_height_range.first >= z && z < it_layer_range->layer_height_range.second);
|
||
|
// Per volume_regions slices at this Z height.
|
||
|
struct RegionSlice {
|
||
|
ExPolygons expolygons;
|
||
|
// Identifier of this region in PrintObjectRegions::all_regions
|
||
|
int region_id;
|
||
|
ObjectID volume_id;
|
||
|
bool empty() const { return region_id < 0 || expolygons.empty(); }
|
||
|
bool operator<(const RegionSlice &rhs) {
|
||
|
bool this_empty = this->empty();
|
||
|
return ! this->empty() && (rhs.empty() || ((this->region_id < rhs.region_id) || (this->region_id == rhs.region_id && volume_id < volume_id)));
|
||
|
}
|
||
|
};
|
||
|
std::vector<RegionSlice> temp_slices;
|
||
|
for (size_t idx_z = range.begin(); idx_z < range.end(); ++ idx_z) {
|
||
|
for (; it_layer_range->layer_height_range.first < z; ++ it_layer_range)
|
||
|
assert(it_layer_range != print_object_regions.layer_ranges.end());
|
||
|
assert(it_layer_range != print_object_regions.layer_ranges.end() && it_layer_range->layer_height_range.first >= z && z < it_layer_range->layer_height_range.second);
|
||
|
const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
|
||
|
{
|
||
|
SliceEntry &layer_range_regions_to_slices = layer_ranges_regions_to_slices[it_layer_range - print_object_regions.layer_ranges.begin()];
|
||
|
// Per volume_regions slices at thiz Z height.
|
||
|
temp_slices.clear();
|
||
|
temp_slices.reserve(layer_range.volume_regions.size());
|
||
|
for (VolumeSlices *slices : layer_range_regions_to_slices.volume_slices) {
|
||
|
const PrintRegion *region = layer_range.volume_regions[i].region;
|
||
|
temp_slices.push_back({ std::move(slices->slices[idx_z]), region ? region->print_object_region_id() : -1, slices->volume_id });
|
||
|
}
|
||
|
}
|
||
|
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region)
|
||
|
if (! temp_slices[idx_region].empty()) {
|
||
|
const PrintObjectRegions::VolumeRegion ®ion = layer_range.volume_regions[idx_region];
|
||
|
if (region.model_volume->is_modifier()) {
|
||
|
assert(region.parent > -1);
|
||
|
bool next_region_same_modifier = idx_region + 1 < temp_slices.size() && layer_range.volume_regions[idx_region + 1]->model_volume == region.model_volume;
|
||
|
if (next_region_same_modifier)
|
||
|
temp_slices[idx_region + 1] = std::move(temp_slices[idx_region]);
|
||
|
ExPolygons &parent_slice = temp_slices[region.parent];
|
||
|
ExPolygons &this_slice = temp_slices[idx_region];
|
||
|
if (parent_slice.empty())
|
||
|
this_slice.clear();
|
||
|
else {
|
||
|
ExPolygons &source_slice = temp_slices[idx_region + int(next_region_same_modifier)];
|
||
|
this_slice = intersection_ex(parent_slice, source_slice);
|
||
|
}
|
||
|
} else if ((region.model_volume->is_model_part() && clip_multipart_objects) || region.model_volume->is_negative_volume()) {
|
||
|
// Clip every non-zero region preceding it.
|
||
|
for (int idx_region2 = 0; idx_region2 < idx_region; ++ idx_region2)
|
||
|
if (! temp_slices[idx_region2].empty()) {
|
||
|
if (const PrintObjectRegions::VolumeRegion ®ion2 = layer_range.volume_regions[idx_region];
|
||
|
! region2.model_volume->is_negative_volume() && overlap_in_xy(*region.bbox, *region2.bbox))
|
||
|
temp_slices[idx_region] = diff_ex(temp_slices[idx_region], temp_slices[idx_region2]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// Sort by region_id, push empty slices to the end.
|
||
|
std::sort(temp_slices.begin(), temp_slices.end());
|
||
|
// Remove the empty slices.
|
||
|
temp_slices.erase(temp_slices.begin(), std::find_first(temp_slices.begin(), temp_slices.end(), [](const auto &slice){ return slice.empty(); }));
|
||
|
// Merge slices and store them to the output.
|
||
|
for (int i = 0; i < temp_slices.size();) {
|
||
|
// Find a range of temp_slices with the same region_id.
|
||
|
int j = i;
|
||
|
bool merged = false;
|
||
|
ExPolygons &expolygons = temp_slices[i].expolygons;
|
||
|
for (++ j;
|
||
|
j < temp_slices.size() &&
|
||
|
temp_slices[i].region_id == temp_slices[j].region_id &&
|
||
|
(clip_multipart_objects || temp_slices[i].volume_id == temp_slices[j].volume_id);
|
||
|
++ j)
|
||
|
if (ExPolygons &expolygons2 = temp_slices[j].expolygons; ! expolygons2.empty())
|
||
|
if (expolygons.empty())
|
||
|
expolygons = std::move(expolygons2);
|
||
|
else {
|
||
|
append(expolygons, expolygons2);
|
||
|
merged = true;
|
||
|
}
|
||
|
if (merged)
|
||
|
expolygons = offset_ex(offset_ex(expolygons, float(scale_(EPSILON))), -float(scale_(EPSILON)));
|
||
|
slices_by_region[temp_slices[i].region_id][z_idx] = std::move(expolygons);
|
||
|
i = j;
|
||
|
}
|
||
|
|
||
|
});
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Z ranges are not applicable to modifier meshes, therefore a single volume will be found in volume_w_zrange at most once.
|
||
|
std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std::vector<float> &slice_zs) const
|
||
|
{
|
||
|
std::vector<ExPolygons> out;
|
||
|
if (region_id < m_region_volumes.size())
|
||
|
{
|
||
|
std::vector<std::vector<t_layer_height_range>> volume_ranges;
|
||
|
const PrintRegionVolumes &volumes_and_ranges = m_region_volumes[region_id];
|
||
|
volume_ranges.reserve(volumes_and_ranges.volumes.size());
|
||
|
for (size_t i = 0; i < volumes_and_ranges.volumes.size(); ) {
|
||
|
int volume_id = volumes_and_ranges.volumes[i].volume_idx;
|
||
|
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
|
||
|
if (model_volume->is_modifier()) {
|
||
|
std::vector<t_layer_height_range> ranges;
|
||
|
ranges.emplace_back(volumes_and_ranges.volumes[i].layer_height_range);
|
||
|
size_t j = i + 1;
|
||
|
for (; j < volumes_and_ranges.volumes.size() && volume_id == volumes_and_ranges.volumes[j].volume_idx; ++ j) {
|
||
|
if (! ranges.empty() && std::abs(ranges.back().second - volumes_and_ranges.volumes[j].layer_height_range.first) < EPSILON)
|
||
|
ranges.back().second = volumes_and_ranges.volumes[j].layer_height_range.second;
|
||
|
else
|
||
|
ranges.emplace_back(volumes_and_ranges.volumes[j].layer_height_range);
|
||
|
}
|
||
|
volume_ranges.emplace_back(std::move(ranges));
|
||
|
i = j;
|
||
|
} else
|
||
|
++ i;
|
||
|
}
|
||
|
|
||
|
if (! volume_ranges.empty())
|
||
|
{
|
||
|
bool equal_ranges = true;
|
||
|
for (size_t i = 1; i < volume_ranges.size(); ++ i) {
|
||
|
assert(! volume_ranges[i].empty());
|
||
|
if (volume_ranges.front() != volume_ranges[i]) {
|
||
|
equal_ranges = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (equal_ranges && volume_ranges.front().size() == 1 && volume_ranges.front().front() == t_layer_height_range(0, DBL_MAX)) {
|
||
|
// No modifier in this region was split to layer spans.
|
||
|
std::vector<const ModelVolume*> volumes;
|
||
|
for (const PrintRegionVolumes::VolumeWithZRange &volume_w_zrange : m_region_volumes[region_id].volumes) {
|
||
|
const ModelVolume *volume = this->model_object()->volumes[volume_w_zrange.volume_idx];
|
||
|
if (volume->is_modifier())
|
||
|
volumes.emplace_back(volume);
|
||
|
}
|
||
|
out = this->slice_volumes(slice_zs, SlicingMode::Regular, volumes);
|
||
|
} else {
|
||
|
// Some modifier in this region was split to layer spans.
|
||
|
std::vector<char> merge;
|
||
|
for (size_t region_id = 0; region_id < m_region_volumes.size(); ++ region_id) {
|
||
|
const PrintRegionVolumes &volumes_and_ranges = m_region_volumes[region_id];
|
||
|
for (size_t i = 0; i < volumes_and_ranges.volumes.size(); ) {
|
||
|
int volume_id = volumes_and_ranges.volumes[i].volume_idx;
|
||
|
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
|
||
|
if (model_volume->is_modifier()) {
|
||
|
BOOST_LOG_TRIVIAL(debug) << "Slicing modifiers - volume " << volume_id;
|
||
|
// Find the ranges of this volume. Ranges in volumes_and_ranges must not overlap for a single volume.
|
||
|
std::vector<t_layer_height_range> ranges;
|
||
|
ranges.emplace_back(volumes_and_ranges.volumes[i].layer_height_range);
|
||
|
size_t j = i + 1;
|
||
|
for (; j < volumes_and_ranges.volumes.size() && volume_id == volumes_and_ranges.volumes[j].volume_idx; ++ j)
|
||
|
ranges.emplace_back(volumes_and_ranges.volumes[j].layer_height_range);
|
||
|
// slicing in parallel
|
||
|
std::vector<ExPolygons> this_slices = this->slice_volume(slice_zs, ranges, SlicingMode::Regular, *model_volume);
|
||
|
// Variable this_slices could be empty if no value of slice_zs is within any of the ranges of this volume.
|
||
|
if (out.empty()) {
|
||
|
out = std::move(this_slices);
|
||
|
merge.assign(out.size(), false);
|
||
|
} else if (!this_slices.empty()) {
|
||
|
assert(out.size() == this_slices.size());
|
||
|
for (size_t i = 0; i < out.size(); ++ i)
|
||
|
if (! this_slices[i].empty()) {
|
||
|
if (! out[i].empty()) {
|
||
|
append(out[i], this_slices[i]);
|
||
|
merge[i] = true;
|
||
|
} else
|
||
|
out[i] = std::move(this_slices[i]);
|
||
|
}
|
||
|
}
|
||
|
i = j;
|
||
|
} else
|
||
|
++ i;
|
||
|
}
|
||
|
}
|
||
|
for (size_t i = 0; i < merge.size(); ++ i)
|
||
|
if (merge[i])
|
||
|
out[i] = union_ex(out[i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
std::string PrintObject::_fix_slicing_errors()
|
||
|
{
|
||
|
// Collect layers with slicing errors.
|
||
|
// These layers will be fixed in parallel.
|
||
|
std::vector<size_t> buggy_layers;
|
||
|
buggy_layers.reserve(m_layers.size());
|
||
|
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
|
||
|
if (m_layers[idx_layer]->slicing_errors)
|
||
|
buggy_layers.push_back(idx_layer);
|
||
|
|
||
|
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
|
||
|
tbb::parallel_for(
|
||
|
tbb::blocked_range<size_t>(0, buggy_layers.size()),
|
||
|
[this, &buggy_layers](const tbb::blocked_range<size_t>& range) {
|
||
|
for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
|
||
|
m_print->throw_if_canceled();
|
||
|
size_t idx_layer = buggy_layers[buggy_layer_idx];
|
||
|
Layer *layer = m_layers[idx_layer];
|
||
|
assert(layer->slicing_errors);
|
||
|
// Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
|
||
|
// BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
|
||
|
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
|
||
|
LayerRegion *layerm = layer->m_regions[region_id];
|
||
|
// Find the first valid layer below / above the current layer.
|
||
|
const Surfaces *upper_surfaces = nullptr;
|
||
|
const Surfaces *lower_surfaces = nullptr;
|
||
|
for (size_t j = idx_layer + 1; j < m_layers.size(); ++ j)
|
||
|
if (! m_layers[j]->slicing_errors) {
|
||
|
upper_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
|
||
|
break;
|
||
|
}
|
||
|
for (int j = int(idx_layer) - 1; j >= 0; -- j)
|
||
|
if (! m_layers[j]->slicing_errors) {
|
||
|
lower_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
|
||
|
break;
|
||
|
}
|
||
|
// Collect outer contours and holes from the valid layers above & below.
|
||
|
Polygons outer;
|
||
|
outer.reserve(
|
||
|
((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) +
|
||
|
((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
|
||
|
size_t num_holes = 0;
|
||
|
if (upper_surfaces)
|
||
|
for (const auto &surface : *upper_surfaces) {
|
||
|
outer.push_back(surface.expolygon.contour);
|
||
|
num_holes += surface.expolygon.holes.size();
|
||
|
}
|
||
|
if (lower_surfaces)
|
||
|
for (const auto &surface : *lower_surfaces) {
|
||
|
outer.push_back(surface.expolygon.contour);
|
||
|
num_holes += surface.expolygon.holes.size();
|
||
|
}
|
||
|
Polygons holes;
|
||
|
holes.reserve(num_holes);
|
||
|
if (upper_surfaces)
|
||
|
for (const auto &surface : *upper_surfaces)
|
||
|
polygons_append(holes, surface.expolygon.holes);
|
||
|
if (lower_surfaces)
|
||
|
for (const auto &surface : *lower_surfaces)
|
||
|
polygons_append(holes, surface.expolygon.holes);
|
||
|
layerm->slices.set(diff_ex(union_(outer), holes), stInternal);
|
||
|
}
|
||
|
// Update layer slices after repairing the single regions.
|
||
|
layer->make_slices();
|
||
|
}
|
||
|
});
|
||
|
m_print->throw_if_canceled();
|
||
|
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
|
||
|
|
||
|
// remove empty layers from bottom
|
||
|
while (! m_layers.empty() && (m_layers.front()->lslices.empty() || m_layers.front()->empty())) {
|
||
|
delete m_layers.front();
|
||
|
m_layers.erase(m_layers.begin());
|
||
|
m_layers.front()->lower_layer = nullptr;
|
||
|
for (size_t i = 0; i < m_layers.size(); ++ i)
|
||
|
m_layers[i]->set_id(m_layers[i]->id() - 1);
|
||
|
}
|
||
|
|
||
|
return buggy_layers.empty() ? "" :
|
||
|
"The model has overlapping or self-intersecting facets. I tried to repair it, "
|
||
|
"however you might want to check the results or repair the input file and retry.\n";
|
||
|
}
|
||
|
|
||
|
// Simplify the sliced model, if "resolution" configuration parameter > 0.
|
||
|
// The simplification is problematic, because it simplifies the slices independent from each other,
|
||
|
// which makes the simplified discretization visible on the object surface.
|
||
|
void PrintObject::simplify_slices(double distance)
|
||
|
{
|
||
|
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - begin";
|
||
|
tbb::parallel_for(
|
||
|
tbb::blocked_range<size_t>(0, m_layers.size()),
|
||
|
[this, distance](const tbb::blocked_range<size_t>& range) {
|
||
|
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
||
|
m_print->throw_if_canceled();
|
||
|
Layer *layer = m_layers[layer_idx];
|
||
|
for (size_t region_idx = 0; region_idx < layer->m_regions.size(); ++ region_idx)
|
||
|
layer->m_regions[region_idx]->slices.simplify(distance);
|
||
|
{
|
||
|
ExPolygons simplified;
|
||
|
for (const ExPolygon &expoly : layer->lslices)
|
||
|
expoly.simplify(distance, &simplified);
|
||
|
layer->lslices = std::move(simplified);
|
||
|
}
|
||
|
}
|
||
|
});
|
||
|
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - end";
|
||
|
}
|
||
|
|
||
|
// Called by make_perimeters()
|
||
|
// 1) Decides Z positions of the layers,
|
||
|
// 2) Initializes layers and their regions
|
||
|
// 3) Slices the object meshes
|
||
|
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
|
||
|
// 5) Applies size compensation (offsets the slices in XY plane)
|
||
|
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
|
||
|
// Resulting expolygons of layer regions are marked as Internal.
|
||
|
void PrintObject::slice()
|
||
|
{
|
||
|
if (! this->set_started(posSlice))
|
||
|
return;
|
||
|
m_print->set_status(10, L("Processing triangulated mesh"));
|
||
|
std::vector<coordf_t> layer_height_profile;
|
||
|
this->update_layer_height_profile(*this->model_object(), m_slicing_params, layer_height_profile);
|
||
|
m_print->throw_if_canceled();
|
||
|
m_typed_slices = false;
|
||
|
this->clear_layers();
|
||
|
m_layers = new_layers(this, generate_object_layers(m_slicing_params, layer_height_profile), m_slicing_params.raft_layers());
|
||
|
this->_slice();
|
||
|
m_print->throw_if_canceled();
|
||
|
// Fix the model.
|
||
|
//FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
|
||
|
std::string warning = this->_fix_slicing_errors();
|
||
|
m_print->throw_if_canceled();
|
||
|
if (! warning.empty())
|
||
|
BOOST_LOG_TRIVIAL(info) << warning;
|
||
|
// Update bounding boxes, back up raw slices of complex models.
|
||
|
tbb::parallel_for(
|
||
|
tbb::blocked_range<size_t>(0, m_layers.size()),
|
||
|
[this](const tbb::blocked_range<size_t>& range) {
|
||
|
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
||
|
m_print->throw_if_canceled();
|
||
|
Layer &layer = *m_layers[layer_idx];
|
||
|
layer.lslices_bboxes.clear();
|
||
|
layer.lslices_bboxes.reserve(layer.lslices.size());
|
||
|
for (const ExPolygon &expoly : layer.lslices)
|
||
|
layer.lslices_bboxes.emplace_back(get_extents(expoly));
|
||
|
layer.backup_untyped_slices();
|
||
|
}
|
||
|
});
|
||
|
if (m_layers.empty())
|
||
|
throw Slic3r::SlicingError("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");
|
||
|
this->set_done(posSlice);
|
||
|
}
|
||
|
|
||
|
// 1) Decides Z positions of the layers,
|
||
|
// 2) Initializes layers and their regions
|
||
|
// 3) Slices the object meshes
|
||
|
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
|
||
|
// 5) Applies size compensation (offsets the slices in XY plane)
|
||
|
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
|
||
|
// Resulting expolygons of layer regions are marked as Internal.
|
||
|
//
|
||
|
// this should be idempotent
|
||
|
void PrintObject::slice_volumes()
|
||
|
{
|
||
|
BOOST_LOG_TRIVIAL(info) << "Slicing volumes..." << log_memory_info();
|
||
|
|
||
|
bool spiral_vase = this->print()->config().spiral_vase;
|
||
|
auto throw_on_cancel_callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
|
||
|
|
||
|
std::vector<float> slice_zs = zs_from_layers(m_layers);
|
||
|
|
||
|
std::vector<std::vector<ExPolygons>> region_slices = slices_to_regions(this->model_object()->volumes, m_shared_regions->layer_ranges, slice_zs,
|
||
|
slice_volumes(
|
||
|
this->print()->config(), this->config(),
|
||
|
this->model_object()->volumes, m_shared_regions->layer_ranges, m_center_offset, slice_zs, SlicingMode::Regular, spiral_vase, throw_on_cancel_callback),
|
||
|
m_config.clip_multipart_objects,
|
||
|
throw_on_cancel_callback);
|
||
|
|
||
|
for (size_t region_id = 0; region_id < region_slices.size(); ++ region_id) {
|
||
|
std::vector<ExPolygons> &by_layer = region_slices[region_id];
|
||
|
for (size_t layer_id = 0; layer_id < by_layer.size(); ++ layer_id)
|
||
|
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(by_layer[layer_id]), stInternal);
|
||
|
}
|
||
|
region_slices.clear();
|
||
|
|
||
|
// Second clip the volumes in the order they are presented at the user interface.
|
||
|
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - parallel clipping - start";
|
||
|
tbb::parallel_for(
|
||
|
tbb::blocked_range<size_t>(0, slice_zs.size()),
|
||
|
[this, &sliced_volumes, num_modifiers](const tbb::blocked_range<size_t>& range) {
|
||
|
float delta = float(scale_(m_config.xy_size_compensation.value));
|
||
|
// Only upscale together with clipping if there are no modifiers, as the modifiers shall be applied before upscaling
|
||
|
// (upscaling may grow the object outside of the modifier mesh).
|
||
|
bool upscale = delta > 0 && num_modifiers == 0;
|
||
|
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
|
||
|
m_print->throw_if_canceled();
|
||
|
// Trim volumes in a single layer, one by the other, possibly apply upscaling.
|
||
|
{
|
||
|
Polygons processed;
|
||
|
for (SlicedVolume &sliced_volume : sliced_volumes)
|
||
|
if (! sliced_volume.expolygons_by_layer.empty()) {
|
||
|
ExPolygons slices = std::move(sliced_volume.expolygons_by_layer[layer_id]);
|
||
|
if (upscale)
|
||
|
slices = offset_ex(std::move(slices), delta);
|
||
|
if (! processed.empty())
|
||
|
// Trim by the slices of already processed regions.
|
||
|
slices = diff_ex(slices, processed);
|
||
|
if (size_t(&sliced_volume - &sliced_volumes.front()) + 1 < sliced_volumes.size())
|
||
|
// Collect the already processed regions to trim the to be processed regions.
|
||
|
polygons_append(processed, slices);
|
||
|
sliced_volume.expolygons_by_layer[layer_id] = std::move(slices);
|
||
|
}
|
||
|
}
|
||
|
// Collect and union volumes of a single region.
|
||
|
for (int region_id = 0; region_id < int(m_region_volumes.size()); ++ region_id) {
|
||
|
ExPolygons expolygons;
|
||
|
size_t num_volumes = 0;
|
||
|
for (SlicedVolume &sliced_volume : sliced_volumes)
|
||
|
if (sliced_volume.region_id == region_id && ! sliced_volume.expolygons_by_layer.empty() && ! sliced_volume.expolygons_by_layer[layer_id].empty()) {
|
||
|
++ num_volumes;
|
||
|
append(expolygons, std::move(sliced_volume.expolygons_by_layer[layer_id]));
|
||
|
}
|
||
|
if (num_volumes > 1)
|
||
|
// Merge the islands using a positive / negative offset.
|
||
|
expolygons = offset_ex(offset_ex(expolygons, float(scale_(EPSILON))), -float(scale_(EPSILON)));
|
||
|
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons), stInternal);
|
||
|
}
|
||
|
}
|
||
|
});
|
||
|
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - parallel clipping - end";
|
||
|
clipped = true;
|
||
|
upscaled = m_config.xy_size_compensation.value > 0 && num_modifiers == 0;
|
||
|
}
|
||
|
|
||
|
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - removing top empty layers";
|
||
|
while (! m_layers.empty()) {
|
||
|
const Layer *layer = m_layers.back();
|
||
|
if (! layer->empty())
|
||
|
break;
|
||
|
delete layer;
|
||
|
m_layers.pop_back();
|
||
|
}
|
||
|
if (! m_layers.empty())
|
||
|
m_layers.back()->upper_layer = nullptr;
|
||
|
m_print->throw_if_canceled();
|
||
|
|
||
|
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - begin";
|
||
|
{
|
||
|
// Compensation value, scaled.
|
||
|
const float xy_compensation_scaled = float(scale_(m_config.xy_size_compensation.value));
|
||
|
const float elephant_foot_compensation_scaled = (m_config.raft_layers == 0) ?
|
||
|
// Only enable Elephant foot compensation if printing directly on the print bed.
|
||
|
float(scale_(m_config.elefant_foot_compensation.value)) :
|
||
|
0.f;
|
||
|
// Uncompensated slices for the first layer in case the Elephant foot compensation is applied.
|
||
|
ExPolygons lslices_1st_layer;
|
||
|
tbb::parallel_for(
|
||
|
tbb::blocked_range<size_t>(0, m_layers.size()),
|
||
|
[this, upscaled, clipped, xy_compensation_scaled, elephant_foot_compensation_scaled, &lslices_1st_layer]
|
||
|
(const tbb::blocked_range<size_t>& range) {
|
||
|
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
|
||
|
m_print->throw_if_canceled();
|
||
|
Layer *layer = m_layers[layer_id];
|
||
|
// Apply size compensation and perform clipping of multi-part objects.
|
||
|
float elfoot = (layer_id == 0) ? elephant_foot_compensation_scaled : 0.f;
|
||
|
if (layer->m_regions.size() == 1) {
|
||
|
assert(! upscaled);
|
||
|
assert(! clipped);
|
||
|
// Optimized version for a single region layer.
|
||
|
// Single region, growing or shrinking.
|
||
|
LayerRegion *layerm = layer->m_regions.front();
|
||
|
if (elfoot > 0) {
|
||
|
// Apply the elephant foot compensation and store the 1st layer slices without the Elephant foot compensation applied.
|
||
|
lslices_1st_layer = to_expolygons(std::move(layerm->slices.surfaces));
|
||
|
float delta = xy_compensation_scaled;
|
||
|
if (delta > elfoot) {
|
||
|
delta -= elfoot;
|
||
|
elfoot = 0.f;
|
||
|
} else if (delta > 0)
|
||
|
elfoot -= delta;
|
||
|
layerm->slices.set(
|
||
|
union_ex(
|
||
|
Slic3r::elephant_foot_compensation(
|
||
|
(delta == 0.f) ? lslices_1st_layer : offset_ex(lslices_1st_layer, delta),
|
||
|
layerm->flow(frExternalPerimeter), unscale<double>(elfoot))),
|
||
|
stInternal);
|
||
|
if (xy_compensation_scaled != 0.f)
|
||
|
lslices_1st_layer = offset_ex(std::move(lslices_1st_layer), xy_compensation_scaled);
|
||
|
} else if (xy_compensation_scaled != 0.f) {
|
||
|
// Apply the XY compensation.
|
||
|
layerm->slices.set(
|
||
|
offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), xy_compensation_scaled),
|
||
|
stInternal);
|
||
|
}
|
||
|
} else {
|
||
|
bool upscale = ! upscaled && xy_compensation_scaled > 0.f;
|
||
|
bool clip = ! clipped && m_config.clip_multipart_objects.value;
|
||
|
if (upscale || clip) {
|
||
|
// Multiple regions, growing or just clipping one region by the other.
|
||
|
// When clipping the regions, priority is given to the first regions.
|
||
|
Polygons processed;
|
||
|
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
|
||
|
LayerRegion *layerm = layer->m_regions[region_id];
|
||
|
ExPolygons slices = to_expolygons(std::move(layerm->slices.surfaces));
|
||
|
if (upscale)
|
||
|
slices = offset_ex(std::move(slices), xy_compensation_scaled);
|
||
|
if (region_id > 0 && clip)
|
||
|
// Trim by the slices of already processed regions.
|
||
|
slices = diff_ex(slices, processed);
|
||
|
if (clip && (region_id + 1 < layer->m_regions.size()))
|
||
|
// Collect the already processed regions to trim the to be processed regions.
|
||
|
polygons_append(processed, slices);
|
||
|
layerm->slices.set(std::move(slices), stInternal);
|
||
|
}
|
||
|
}
|
||
|
if (xy_compensation_scaled < 0.f || elfoot > 0.f) {
|
||
|
// Apply the negative XY compensation.
|
||
|
Polygons trimming;
|
||
|
static const float eps = float(scale_(m_config.slice_closing_radius.value) * 1.5);
|
||
|
if (elfoot > 0.f) {
|
||
|
lslices_1st_layer = offset_ex(layer->merged(eps), std::min(xy_compensation_scaled, 0.f) - eps);
|
||
|
trimming = to_polygons(Slic3r::elephant_foot_compensation(lslices_1st_layer,
|
||
|
layer->m_regions.front()->flow(frExternalPerimeter), unscale<double>(elfoot)));
|
||
|
} else
|
||
|
trimming = offset(layer->merged(float(SCALED_EPSILON)), xy_compensation_scaled - float(SCALED_EPSILON));
|
||
|
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
|
||
|
layer->m_regions[region_id]->trim_surfaces(trimming);
|
||
|
}
|
||
|
}
|
||
|
// Merge all regions' slices to get islands, chain them by a shortest path.
|
||
|
layer->make_slices();
|
||
|
}
|
||
|
});
|
||
|
if (elephant_foot_compensation_scaled > 0.f && ! m_layers.empty()) {
|
||
|
// The Elephant foot has been compensated, therefore the 1st layer's lslices are shrank with the Elephant foot compensation value.
|
||
|
// Store the uncompensated value there.
|
||
|
assert(m_layers.front()->id() == 0);
|
||
|
m_layers.front()->lslices = std::move(lslices_1st_layer);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
m_print->throw_if_canceled();
|
||
|
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - end";
|
||
|
}
|
||
|
|
||
|
std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType model_volume_type) const
|
||
|
{
|
||
|
size_t it_volume = this->model_object()->volumes.begin();
|
||
|
size_t it_volume_end = this->model_object()->volumes.end();
|
||
|
for (; it_volume->type() != model_volume_type && it_volume != it_volume_end; ++ it_volume) ;
|
||
|
std::vector<ExPolygons> slices;
|
||
|
if (it_volume != it_volume_end) {
|
||
|
// Found at least a single support volume of model_volume_type.
|
||
|
std::vector<float> zs = zs_from_layers(this->layers());
|
||
|
std::vector<char> merge_layers;
|
||
|
bool merge = false;
|
||
|
const Print *print = this->print();
|
||
|
auto throw_on_cancel_callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
|
||
|
for (; it_volume != it_volume_end; ++ it_volume; it_volume != it_volume_end)
|
||
|
if (it_volume->type() == model_volume_type) {
|
||
|
std::vector<ExPolygons> slices2 = slice_volume(*(*it_volume), zs, SlicingMode::Regular, throw_on_cancel_callback);
|
||
|
if (slices.empty())
|
||
|
slices = std::move(slices2);
|
||
|
else if (! slices2.empty()) {
|
||
|
if (merge_layers.empty())
|
||
|
merge_layers.assign(zs.size(), false);
|
||
|
for (size_t i = 0; i < zs.size(); ++ i) {
|
||
|
if (slices[i].empty())
|
||
|
slices[i] = std::move(slices2[i]);
|
||
|
else if (! slices2[i].empty()) {
|
||
|
append(slices[i], std::move(slices2[i]));
|
||
|
merge_layers[i] = true;
|
||
|
merge = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (merge) {
|
||
|
std::vector<ExPolygons*> to_merge;
|
||
|
to_merge.reserve(zs);
|
||
|
for (size_t i = 0; i < zs.size(); ++ i)
|
||
|
if (merge_layers[i])
|
||
|
to_merge.emplace_back(&slices[i]);
|
||
|
tbb::parallel_for(
|
||
|
tbb::blocked_range<size_t>(0, to_merge.size()),
|
||
|
[&to_merge](const tbb::blocked_range<size_t> &range) {
|
||
|
for (size_t i = range.begin(); i < range.end(); ++ i)
|
||
|
to_merge[i] = union_ex(to_merge[i]);
|
||
|
});
|
||
|
}
|
||
|
}
|
||
|
return slices;
|
||
|
}
|
||
|
|
||
|
} // namespace Slic3r
|