PrusaSlicer-NonPlainar/xs/src/libslic3r/GCode/Analyzer.hpp

153 lines
6.7 KiB
C++
Raw Normal View History

#ifndef slic3r_GCode_PressureEqualizer_hpp_
#define slic3r_GCode_PressureEqualizer_hpp_
#include "../libslic3r.h"
#include "../PrintConfig.hpp"
#include "../ExtrusionEntity.hpp"
namespace Slic3r {
enum GCodeMoveType
{
GCODE_MOVE_TYPE_NOOP,
GCODE_MOVE_TYPE_RETRACT,
GCODE_MOVE_TYPE_UNRETRACT,
GCODE_MOVE_TYPE_TOOL_CHANGE,
GCODE_MOVE_TYPE_MOVE,
GCODE_MOVE_TYPE_EXTRUDE,
};
// For visualization purposes, for the purposes of the G-code analysis and timing.
// The size of this structure is 56B.
// Keep the size of this structure as small as possible, because all moves of a complete print
// may be held in RAM.
struct GCodeMove
{
bool moving_xy(const float* pos_start) const { return fabs(pos_end[0] - pos_start[0]) > 0.f || fabs(pos_end[1] - pos_start[1]) > 0.f; }
bool moving_xy() const { return moving_xy(get_pos_start()); }
bool moving_z (const float* pos_start) const { return fabs(pos_end[2] - pos_start[2]) > 0.f; }
bool moving_z () const { return moving_z(get_pos_start()); }
bool extruding(const float* pos_start) const { return moving_xy() && pos_end[3] > pos_start[3]; }
bool extruding() const { return extruding(get_pos_start()); }
bool retracting(const float* pos_start) const { return pos_end[3] < pos_start[3]; }
bool retracting() const { return retracting(get_pos_start()); }
bool deretracting(const float* pos_start) const { return ! moving_xy() && pos_end[3] > pos_start[3]; }
bool deretracting() const { return deretracting(get_pos_start()); }
float dist_xy2(const float* pos_start) const { return (pos_end[0] - pos_start[0]) * (pos_end[0] - pos_start[0]) + (pos_end[1] - pos_start[1]) * (pos_end[1] - pos_start[1]); }
float dist_xy2() const { return dist_xy2(get_pos_start()); }
float dist_xyz2(const float* pos_start) const { return (pos_end[0] - pos_start[0]) * (pos_end[0] - pos_start[0]) + (pos_end[1] - pos_start[1]) * (pos_end[1] - pos_start[1]) + (pos_end[2] - pos_start[2]) * (pos_end[2] - pos_start[2]); }
float dist_xyz2() const { return dist_xyz2(get_pos_start()); }
float dist_xy(const float* pos_start) const { return sqrt(dist_xy2(pos_start)); }
float dist_xy() const { return dist_xy(get_pos_start()); }
float dist_xyz(const float* pos_start) const { return sqrt(dist_xyz2(pos_start)); }
float dist_xyz() const { return dist_xyz(get_pos_start()); }
float dist_e(const float* pos_start) const { return fabs(pos_end[3] - pos_start[3]); }
float dist_e() const { return dist_e(get_pos_start()); }
float feedrate() const { return pos_end[4]; }
float time(const float* pos_start) const { return dist_xyz(pos_start) / feedrate(); }
float time() const { return time(get_pos_start()); }
float time_inv(const float* pos_start) const { return feedrate() / dist_xyz(pos_start); }
float time_inv() const { return time_inv(get_pos_start()); }
const float* get_pos_start() const { assert(type != GCODE_MOVE_TYPE_NOOP); return this[-1].pos_end; }
// Pack the enums to conserve space. With C++x11 the allocation size could be declared for enums, but for old C++ this is the only portable way.
// GCodeLineType
uint8_t type;
// Index of the active extruder.
uint8_t extruder_id;
// ExtrusionRole
uint8_t extrusion_role;
// For example, is it a bridge flow? Is the fan on?
uint8_t flags;
// X,Y,Z,E,F. Storing the state of the currently active extruder only.
float pos_end[5];
// Extrusion width, height for this segment in um.
uint16_t extrusion_width;
uint16_t extrusion_height;
};
typedef std::vector<GCodeMove> GCodeMoves;
struct GCodeLayer
{
// Index of an object printed.
size_t object_idx;
// Index of an object instance printed.
size_t object_instance_idx;
// Index of the layer printed.
size_t layer_idx;
// Top z coordinate of the layer printed.
float layer_z_top;
// Moves over this layer. The 0th move is always of type GCODELINETYPE_NOOP and
// it sets the initial position and tool for the layer.
GCodeMoves moves;
// Indices into m_moves, where the tool changes happen.
// This is useful, if one wants to display just only a piece of the path quickly.
std::vector<size_t> tool_changes;
};
typedef std::vector<GCodeLayer*> GCodeLayerPtrs;
class GCodeMovesDB
{
public:
GCodeMovesDB() {};
~GCodeMovesDB() { reset(); }
void reset();
GCodeLayerPtrs m_layers;
};
// Processes a G-code to extract moves and their types.
// This information is then used to render the print simulation colored by the extrusion type
// or various speeds.
// The GCodeAnalyzer is employed as a G-Code filter. It reads the G-code as it is generated,
// parses the comments generated by Slic3r just for the analyzer, and removes these comments.
class GCodeAnalyzer
{
public:
GCodeAnalyzer(const Slic3r::GCodeConfig *config);
~GCodeAnalyzer();
void reset();
// Process a next batch of G-code lines. Flush the internal buffers if asked for.
const char* process(const char *szGCode, bool flush);
// Length of the buffer returned by process().
size_t get_output_buffer_length() const { return output_buffer_length; }
private:
// Keeps the reference, does not own the config.
const Slic3r::GCodeConfig *m_config;
// Internal data.
// X,Y,Z,E,F
float m_current_pos[5];
size_t m_current_extruder;
ExtrusionRole m_current_extrusion_role;
uint16_t m_current_extrusion_width;
uint16_t m_current_extrusion_height;
bool m_retracted;
GCodeMovesDB *m_moves;
// Output buffer will only grow. It will not be reallocated over and over.
std::vector<char> output_buffer;
size_t output_buffer_length;
bool process_line(const char *line, const size_t len);
// Push the text to the end of the output_buffer.
void push_to_output(const char *text, const size_t len, bool add_eol = true);
};
} // namespace Slic3r
#endif /* slic3r_GCode_PressureEqualizer_hpp_ */