PrusaSlicer-NonPlainar/src/libslic3r/ExtrusionSimulator.cpp

1031 lines
32 KiB
C++
Raw Normal View History

// Optimize the extrusion simulator to the bones.
//#pragma GCC optimize ("O3")
//#undef SLIC3R_DEBUG
//#define NDEBUG
#include <cmath>
#include <cassert>
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/box.hpp>
#include <boost/geometry/geometries/point.hpp>
#include <boost/geometry/geometries/point_xy.hpp>
#include <boost/multi_array.hpp>
#include "libslic3r.h"
#include "ExtrusionSimulator.hpp"
#ifndef M_PI
#define M_PI 3.1415926535897932384626433832795
#endif
namespace Slic3r {
// Replacement for a template alias.
// Shorthand for the point_xy.
template<typename T>
struct V2
{
typedef boost::geometry::model::d2::point_xy<T> Type;
};
// Replacement for a template alias.
// Shorthand for the point with a cartesian coordinate system.
template<typename T>
struct V3
{
typedef boost::geometry::model::point<T, 3, boost::geometry::cs::cartesian> Type;
};
// Replacement for a template alias.
// Shorthand for the point with a cartesian coordinate system.
template<typename T>
struct V4
{
typedef boost::geometry::model::point<T, 4, boost::geometry::cs::cartesian> Type;
};
typedef V2<int >::Type V2i;
typedef V2<float >::Type V2f;
typedef V2<double>::Type V2d;
// Used for an RGB color.
typedef V3<unsigned char>::Type V3uc;
// Used for an RGBA color.
typedef V4<unsigned char>::Type V4uc;
typedef boost::geometry::model::box<V2i> B2i;
typedef boost::geometry::model::box<V2f> B2f;
typedef boost::geometry::model::box<V2d> B2d;
typedef boost::multi_array<unsigned char, 2> A2uc;
typedef boost::multi_array<int , 2> A2i;
typedef boost::multi_array<float , 2> A2f;
typedef boost::multi_array<double , 2> A2d;
template<typename T>
inline void operator+=(
boost::geometry::model::d2::point_xy<T> &v1,
const boost::geometry::model::d2::point_xy<T> &v2)
{
boost::geometry::add_point(v1, v2);
}
template<typename T>
inline void operator-=(
boost::geometry::model::d2::point_xy<T> &v1,
const boost::geometry::model::d2::point_xy<T> &v2)
{
boost::geometry::subtract_point(v1, v2);
}
template<typename T>
inline void operator*=(boost::geometry::model::d2::point_xy<T> &v, const T c)
{
boost::geometry::multiply_value(v, c);
}
template<typename T>
inline void operator/=(boost::geometry::model::d2::point_xy<T> &v, const T c)
{
boost::geometry::divide_value(v, c);
}
template<typename T>
inline typename boost::geometry::model::d2::point_xy<T> operator+(
const boost::geometry::model::d2::point_xy<T> &v1,
const boost::geometry::model::d2::point_xy<T> &v2)
{
boost::geometry::model::d2::point_xy<T> out(v1);
out += v2;
return out;
}
template<typename T>
inline boost::geometry::model::d2::point_xy<T> operator-(
const boost::geometry::model::d2::point_xy<T> &v1,
const boost::geometry::model::d2::point_xy<T> &v2)
{
boost::geometry::model::d2::point_xy<T> out(v1);
out -= v2;
return out;
}
template<typename T>
inline boost::geometry::model::d2::point_xy<T> operator*(
const boost::geometry::model::d2::point_xy<T> &v, const T c)
{
boost::geometry::model::d2::point_xy<T> out(v);
out *= c;
return out;
}
template<typename T>
inline typename boost::geometry::model::d2::point_xy<T> operator*(
const T c, const boost::geometry::model::d2::point_xy<T> &v)
{
boost::geometry::model::d2::point_xy<T> out(v);
out *= c;
return out;
}
template<typename T>
inline typename boost::geometry::model::d2::point_xy<T> operator/(
const boost::geometry::model::d2::point_xy<T> &v, const T c)
{
boost::geometry::model::d2::point_xy<T> out(v);
out /= c;
return out;
}
template<typename T>
inline T dot(
const boost::geometry::model::d2::point_xy<T> &v1,
const boost::geometry::model::d2::point_xy<T> &v2)
{
return boost::geometry::dot_product(v1, v2);
}
template<typename T>
inline T dot(const boost::geometry::model::d2::point_xy<T> &v)
{
return boost::geometry::dot_product(v, v);
}
template <typename T>
inline T cross(
const boost::geometry::model::d2::point_xy<T> &v1,
const boost::geometry::model::d2::point_xy<T> &v2)
{
return v1.x() * v2.y() - v2.x() * v1.y();
}
// Euclidian measure
template<typename T>
inline T l2(const boost::geometry::model::d2::point_xy<T> &v)
{
return std::sqrt(dot(v));
}
// Euclidian measure
template<typename T>
inline T mag(const boost::geometry::model::d2::point_xy<T> &v)
{
return l2(v);
}
template<typename T>
inline T dist2_to_line(
const boost::geometry::model::d2::point_xy<T> &p0,
const boost::geometry::model::d2::point_xy<T> &p1,
const boost::geometry::model::d2::point_xy<T> &px)
{
boost::geometry::model::d2::point_xy<T> v = p1 - p0;
boost::geometry::model::d2::point_xy<T> vx = px - p0;
T l = dot(v);
T t = dot(v, vx);
if (l != T(0) && t > T(0.)) {
t /= l;
vx = px - ((t > T(1.)) ? p1 : (p0 + t * v));
}
return dot(vx);
}
// Intersect a circle with a line segment.
// Returns number of intersection points.
template<typename T>
int line_circle_intersection(
const boost::geometry::model::d2::point_xy<T> &p0,
const boost::geometry::model::d2::point_xy<T> &p1,
const boost::geometry::model::d2::point_xy<T> &center,
const T radius,
boost::geometry::model::d2::point_xy<T> intersection[2])
{
typedef typename V2<T>::Type V2T;
V2T v = p1 - p0;
V2T vc = p0 - center;
T a = dot(v);
T b = T(2.) * dot(vc, v);
T c = dot(vc) - radius * radius;
T d = b * b - T(4.) * a * c;
if (d < T(0))
// The circle misses the ray.
return 0;
int n = 0;
if (d == T(0)) {
// The circle touches the ray at a single tangent point.
T t = - b / (T(2.) * a);
if (t >= T(0.) && t <= T(1.))
intersection[n ++] = p0 + t * v;
} else {
// The circle intersects the ray in two points.
d = sqrt(d);
T t = (- b - d) / (T(2.) * a);
if (t >= T(0.) && t <= T(1.))
intersection[n ++] = p0 + t * v;
t = (- b + d) / (T(2.) * a);
if (t >= T(0.) && t <= T(1.))
intersection[n ++] = p0 + t * v;
}
return n;
}
// SutherlandHodgman clipping of a rectangle against an AABB.
// Expects the first 4 points of rect to be filled at the beginning.
// The clipping may produce up to 8 points.
// Returns the number of resulting points.
template<typename T>
int clip_rect_by_AABB(
boost::geometry::model::d2::point_xy<T> rect[8],
const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T> > &aabb)
{
typedef typename V2<T>::Type V2T;
V2T result[8];
int nin = 4;
int nout = 0;
V2T *in = rect;
V2T *out = result;
// Clip left
{
const V2T *S = in + nin - 1;
T left = aabb.min_corner().x();
for (int i = 0; i < nin; ++i) {
const V2T &E = in[i];
if (E.x() == left) {
out[nout++] = E;
}
else if (E.x() > left) {
// E is inside the AABB.
if (S->x() < left) {
// S is outside the AABB. Calculate an intersection point.
T t = (left - S->x()) / (E.x() - S->x());
out[nout++] = V2T(left, S->y() + t * (E.y() - S->y()));
}
out[nout++] = E;
}
else if (S->x() > left) {
// S is inside the AABB, E is outside the AABB.
T t = (left - S->x()) / (E.x() - S->x());
out[nout++] = V2T(left, S->y() + t * (E.y() - S->y()));
}
S = &E;
}
assert(nout <= 8);
}
// Clip bottom
{
std::swap(in, out);
nin = nout;
nout = 0;
const V2T *S = in + nin - 1;
T bottom = aabb.min_corner().y();
for (int i = 0; i < nin; ++i) {
const V2T &E = in[i];
if (E.y() == bottom) {
out[nout++] = E;
}
else if (E.y() > bottom) {
// E is inside the AABB.
if (S->y() < bottom) {
// S is outside the AABB. Calculate an intersection point.
T t = (bottom - S->y()) / (E.y() - S->y());
out[nout++] = V2T(S->x() + t * (E.x() - S->x()), bottom);
}
out[nout++] = E;
}
else if (S->y() > bottom) {
// S is inside the AABB, E is outside the AABB.
T t = (bottom - S->y()) / (E.y() - S->y());
out[nout++] = V2T(S->x() + t * (E.x() - S->x()), bottom);
}
S = &E;
}
assert(nout <= 8);
}
// Clip right
{
std::swap(in, out);
nin = nout;
nout = 0;
const V2T *S = in + nin - 1;
T right = aabb.max_corner().x();
for (int i = 0; i < nin; ++i) {
const V2T &E = in[i];
if (E.x() == right) {
out[nout++] = E;
}
else if (E.x() < right) {
// E is inside the AABB.
if (S->x() > right) {
// S is outside the AABB. Calculate an intersection point.
T t = (right - S->x()) / (E.x() - S->x());
out[nout++] = V2T(right, S->y() + t * (E.y() - S->y()));
}
out[nout++] = E;
}
else if (S->x() < right) {
// S is inside the AABB, E is outside the AABB.
T t = (right - S->x()) / (E.x() - S->x());
out[nout++] = V2T(right, S->y() + t * (E.y() - S->y()));
}
S = &E;
}
assert(nout <= 8);
}
// Clip top
{
std::swap(in, out);
nin = nout;
nout = 0;
const V2T *S = in + nin - 1;
T top = aabb.max_corner().y();
for (int i = 0; i < nin; ++i) {
const V2T &E = in[i];
if (E.y() == top) {
out[nout++] = E;
}
else if (E.y() < top) {
// E is inside the AABB.
if (S->y() > top) {
// S is outside the AABB. Calculate an intersection point.
T t = (top - S->y()) / (E.y() - S->y());
out[nout++] = V2T(S->x() + t * (E.x() - S->x()), top);
}
out[nout++] = E;
}
else if (S->y() < top) {
// S is inside the AABB, E is outside the AABB.
T t = (top - S->y()) / (E.y() - S->y());
out[nout++] = V2T(S->x() + t * (E.x() - S->x()), top);
}
S = &E;
}
assert(nout <= 8);
}
assert(nout <= 8);
return nout;
}
// Calculate area of the circle x AABB intersection.
// The calculation is approximate in a way, that the circular segment
// intersecting the cell is approximated by its chord (a linear segment).
template<typename T>
int clip_circle_by_AABB(
const boost::geometry::model::d2::point_xy<T> &center,
const T radius,
const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T> > &aabb,
boost::geometry::model::d2::point_xy<T> result[8],
bool result_arc[8])
{
typedef typename V2<T>::Type V2T;
V2T rect[4] = {
aabb.min_corner(),
V2T(aabb.max_corner().x(), aabb.min_corner().y()),
aabb.max_corner(),
V2T(aabb.min_corner().x(), aabb.max_corner().y())
};
int bits_corners = 0;
T r2 = sqr(radius);
for (int i = 0; i < 4; ++ i, bits_corners <<= 1)
bits_corners |= dot(rect[i] - center) >= r2;
bits_corners >>= 1;
if (bits_corners == 0) {
// all inside
memcpy(result, rect, sizeof(rect));
memset(result_arc, true, 4);
return 4;
}
if (bits_corners == 0x0f)
// all outside
return 0;
// Some corners are outside, some are inside. Trim the rectangle.
int n = 0;
for (int i = 0; i < 4; ++ i) {
bool inside = (bits_corners & 0x08) == 0;
bits_corners <<= 1;
V2T chordal_points[2];
int n_chordal_points = line_circle_intersection(rect[i], rect[(i + 1)%4], center, radius, chordal_points);
if (n_chordal_points == 2) {
result_arc[n] = true;
result[n ++] = chordal_points[0];
result_arc[n] = true;
result[n ++] = chordal_points[1];
} else {
if (inside) {
result_arc[n] = false;
result[n ++] = rect[i];
}
if (n_chordal_points == 1) {
result_arc[n] = false;
result[n ++] = chordal_points[0];
}
}
}
return n;
}
/*
// Calculate area of the circle x AABB intersection.
// The calculation is approximate in a way, that the circular segment
// intersecting the cell is approximated by its chord (a linear segment).
template<typename T>
T circle_AABB_intersection_area(
const boost::geometry::model::d2::point_xy<T> &center,
const T radius,
const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T> > &aabb)
{
typedef typename V2<T>::Type V2T;
typedef typename boost::geometry::model::box<V2T> B2T;
T radius2 = radius * radius;
bool intersectionLeft = sqr(aabb.min_corner().x() - center.x()) < radius2;
bool intersectionRight = sqr(aabb.max_corner().x() - center.x()) < radius2;
bool intersectionBottom = sqr(aabb.min_corner().y() - center.y()) < radius2;
bool intersectionTop = sqr(aabb.max_corner().y() - center.y()) < radius2;
if (! (intersectionLeft || intersectionRight || intersectionTop || intersectionBottom))
// No intersection between the aabb and the center.
return boost::geometry::point_in_box<V2T, B2T>()::apply(center, aabb) ? 1.f : 0.f;
V2T rect[4] = {
aabb.min_corner(),
V2T(aabb.max_corner().x(), aabb.min_corner().y()),
aabb.max_corner(),
V2T(aabb.min_corner().x(), aabb.max_corner().y())
};
int bits_corners = 0;
T r2 = sqr(radius);
for (int i = 0; i < 4; ++ i, bits_corners <<= 1)
bits_corners |= dot(rect[i] - center) >= r2;
bits_corners >>= 1;
if (bits_corners == 0) {
// all inside
memcpy(result, rect, sizeof(rect));
memset(result_arc, true, 4);
return 4;
}
if (bits_corners == 0x0f)
// all outside
return 0;
// Some corners are outside, some are inside. Trim the rectangle.
int n = 0;
for (int i = 0; i < 4; ++ i) {
bool inside = (bits_corners & 0x08) == 0;
bits_corners <<= 1;
V2T chordal_points[2];
int n_chordal_points = line_circle_intersection(rect[i], rect[(i + 1)%4], center, radius, chordal_points);
if (n_chordal_points == 2) {
result_arc[n] = true;
result[n ++] = chordal_points[0];
result_arc[n] = true;
result[n ++] = chordal_points[1];
} else {
if (inside) {
result_arc[n] = false;
result[n ++] = rect[i];
}
if (n_chordal_points == 1) {
result_arc[n] = false;
result[n ++] = chordal_points[0];
}
}
}
return n;
}
*/
template<typename T>
inline T polyArea(const boost::geometry::model::d2::point_xy<T> *poly, int n)
{
T area = T(0);
for (int i = 1; i + 1 < n; ++i)
area += cross(poly[i] - poly[0], poly[i + 1] - poly[0]);
return T(0.5) * area;
}
template<typename T>
boost::geometry::model::d2::point_xy<T> polyCentroid(const boost::geometry::model::d2::point_xy<T> *poly, int n)
{
boost::geometry::model::d2::point_xy<T> centroid(T(0), T(0));
for (int i = 0; i < n; ++i)
centroid += poly[i];
return (n == 0) ? centroid : (centroid / float(n));
}
void gcode_paint_layer(
const std::vector<V2f> &polyline,
float width,
float thickness,
A2f &acc)
{
int nc = acc.shape()[1];
int nr = acc.shape()[0];
// printf("gcode_paint_layer %d,%d\n", nc, nr);
for (size_t iLine = 1; iLine != polyline.size(); ++iLine) {
const V2f &p1 = polyline[iLine - 1];
const V2f &p2 = polyline[iLine];
// printf("p1, p2: %f,%f %f,%f\n", p1.x(), p1.y(), p2.x(), p2.y());
const V2f dir = p2 - p1;
V2f vperp(- dir.y(), dir.x());
vperp = vperp * 0.5f * width / l2(vperp);
// Rectangle of the extrusion.
V2f rect[4] = { p1 + vperp, p1 - vperp, p2 - vperp, p2 + vperp };
// Bounding box of the extrusion.
B2f bboxLine(rect[0], rect[0]);
boost::geometry::expand(bboxLine, rect[1]);
boost::geometry::expand(bboxLine, rect[2]);
boost::geometry::expand(bboxLine, rect[3]);
B2i bboxLinei(
V2i(clamp(0, nc-1, int(floor(bboxLine.min_corner().x()))),
clamp(0, nr-1, int(floor(bboxLine.min_corner().y())))),
V2i(clamp(0, nc-1, int(ceil (bboxLine.max_corner().x()))),
clamp(0, nr-1, int(ceil (bboxLine.max_corner().y())))));
// printf("bboxLinei %d,%d %d,%d\n", bboxLinei.min_corner().x(), bboxLinei.min_corner().y(), bboxLinei.max_corner().x(), bboxLinei.max_corner().y());
#ifdef _DEBUG
float area = polyArea(rect, 4);
assert(area > 0.f);
#endif /* _DEBUG */
for (int j = bboxLinei.min_corner().y(); j + 1 < bboxLinei.max_corner().y(); ++ j) {
for (int i = bboxLinei.min_corner().x(); i + 1 < bboxLinei.max_corner().x(); ++i) {
V2f rect2[8];
memcpy(rect2, rect, sizeof(rect));
int n = clip_rect_by_AABB(rect2, B2f(V2f(float(i), float(j)), V2f(float(i + 1), float(j + 1))));
float area = polyArea(rect2, n);
assert(area >= 0.f && area <= 1.000001f);
acc[j][i] += area * thickness;
}
}
}
}
void gcode_paint_bitmap(
const std::vector<V2f> &polyline,
float width,
A2uc &bitmap,
float scale)
{
int nc = bitmap.shape()[1];
int nr = bitmap.shape()[0];
float r2 = width * width * 0.25f;
// printf("gcode_paint_layer %d,%d\n", nc, nr);
for (size_t iLine = 1; iLine != polyline.size(); ++iLine) {
const V2f &p1 = polyline[iLine - 1];
const V2f &p2 = polyline[iLine];
// printf("p1, p2: %f,%f %f,%f\n", p1.x(), p1.y(), p2.x(), p2.y());
V2f dir = p2 - p1;
dir = dir * 0.5f * width / l2(dir);
V2f vperp(- dir.y(), dir.x());
// Rectangle of the extrusion.
V2f rect[4] = { (p1 + vperp - dir) * scale, (p1 - vperp - dir) * scale, (p2 - vperp + dir) * scale, (p2 + vperp + dir) * scale };
// Bounding box of the extrusion.
B2f bboxLine(rect[0], rect[0]);
boost::geometry::expand(bboxLine, rect[1]);
boost::geometry::expand(bboxLine, rect[2]);
boost::geometry::expand(bboxLine, rect[3]);
B2i bboxLinei(
V2i(clamp(0, nc-1, int(floor(bboxLine.min_corner().x()))),
clamp(0, nr-1, int(floor(bboxLine.min_corner().y())))),
V2i(clamp(0, nc-1, int(ceil (bboxLine.max_corner().x()))),
clamp(0, nr-1, int(ceil (bboxLine.max_corner().y())))));
// printf("bboxLinei %d,%d %d,%d\n", bboxLinei.min_corner().x(), bboxLinei.min_corner().y(), bboxLinei.max_corner().x(), bboxLinei.max_corner().y());
for (int j = bboxLinei.min_corner().y(); j + 1 < bboxLinei.max_corner().y(); ++ j) {
for (int i = bboxLinei.min_corner().x(); i + 1 < bboxLinei.max_corner().x(); ++i) {
float d2 = dist2_to_line(p1, p2, V2f(float(i) + 0.5f, float(j) + 0.5f) / scale);
if (d2 < r2)
bitmap[j][i] = 1;
}
}
}
}
struct Cell
{
// Cell index in the grid.
V2i idx;
// Total volume of the material stored in this cell.
float volume;
// Area covered inside this cell, <0,1>.
float area;
// Fraction of the area covered by the print head. <0,1>
float fraction_covered;
// Height of the covered part in excess to the expected layer height.
float excess_height;
bool operator<(const Cell &c2) const {
return this->excess_height < c2.excess_height;
}
};
struct ExtrusionPoint {
V2f center;
float radius;
float height;
};
typedef std::vector<ExtrusionPoint> ExtrusionPoints;
void gcode_spread_points(
A2f &acc,
const A2f &mask,
const ExtrusionPoints &points,
ExtrusionSimulationType simulationType)
{
int nc = acc.shape()[1];
int nr = acc.shape()[0];
// Maximum radius of the spreading points, to allocate a large enough cell array.
float rmax = 0.f;
for (ExtrusionPoints::const_iterator it = points.begin(); it != points.end(); ++ it)
rmax = std::max(rmax, it->radius);
size_t n_rows_max = size_t(ceil(rmax * 2.f + 2.f));
size_t n_cells_max = sqr(n_rows_max);
std::vector<std::pair<float, float> > spans;
std::vector<Cell> cells(n_cells_max, Cell());
std::vector<float> areas_sum(n_cells_max, 0.f);
for (ExtrusionPoints::const_iterator it = points.begin(); it != points.end(); ++ it) {
const V2f &center = it->center;
const float radius = it->radius;
2019-06-25 11:06:04 +00:00
//const float radius2 = radius * radius;
const float height_target = it->height;
B2f bbox(center - V2f(radius, radius), center + V2f(radius, radius));
B2i bboxi(
V2i(clamp(0, nc-1, int(floor(bbox.min_corner().x()))),
clamp(0, nr-1, int(floor(bbox.min_corner().y())))),
V2i(clamp(0, nc-1, int(ceil (bbox.max_corner().x()))),
clamp(0, nr-1, int(ceil (bbox.max_corner().y())))));
/*
// Fill in the spans, at which the circle intersects the rows.
int row_first = bboxi.min_corner().y();
int row_last = bboxi.max_corner().y();
for (; row_first <= row_last; ++ row_first) {
float y = float(j) - center.y();
float discr = radius2 - sqr(y);
if (discr > 0) {
// Circle intersects the row j at 2 points.
float d = sqrt(discr);
spans.push_back(std.pair<float, float>(center.x() - d, center.x() + d)));
break;
}
}
for (int j = row_first + 1; j <= row_last; ++ j) {
float y = float(j) - center.y();
float discr = radius2 - sqr(y);
if (discr > 0) {
// Circle intersects the row j at 2 points.
float d = sqrt(discr);
spans.push_back(std.pair<float, float>(center.x() - d, center.x() + d)));
} else {
row_last = j - 1;
break;
}
}
*/
float area_total = 0;
float volume_total = 0;
float volume_excess = 0;
float volume_deficit = 0;
size_t n_cells = 0;
float area_circle_total = 0;
#if 0
// The intermediate lines.
for (int j = row_first; j < row_last; ++ j) {
const std::pair<float, float> &span1 = spans[j];
const std::pair<float, float> &span2 = spans[j+1];
float l1 = span1.first;
float l2 = span2.first;
float r1 = span1.second;
float r2 = span2.second;
if (l2 < l1)
std::swap(l1, l2);
if (r1 > r2)
std::swap(r1, r2);
int il1 = int(floor(l1));
int il2 = int(ceil(l2));
int ir1 = int(floor(r1));
int ir2 = int(floor(r2));
assert(il2 <= ir1);
for (int i = il1; i < il2; ++ i) {
Cell &cell = cells[n_cells ++];
cell.idx.x(i);
cell.idx.y(j);
cell.area = area;
}
for (int i = il2; i < ir1; ++ i) {
Cell &cell = cells[n_cells ++];
cell.idx.x(i);
cell.idx.y(j);
cell.area = 1.f;
}
for (int i = ir1; i < ir2; ++ i) {
Cell &cell = cells[n_cells ++];
cell.idx.x(i);
cell.idx.y(j);
cell.area = area;
}
}
#else
for (int j = bboxi.min_corner().y(); j < bboxi.max_corner().y(); ++ j) {
for (int i = bboxi.min_corner().x(); i < bboxi.max_corner().x(); ++i) {
B2f bb(V2f(float(i), float(j)), V2f(float(i + 1), float(j + 1)));
V2f poly[8];
bool poly_arc[8];
int n = clip_circle_by_AABB(center, radius, bb, poly, poly_arc);
float area = polyArea(poly, n);
assert(area >= 0.f && area <= 1.000001f);
if (area == 0.f)
continue;
Cell &cell = cells[n_cells ++];
cell.idx.x(i);
cell.idx.y(j);
cell.volume = acc[j][i];
cell.area = mask[j][i];
assert(cell.area >= 0.f && cell.area <= 1.000001f);
area_circle_total += area;
if (cell.area < area)
cell.area = area;
cell.fraction_covered = clamp(0.f, 1.f, (cell.area > 0) ? (area / cell.area) : 0);
if (cell.fraction_covered == 0) {
-- n_cells;
continue;
}
float cell_height = cell.volume / cell.area;
cell.excess_height = cell_height - height_target;
if (cell.excess_height > 0.f)
volume_excess += cell.excess_height * cell.area * cell.fraction_covered;
else
volume_deficit -= cell.excess_height * cell.area * cell.fraction_covered;
volume_total += cell.volume * cell.fraction_covered;
area_total += cell.area * cell.fraction_covered;
}
}
#endif
2019-06-25 11:06:04 +00:00
// float area_circle_total2 = float(M_PI) * sqr(radius);
// float area_err = fabs(area_circle_total2 - area_circle_total) / area_circle_total2;
// printf("area_circle_total: %f, %f, %f\n", area_circle_total, area_circle_total2, area_err);
float volume_full = float(M_PI) * sqr(radius) * height_target;
// if (true) {
// printf("volume_total: %f, volume_full: %f, fill factor: %f\n", volume_total, volume_full, 100.f - 100.f * volume_total / volume_full);
// printf("volume_full: %f, volume_excess+deficit: %f, volume_excess: %f, volume_deficit: %f\n", volume_full, volume_excess+volume_deficit, volume_excess, volume_deficit);
if (simulationType == ExtrusionSimulationSpreadFull || volume_total <= volume_full) {
// The volume under the circle is spreaded fully.
float height_avg = volume_total / area_total;
for (size_t i = 0; i < n_cells; ++ i) {
const Cell &cell = cells[i];
acc[cell.idx.y()][cell.idx.x()] = (1.f - cell.fraction_covered) * cell.volume + cell.fraction_covered * cell.area * height_avg;
}
} else if (simulationType == ExtrusionSimulationSpreadExcess) {
// The volume under the circle does not fit.
// 1) Fill the underfilled cells and remove them from the list.
float volume_borrowed_total = 0.;
for (size_t i = 0; i < n_cells;) {
Cell &cell = cells[i];
if (cell.excess_height <= 0) {
// Fill in the part of the cell below the circle.
float volume_borrowed = - cell.excess_height * cell.area * cell.fraction_covered;
assert(volume_borrowed >= 0.f);
acc[cell.idx.y()][cell.idx.x()] = cell.volume + volume_borrowed;
volume_borrowed_total += volume_borrowed;
cell = cells[-- n_cells];
} else
++ i;
}
// 2) Sort the remaining cells by their excess height.
std::sort(cells.begin(), cells.begin() + n_cells);
// 3) Prefix sum the areas per excess height.
// The excess height is discrete with the number of excess cells.
areas_sum[n_cells-1] = cells[n_cells-1].area * cells[n_cells-1].fraction_covered;
for (int i = n_cells - 2; i >= 0; -- i) {
const Cell &cell = cells[i];
areas_sum[i] = areas_sum[i + 1] + cell.area * cell.fraction_covered;
}
// 4) Find the excess height, where the volume_excess is over the volume_borrowed_total.
float volume_current = 0.f;
float excess_height_prev = 0.f;
size_t i_top = n_cells;
for (size_t i = 0; i < n_cells; ++ i) {
const Cell &cell = cells[i];
volume_current += (cell.excess_height - excess_height_prev) * areas_sum[i];
excess_height_prev = cell.excess_height;
if (volume_current > volume_borrowed_total) {
i_top = i;
break;
}
}
// 5) Remove material from the cells with deficit.
// First remove all the excess material from the cells, where the deficit is low.
for (size_t i = 0; i < i_top; ++ i) {
const Cell &cell = cells[i];
float volume_removed = cell.excess_height * cell.area * cell.fraction_covered;
acc[cell.idx.y()][cell.idx.x()] = cell.volume - volume_removed;
volume_borrowed_total -= volume_removed;
}
// Second remove some excess material from the cells, where the deficit is high.
if (i_top < n_cells) {
float height_diff = volume_borrowed_total / areas_sum[i_top];
for (size_t i = i_top; i < n_cells; ++ i) {
const Cell &cell = cells[i];
acc[cell.idx.y()][cell.idx.x()] = cell.volume - height_diff * cell.area * cell.fraction_covered;
}
}
}
}
}
inline std::vector<V3uc> CreatePowerColorGradient24bit()
{
int i;
int iColor = 0;
std::vector<V3uc> out(6 * 255 + 1, V3uc(0, 0, 0));
for (i = 0; i < 256; ++i)
out[iColor++] = V3uc(0, 0, i);
for (i = 1; i < 256; ++i)
out[iColor++] = V3uc(0, i, 255);
for (i = 1; i < 256; ++i)
out[iColor++] = V3uc(0, 255, 256 - i);
for (i = 1; i < 256; ++i)
out[iColor++] = V3uc(i, 255, 0);
for (i = 1; i < 256; ++i)
out[iColor++] = V3uc(255, 256 - i, 0);
for (i = 1; i < 256; ++i)
out[iColor++] = V3uc(255, 0, i);
return out;
}
class ExtrusionSimulatorImpl {
public:
std::vector<unsigned char> image_data;
A2f accumulator;
A2uc bitmap;
unsigned int bitmap_oversampled;
ExtrusionPoints extrusion_points;
// RGB gradient to color map the fullness of an accumulator bucket into the output image.
std::vector<boost::geometry::model::point<unsigned char, 3, boost::geometry::cs::cartesian> > color_gradient;
};
ExtrusionSimulator::ExtrusionSimulator() :
pimpl(new ExtrusionSimulatorImpl)
{
pimpl->color_gradient = CreatePowerColorGradient24bit();
pimpl->bitmap_oversampled = 4;
}
ExtrusionSimulator::~ExtrusionSimulator()
{
delete pimpl;
pimpl = NULL;
}
void ExtrusionSimulator::set_image_size(const Point &image_size)
{
// printf("ExtrusionSimulator::set_image_size()\n");
if (this->image_size.x() == image_size.x() &&
this->image_size.y() == image_size.y())
return;
// printf("Setting image size: %d, %d\n", image_size.x, image_size.y);
this->image_size = image_size;
// Allocate the image data in an RGBA format.
// printf("Allocating image data, size %d\n", image_size.x * image_size.y * 4);
pimpl->image_data.assign(image_size.x() * image_size.y() * 4, 0);
// printf("Allocating image data, allocated\n");
//FIXME fill the image with red vertical lines.
2019-06-25 11:06:04 +00:00
for (size_t r = 0; r < size_t(image_size.y()); ++ r) {
for (size_t c = 0; c < size_t(image_size.x()); c += 2) {
// Color red
pimpl->image_data[r * image_size.x() * 4 + c * 4] = 255;
// Opacity full
pimpl->image_data[r * image_size.x() * 4 + c * 4 + 3] = 255;
}
}
// printf("Allocating image data, set\n");
}
void ExtrusionSimulator::set_viewport(const BoundingBox &viewport)
{
// printf("ExtrusionSimulator::set_viewport(%d, %d, %d, %d)\n", viewport.min.x, viewport.min.y, viewport.max.x, viewport.max.y);
if (this->viewport != viewport) {
this->viewport = viewport;
Point sz = viewport.size();
pimpl->accumulator.resize(boost::extents[sz.y()][sz.x()]);
pimpl->bitmap.resize(boost::extents[sz.y()*pimpl->bitmap_oversampled][sz.x()*pimpl->bitmap_oversampled]);
// printf("Accumulator size: %d, %d\n", sz.y, sz.x);
}
}
void ExtrusionSimulator::set_bounding_box(const BoundingBox &bbox)
{
this->bbox = bbox;
}
const void* ExtrusionSimulator::image_ptr() const
{
return (pimpl->image_data.empty()) ? NULL : (void*)&pimpl->image_data.front();
}
void ExtrusionSimulator::reset_accumulator()
{
// printf("ExtrusionSimulator::reset_accumulator()\n");
Point sz = viewport.size();
// printf("Reset accumulator, Accumulator size: %d, %d\n", sz.y, sz.x);
memset(&pimpl->accumulator[0][0], 0, sizeof(float) * sz.x() * sz.y());
memset(&pimpl->bitmap[0][0], 0, sz.x() * sz.y() * pimpl->bitmap_oversampled * pimpl->bitmap_oversampled);
pimpl->extrusion_points.clear();
// printf("Reset accumulator, done.\n");
}
void ExtrusionSimulator::extrude_to_accumulator(const ExtrusionPath &path, const Point &shift, ExtrusionSimulationType simulationType)
{
// printf("Extruding a path. Nr points: %d, width: %f, height: %f\r\n", path.polyline.points.size(), path.width, path.height);
// Convert the path to V2f points, shift and scale them to the viewport.
std::vector<V2f> polyline;
polyline.reserve(path.polyline.points.size());
float scalex = float(viewport.size().x()) / float(bbox.size().x());
float scaley = float(viewport.size().y()) / float(bbox.size().y());
float w = scale_(path.width) * scalex;
2019-06-25 11:06:04 +00:00
//float h = scale_(path.height) * scalex;
w = scale_(path.mm3_per_mm / path.height) * scalex;
// printf("scalex: %f, scaley: %f\n", scalex, scaley);
// printf("bbox: %d,%d %d,%d\n", bbox.min.x(), bbox.min.y, bbox.max.x(), bbox.max.y);
for (Points::const_iterator it = path.polyline.points.begin(); it != path.polyline.points.end(); ++ it) {
// printf("point %d,%d\n", it->x+shift.x(), it->y+shift.y);
ExtrusionPoint ept;
ept.center = V2f(float((*it)(0)+shift.x()-bbox.min.x()) * scalex, float((*it)(1)+shift.y()-bbox.min.y()) * scaley);
ept.radius = w/2.f;
ept.height = 0.5f;
polyline.push_back(ept.center);
pimpl->extrusion_points.push_back(ept);
}
// Extrude the polyline into an accumulator.
// printf("width scaled: %f, height scaled: %f\n", w, h);
gcode_paint_layer(polyline, w, 0.5f, pimpl->accumulator);
if (simulationType > ExtrusionSimulationDontSpread)
gcode_paint_bitmap(polyline, w, pimpl->bitmap, pimpl->bitmap_oversampled);
// double path.mm3_per_mm; // mm^3 of plastic per mm of linear head motion
// float path.width;
// float path.height;
}
void ExtrusionSimulator::evaluate_accumulator(ExtrusionSimulationType simulationType)
{
// printf("ExtrusionSimulator::evaluate_accumulator()\n");
Point sz = viewport.size();
if (simulationType > ExtrusionSimulationDontSpread) {
// Average the cells of a bitmap into a lower resolution floating point mask.
A2f mask(boost::extents[sz.y()][sz.x()]);
for (int r = 0; r < sz.y(); ++r) {
for (int c = 0; c < sz.x(); ++c) {
float p = 0;
2019-06-25 11:06:04 +00:00
for (unsigned int j = 0; j < pimpl->bitmap_oversampled; ++ j) {
for (unsigned int i = 0; i < pimpl->bitmap_oversampled; ++ i) {
if (pimpl->bitmap[r * pimpl->bitmap_oversampled + j][c * pimpl->bitmap_oversampled + i])
p += 1.f;
}
}
p /= float(pimpl->bitmap_oversampled * pimpl->bitmap_oversampled * 2);
mask[r][c] = p;
}
}
// Spread the excess of the material.
gcode_spread_points(pimpl->accumulator, mask, pimpl->extrusion_points, simulationType);
}
// Color map the accumulator.
for (int r = 0; r < sz.y(); ++r) {
unsigned char *ptr = &pimpl->image_data[(image_size.x() * (viewport.min.y() + r) + viewport.min.x()) * 4];
for (int c = 0; c < sz.x(); ++c) {
#if 1
float p = pimpl->accumulator[r][c];
#else
float p = mask[r][c];
#endif
int idx = int(floor(p * float(pimpl->color_gradient.size()) + 0.5f));
V3uc clr = pimpl->color_gradient[clamp(0, int(pimpl->color_gradient.size()-1), idx)];
*ptr ++ = clr.get<0>();
*ptr ++ = clr.get<1>();
*ptr ++ = clr.get<2>();
*ptr ++ = (idx == 0) ? 0 : 255;
}
}
}
} // namespace Slic3r