PrusaSlicer-NonPlainar/src/libslic3r/TriangleSelector.cpp

655 lines
23 KiB
C++
Raw Normal View History

#include "TriangleSelector.hpp"
#include "Model.hpp"
namespace Slic3r {
// sides_to_split==-1 : just restore previous split
void TriangleSelector::Triangle::set_division(int sides_to_split, int special_side_idx)
{
assert(sides_to_split >=-1 && sides_to_split <= 3);
assert(special_side_idx >=-1 && special_side_idx < 3);
// If splitting one or two sides, second argument must be provided.
assert(sides_to_split != 1 || special_side_idx != -1);
assert(sides_to_split != 2 || special_side_idx != -1);
if (sides_to_split != -1) {
this->number_of_splits = sides_to_split;
if (sides_to_split != 0) {
assert(old_number_of_splits == 0);
this->special_side_idx = special_side_idx;
this->old_number_of_splits = sides_to_split;
}
}
else {
assert(old_number_of_splits != 0);
this->number_of_splits = old_number_of_splits;
// indices of children should still be there.
}
}
void TriangleSelector::select_patch(const Vec3f& hit, int facet_start,
const Vec3f& source, const Vec3f& dir,
float radius_sqr, FacetSupportType new_state)
{
assert(facet_start < m_orig_size_indices);
assert(is_approx(dir.norm(), 1.f));
// Save current cursor center, squared radius and camera direction,
// so we don't have to pass it around.
m_cursor = {hit, source, dir, radius_sqr};
// Now start with the facet the pointer points to and check all adjacent facets.
std::vector<int> facets_to_check{facet_start};
std::vector<bool> visited(m_orig_size_indices, false); // keep track of facets we already processed
int facet_idx = 0; // index into facets_to_check
while (facet_idx < int(facets_to_check.size())) {
int facet = facets_to_check[facet_idx];
if (! visited[facet]) {
if (select_triangle(facet, new_state)) {
// add neighboring facets to list to be proccessed later
for (int n=0; n<3; ++n) {
if (faces_camera(m_mesh->stl.neighbors_start[facet].neighbor[n]))
facets_to_check.push_back(m_mesh->stl.neighbors_start[facet].neighbor[n]);
}
}
}
visited[facet] = true;
++facet_idx;
}
}
// Selects either the whole triangle (discarding any children it had), or divides
// the triangle recursively, selecting just subtriangles truly inside the circle.
// This is done by an actual recursive call. Returns false if the triangle is
// outside the cursor.
bool TriangleSelector::select_triangle(int facet_idx, FacetSupportType type, bool recursive_call)
{
assert(facet_idx < int(m_triangles.size()));
Triangle* tr = &m_triangles[facet_idx];
if (! tr->valid)
return false;
int num_of_inside_vertices = vertices_inside(facet_idx);
if (num_of_inside_vertices == 0
&& ! is_pointer_in_triangle(facet_idx)
&& ! is_edge_inside_cursor(facet_idx))
return false;
if (num_of_inside_vertices == 3) {
// dump any subdivision and select whole triangle
undivide_triangle(facet_idx);
tr->set_state(type);
} else {
// the triangle is partially inside, let's recursively divide it
// (if not already) and try selecting its children.
if (! tr->is_split() && tr->get_state() == type) {
// This is leaf triangle that is already of correct type as a whole.
// No need to split, all children would end up selected anyway.
return true;
}
split_triangle(facet_idx);
tr = &m_triangles[facet_idx]; // might have been invalidated
int num_of_children = tr->number_of_split_sides() + 1;
if (num_of_children != 1) {
for (int i=0; i<num_of_children; ++i) {
assert(i < int(tr->children.size()));
assert(tr->children[i] < int(m_triangles.size()));
select_triangle(tr->children[i], type, true);
tr = &m_triangles[facet_idx]; // might have been invalidated
}
}
}
if (! recursive_call) {
// In case that all children are leafs and have the same state now,
// they may be removed and substituted by the parent triangle.
remove_useless_children(facet_idx);
// Make sure that we did not lose track of invalid triangles.
assert(m_invalid_triangles == std::count_if(m_triangles.begin(), m_triangles.end(),
[](const Triangle& tr) { return ! tr.valid; }));
// Do garbage collection maybe?
if (2*m_invalid_triangles > int(m_triangles.size()))
garbage_collect();
}
return true;
}
void TriangleSelector::split_triangle(int facet_idx)
{
if (m_triangles[facet_idx].is_split()) {
// The triangle is divided already.
return;
}
Triangle* tr = &m_triangles[facet_idx];
FacetSupportType old_type = tr->get_state();
if (tr->was_split_before() != 0) {
// This triangle is not split at the moment, but was at one point
// in history. We can just restore it and resurrect its children.
tr->set_division(-1);
for (int i=0; i<=tr->number_of_split_sides(); ++i) {
m_triangles[tr->children[i]].set_state(old_type);
m_triangles[tr->children[i]].valid = true;
--m_invalid_triangles;
}
return;
}
// If we got here, we are about to actually split the triangle.
const double limit_squared = m_edge_limit_sqr;
std::array<int, 3>& facet = tr->verts_idxs;
const stl_vertex* pts[3] = { &m_vertices[facet[0]].v, &m_vertices[facet[1]].v, &m_vertices[facet[2]].v};
double sides[3] = { (*pts[2]-*pts[1]).squaredNorm(),
(*pts[0]-*pts[2]).squaredNorm(),
(*pts[1]-*pts[0]).squaredNorm() };
std::vector<int> sides_to_split;
int side_to_keep = -1;
for (int pt_idx = 0; pt_idx<3; ++pt_idx) {
if (sides[pt_idx] > limit_squared)
sides_to_split.push_back(pt_idx);
else
side_to_keep = pt_idx;
}
if (sides_to_split.empty()) {
// This shall be unselected.
tr->set_division(0);
return;
}
// Save how the triangle will be split. Second argument makes sense only for one
// or two split sides, otherwise the value is ignored.
tr->set_division(sides_to_split.size(),
sides_to_split.size() == 2 ? side_to_keep : sides_to_split[0]);
perform_split(facet_idx, old_type);
}
// Calculate distance of a point from a line.
bool TriangleSelector::is_point_inside_cursor(const Vec3f& point) const
{
Vec3f diff = m_cursor.center - point;
return (diff - diff.dot(m_cursor.dir) * m_cursor.dir).squaredNorm() < m_cursor.radius_sqr;
}
// Is pointer in a triangle?
bool TriangleSelector::is_pointer_in_triangle(int facet_idx) const
{
auto signed_volume_sign = [](const Vec3f& a, const Vec3f& b,
const Vec3f& c, const Vec3f& d) -> bool {
return ((b-a).cross(c-a)).dot(d-a) > 0.;
};
const Vec3f& p1 = m_vertices[m_triangles[facet_idx].verts_idxs[0]].v;
const Vec3f& p2 = m_vertices[m_triangles[facet_idx].verts_idxs[1]].v;
const Vec3f& p3 = m_vertices[m_triangles[facet_idx].verts_idxs[2]].v;
const Vec3f& q1 = m_cursor.center + m_cursor.dir;
const Vec3f q2 = m_cursor.center - m_cursor.dir;
if (signed_volume_sign(q1,p1,p2,p3) != signed_volume_sign(q2,p1,p2,p3)) {
bool pos = signed_volume_sign(q1,q2,p1,p2);
if (signed_volume_sign(q1,q2,p2,p3) == pos && signed_volume_sign(q1,q2,p3,p1) == pos)
return true;
}
return false;
}
// Determine whether this facet is potentially visible (still can be obscured).
bool TriangleSelector::faces_camera(int facet) const
{
assert(facet < m_orig_size_indices);
// The normal is cached in mesh->stl, use it.
return (m_mesh->stl.facet_start[facet].normal.dot(m_cursor.dir) < 0.);
}
// How many vertices of a triangle are inside the circle?
int TriangleSelector::vertices_inside(int facet_idx) const
{
int inside = 0;
for (size_t i=0; i<3; ++i) {
if (is_point_inside_cursor(m_vertices[m_triangles[facet_idx].verts_idxs[i]].v))
++inside;
}
return inside;
}
// Is edge inside cursor?
bool TriangleSelector::is_edge_inside_cursor(int facet_idx) const
{
Vec3f pts[3];
for (int i=0; i<3; ++i)
pts[i] = m_vertices[m_triangles[facet_idx].verts_idxs[i]].v;
const Vec3f& p = m_cursor.center;
for (int side = 0; side < 3; ++side) {
const Vec3f& a = pts[side];
const Vec3f& b = pts[side<2 ? side+1 : 0];
Vec3f s = (b-a).normalized();
float t = (p-a).dot(s);
Vec3f vector = a+t*s - p;
// vector is 3D vector from center to the intersection. What we want to
// measure is length of its projection onto plane perpendicular to dir.
float dist_sqr = vector.squaredNorm() - std::pow(vector.dot(m_cursor.dir), 2.f);
if (dist_sqr < m_cursor.radius_sqr && t>=0.f && t<=(b-a).norm())
return true;
}
return false;
}
// Recursively remove all subtriangles.
void TriangleSelector::undivide_triangle(int facet_idx)
{
assert(facet_idx < int(m_triangles.size()));
Triangle& tr = m_triangles[facet_idx];
if (tr.is_split()) {
for (int i=0; i<=tr.number_of_split_sides(); ++i) {
undivide_triangle(tr.children[i]);
m_triangles[tr.children[i]].valid = false;
++m_invalid_triangles;
}
tr.set_division(0); // not split
}
}
void TriangleSelector::remove_useless_children(int facet_idx)
{
// Check that all children are leafs of the same type. If not, try to
// make them (recursive call). Remove them if sucessful.
assert(facet_idx < int(m_triangles.size()) && m_triangles[facet_idx].valid);
Triangle& tr = m_triangles[facet_idx];
if (! tr.is_split()) {
// This is a leaf, there nothing to do. This can happen during the
// first (non-recursive call). Shouldn't otherwise.
return;
}
// Call this for all non-leaf children.
for (int child_idx=0; child_idx<=tr.number_of_split_sides(); ++child_idx) {
assert(child_idx < int(m_triangles.size()) && m_triangles[child_idx].valid);
if (m_triangles[tr.children[child_idx]].is_split())
remove_useless_children(tr.children[child_idx]);
}
// Return if a child is not leaf or two children differ in type.
FacetSupportType first_child_type = FacetSupportType::NONE;
for (int child_idx=0; child_idx<=tr.number_of_split_sides(); ++child_idx) {
if (m_triangles[tr.children[child_idx]].is_split())
return;
if (child_idx == 0)
first_child_type = m_triangles[tr.children[0]].get_state();
else if (m_triangles[tr.children[child_idx]].get_state() != first_child_type)
return;
}
// If we got here, the children can be removed.
undivide_triangle(facet_idx);
tr.set_state(first_child_type);
}
void TriangleSelector::garbage_collect()
{
// First make a map from old to new triangle indices.
int new_idx = m_orig_size_indices;
std::vector<int> new_triangle_indices(m_triangles.size(), -1);
for (int i = m_orig_size_indices; i<int(m_triangles.size()); ++i) {
if (m_triangles[i].valid) {
new_triangle_indices[i] = new_idx;
++new_idx;
} else {
// Decrement reference counter for the vertices.
for (int j=0; j<3; ++j)
--m_vertices[m_triangles[i].verts_idxs[j]].ref_cnt;
}
}
// Now we know which vertices are not referenced anymore. Make a map
// from old idxs to new ones, like we did for triangles.
new_idx = m_orig_size_vertices;
std::vector<int> new_vertices_indices(m_vertices.size(), -1);
for (int i=m_orig_size_vertices; i<int(m_vertices.size()); ++i) {
assert(m_vertices[i].ref_cnt >= 0);
if (m_vertices[i].ref_cnt != 0) {
new_vertices_indices[i] = new_idx;
++new_idx;
}
}
// We can remove all invalid triangles and vertices that are no longer referenced.
m_triangles.erase(std::remove_if(m_triangles.begin()+m_orig_size_indices, m_triangles.end(),
[](const Triangle& tr) { return ! tr.valid; }),
m_triangles.end());
m_vertices.erase(std::remove_if(m_vertices.begin()+m_orig_size_vertices, m_vertices.end(),
[](const Vertex& vert) { return vert.ref_cnt == 0; }),
m_vertices.end());
// Now go through all remaining triangles and update changed indices.
for (Triangle& tr : m_triangles) {
assert(tr.valid);
if (tr.is_split()) {
// There are children. Update their indices.
for (int j=0; j<=tr.number_of_split_sides(); ++j) {
assert(new_triangle_indices[tr.children[j]] != -1);
tr.children[j] = new_triangle_indices[tr.children[j]];
}
}
// Update indices into m_vertices. The original vertices are never
// touched and need not be reindexed.
for (int& idx : tr.verts_idxs) {
if (idx >= m_orig_size_vertices) {
assert(new_vertices_indices[idx] != -1);
idx = new_vertices_indices[idx];
}
}
// If this triangle was split before, forget it.
// Children referenced in the cache are dead by now.
tr.forget_history();
}
m_invalid_triangles = 0;
}
TriangleSelector::TriangleSelector(const TriangleMesh& mesh)
: m_mesh{&mesh}
{
reset();
}
void TriangleSelector::reset()
{
if (! m_orig_size_indices != 0) // unless this is run from constructor
garbage_collect();
m_vertices.clear();
m_triangles.clear();
for (const stl_vertex& vert : m_mesh->its.vertices)
m_vertices.emplace_back(vert);
for (const stl_triangle_vertex_indices& ind : m_mesh->its.indices)
push_triangle(ind[0], ind[1], ind[2]);
m_orig_size_vertices = m_vertices.size();
m_orig_size_indices = m_triangles.size();
m_invalid_triangles = 0;
}
void TriangleSelector::set_edge_limit(float edge_limit)
{
float new_limit_sqr = std::pow(edge_limit, 2.f);
if (new_limit_sqr != m_edge_limit_sqr) {
m_edge_limit_sqr = new_limit_sqr;
// The way how triangles split may be different now, forget
// all cached splits.
garbage_collect();
}
}
void TriangleSelector::push_triangle(int a, int b, int c)
{
for (int i : {a, b, c}) {
assert(i >= 0 && i < int(m_vertices.size()));
++m_vertices[i].ref_cnt;
}
m_triangles.emplace_back(a, b, c);
}
void TriangleSelector::perform_split(int facet_idx, FacetSupportType old_state)
{
Triangle* tr = &m_triangles[facet_idx];
assert(tr->is_split());
// Read info about how to split this triangle.
int sides_to_split = tr->number_of_split_sides();
// indices of triangle vertices
std::vector<int> verts_idxs;
int idx = tr->special_side();
for (int j=0; j<3; ++j) {
verts_idxs.push_back(tr->verts_idxs[idx++]);
if (idx == 3)
idx = 0;
}
if (sides_to_split == 1) {
m_vertices.emplace_back((m_vertices[verts_idxs[1]].v + m_vertices[verts_idxs[2]].v)/2.);
verts_idxs.insert(verts_idxs.begin()+2, m_vertices.size() - 1);
push_triangle(verts_idxs[0], verts_idxs[1], verts_idxs[2]);
push_triangle(verts_idxs[2], verts_idxs[3], verts_idxs[0]);
}
if (sides_to_split == 2) {
m_vertices.emplace_back((m_vertices[verts_idxs[0]].v + m_vertices[verts_idxs[1]].v)/2.);
verts_idxs.insert(verts_idxs.begin()+1, m_vertices.size() - 1);
m_vertices.emplace_back((m_vertices[verts_idxs[0]].v + m_vertices[verts_idxs[3]].v)/2.);
verts_idxs.insert(verts_idxs.begin()+4, m_vertices.size() - 1);
push_triangle(verts_idxs[0], verts_idxs[1], verts_idxs[4]);
push_triangle(verts_idxs[1], verts_idxs[2], verts_idxs[4]);
push_triangle(verts_idxs[2], verts_idxs[3], verts_idxs[4]);
}
if (sides_to_split == 3) {
m_vertices.emplace_back((m_vertices[verts_idxs[0]].v + m_vertices[verts_idxs[1]].v)/2.);
verts_idxs.insert(verts_idxs.begin()+1, m_vertices.size() - 1);
m_vertices.emplace_back((m_vertices[verts_idxs[2]].v + m_vertices[verts_idxs[3]].v)/2.);
verts_idxs.insert(verts_idxs.begin()+3, m_vertices.size() - 1);
m_vertices.emplace_back((m_vertices[verts_idxs[4]].v + m_vertices[verts_idxs[0]].v)/2.);
verts_idxs.insert(verts_idxs.begin()+5, m_vertices.size() - 1);
push_triangle(verts_idxs[0], verts_idxs[1], verts_idxs[5]);
push_triangle(verts_idxs[1], verts_idxs[2], verts_idxs[3]);
push_triangle(verts_idxs[3], verts_idxs[4], verts_idxs[5]);
push_triangle(verts_idxs[1], verts_idxs[3], verts_idxs[5]);
}
tr = &m_triangles[facet_idx]; // may have been invalidated
// And save the children. All children should start in the same state as the triangle we just split.
assert(sides_to_split <= 3);
for (int i=0; i<=sides_to_split; ++i) {
tr->children[i] = m_triangles.size()-1-i;
m_triangles[tr->children[i]].set_state(old_state);
}
}
std::map<int, std::vector<bool>> TriangleSelector::serialize() const
{
// Each original triangle of the mesh is assigned a number encoding its state
// or how it is split. Each triangle is encoded by 4 bits (xxyy):
// leaf triangle: xx = FacetSupportType, yy = 0
// non-leaf: xx = special side, yy = number of split sides
// These are bitwise appended and formed into one 64-bit integer.
// The function returns a map from original triangle indices to
// stream of bits encoding state and offsprings.
std::map<int, std::vector<bool>> out;
for (int i=0; i<m_orig_size_indices; ++i) {
const Triangle& tr = m_triangles[i];
if (! tr.is_split() && tr.get_state() == FacetSupportType::NONE)
continue; // no need to save anything, unsplit and unselected is default
std::vector<bool> data; // complete encoding of this mesh triangle
int stored_triangles = 0; // how many have been already encoded
std::function<void(int)> serialize_recursive;
serialize_recursive = [this, &serialize_recursive, &stored_triangles, &data](int facet_idx) {
const Triangle& tr = m_triangles[facet_idx];
// Always save number of split sides. It is zero for unsplit triangles.
int split_sides = tr.number_of_split_sides();
assert(split_sides >= 0 && split_sides <= 3);
//data |= (split_sides << (stored_triangles * 4));
data.push_back(split_sides & 0b01);
data.push_back(split_sides & 0b10);
if (tr.is_split()) {
// If this triangle is split, save which side is split (in case
// of one split) or kept (in case of two splits). The value will
// be ignored for 3-side split.
assert(split_sides > 0);
assert(tr.special_side() >= 0 && tr.special_side() <= 3);
data.push_back(tr.special_side() & 0b01);
data.push_back(tr.special_side() & 0b10);
++stored_triangles;
// Now save all children.
for (int child_idx=0; child_idx<=split_sides; ++child_idx)
serialize_recursive(tr.children[child_idx]);
} else {
// In case this is leaf, we better save information about its state.
assert(int(tr.get_state()) <= 3);
data.push_back(int(tr.get_state()) & 0b01);
data.push_back(int(tr.get_state()) & 0b10);
++stored_triangles;
}
};
serialize_recursive(i);
out[i] = data;
}
return out;
}
void TriangleSelector::deserialize(const std::map<int, std::vector<bool>> data)
{
reset(); // dump any current state
for (const auto& [triangle_id, code] : data) {
assert(triangle_id < int(m_triangles.size()));
int processed_triangles = 0;
struct ProcessingInfo {
int facet_id = 0;
int processed_children = 0;
int total_children = 0;
};
// Vector to store all parents that have offsprings.
std::vector<ProcessingInfo> parents;
while (true) {
// Read next triangle info.
int next_code = 0;
for (int i=3; i>=0; --i) {
next_code = next_code << 1;
next_code |= int(code[4 * processed_triangles + i]);
}
++processed_triangles;
int num_of_split_sides = (next_code & 0b11);
int num_of_children = num_of_split_sides != 0 ? num_of_split_sides + 1 : 0;
bool is_split = num_of_children != 0;
FacetSupportType state = FacetSupportType(next_code >> 2);
int special_side = (next_code >> 2);
// Take care of the first iteration separately, so handling of the others is simpler.
if (parents.empty()) {
if (! is_split) {
// root is not split. just set the state and that's it.
m_triangles[triangle_id].set_state(state);
break;
} else {
// root is split, add it into list of parents and split it.
// then go to the next.
parents.push_back({triangle_id, 0, num_of_children});
m_triangles[triangle_id].set_division(num_of_children-1, special_side);
perform_split(triangle_id, FacetSupportType::NONE);
continue;
}
}
// This is not the first iteration. This triangle is a child of last seen parent.
assert(! parents.empty());
assert(parents.back().processed_children < parents.back().total_children);
if (is_split) {
// split the triangle and save it as parent of the next ones.
const ProcessingInfo& last = parents.back();
int this_idx = m_triangles[last.facet_id].children[last.processed_children];
m_triangles[this_idx].set_division(num_of_children-1, special_side);
perform_split(this_idx, FacetSupportType::NONE);
parents.push_back({this_idx, 0, num_of_children});
} else {
// this triangle belongs to last split one
m_triangles[m_triangles[parents.back().facet_id].children[parents.back().processed_children]].set_state(state);
++parents.back().processed_children;
}
// If all children of the past parent triangle are claimed, move to grandparent.
while (parents.back().processed_children == parents.back().total_children) {
parents.pop_back();
if (parents.empty())
break;
// And increment the grandparent children counter, because
// we have just finished that branch and got back here.
++parents.back().processed_children;
}
// In case we popped back the root, we should be done.
if (parents.empty())
break;
}
}
}
} // namespace Slic3r