PrusaSlicer-NonPlainar/src/slic3r/GUI/Selection.cpp

1689 lines
56 KiB
C++
Raw Normal View History

#include "libslic3r/libslic3r.h"
#include "Selection.hpp"
#include "GLCanvas3D.hpp"
#include "GUI_App.hpp"
#include "GUI_ObjectManipulation.hpp"
#include "GUI_ObjectList.hpp"
#include "Gizmos/GLGizmoBase.hpp"
2019-03-21 10:02:10 +00:00
#include "slic3r/GUI/3DScene.hpp"
#include <GL/glew.h>
#include <boost/algorithm/string/predicate.hpp>
static const float UNIFORM_SCALE_COLOR[3] = { 1.0f, 0.38f, 0.0f };
namespace Slic3r {
namespace GUI {
Selection::VolumeCache::TransformCache::TransformCache()
: position(Vec3d::Zero())
, rotation(Vec3d::Zero())
, scaling_factor(Vec3d::Ones())
, mirror(Vec3d::Ones())
, rotation_matrix(Transform3d::Identity())
, scale_matrix(Transform3d::Identity())
, mirror_matrix(Transform3d::Identity())
, full_matrix(Transform3d::Identity())
{
}
Selection::VolumeCache::TransformCache::TransformCache(const Geometry::Transformation& transform)
: position(transform.get_offset())
, rotation(transform.get_rotation())
, scaling_factor(transform.get_scaling_factor())
, mirror(transform.get_mirror())
, full_matrix(transform.get_matrix())
{
rotation_matrix = Geometry::assemble_transform(Vec3d::Zero(), rotation);
scale_matrix = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), scaling_factor);
mirror_matrix = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), Vec3d::Ones(), mirror);
}
Selection::VolumeCache::VolumeCache(const Geometry::Transformation& volume_transform, const Geometry::Transformation& instance_transform)
: m_volume(volume_transform)
, m_instance(instance_transform)
{
}
Selection::Selection()
: m_volumes(nullptr)
, m_model(nullptr)
, m_enabled(false)
, m_mode(Instance)
, m_type(Empty)
, m_valid(false)
, m_bounding_box_dirty(true)
, m_curved_arrow(16)
, m_scale_factor(1.0f)
{
#if ENABLE_RENDER_SELECTION_CENTER
m_quadric = ::gluNewQuadric();
if (m_quadric != nullptr)
::gluQuadricDrawStyle(m_quadric, GLU_FILL);
#endif // ENABLE_RENDER_SELECTION_CENTER
}
#if ENABLE_RENDER_SELECTION_CENTER
Selection::~Selection()
{
if (m_quadric != nullptr)
::gluDeleteQuadric(m_quadric);
}
#endif // ENABLE_RENDER_SELECTION_CENTER
void Selection::set_volumes(GLVolumePtrs* volumes)
{
m_volumes = volumes;
2019-03-21 10:02:10 +00:00
update_valid();
}
bool Selection::init(bool useVBOs)
{
if (!m_arrow.init(useVBOs))
return false;
m_arrow.set_scale(5.0 * Vec3d::Ones());
if (!m_curved_arrow.init(useVBOs))
return false;
m_curved_arrow.set_scale(5.0 * Vec3d::Ones());
return true;
}
void Selection::set_model(Model* model)
{
m_model = model;
2019-03-21 10:02:10 +00:00
update_valid();
}
void Selection::add(unsigned int volume_idx, bool as_single_selection)
{
if (!m_valid || ((unsigned int)m_volumes->size() <= volume_idx))
return;
const GLVolume* volume = (*m_volumes)[volume_idx];
// wipe tower is already selected
if (is_wipe_tower() && volume->is_wipe_tower)
return;
// resets the current list if needed
bool needs_reset = as_single_selection;
needs_reset |= volume->is_wipe_tower;
needs_reset |= is_wipe_tower() && !volume->is_wipe_tower;
needs_reset |= !is_modifier() && volume->is_modifier;
needs_reset |= is_modifier() && !volume->is_modifier;
if (needs_reset)
clear();
if (volume->is_modifier)
m_mode = Volume;
else if (!contains_volume(volume_idx))
m_mode = Instance;
// else -> keep current mode
switch (m_mode)
{
case Volume:
{
if (volume->volume_idx() >= 0 && (is_empty() || (volume->instance_idx() == get_instance_idx())))
2019-03-21 10:02:10 +00:00
do_add_volume(volume_idx);
break;
}
case Instance:
{
2019-03-21 10:02:10 +00:00
do_add_instance(volume->object_idx(), volume->instance_idx());
break;
}
}
2019-03-21 10:02:10 +00:00
update_type();
m_bounding_box_dirty = true;
}
void Selection::remove(unsigned int volume_idx)
{
if (!m_valid || ((unsigned int)m_volumes->size() <= volume_idx))
return;
GLVolume* volume = (*m_volumes)[volume_idx];
switch (m_mode)
{
case Volume:
{
2019-03-21 10:02:10 +00:00
do_remove_volume(volume_idx);
break;
}
case Instance:
{
2019-03-21 10:02:10 +00:00
do_remove_instance(volume->object_idx(), volume->instance_idx());
break;
}
}
2019-03-21 10:02:10 +00:00
update_type();
m_bounding_box_dirty = true;
}
void Selection::add_object(unsigned int object_idx, bool as_single_selection)
{
if (!m_valid)
return;
// resets the current list if needed
if (as_single_selection)
clear();
m_mode = Instance;
2019-03-21 10:02:10 +00:00
do_add_object(object_idx);
2019-03-21 10:02:10 +00:00
update_type();
m_bounding_box_dirty = true;
}
void Selection::remove_object(unsigned int object_idx)
{
if (!m_valid)
return;
2019-03-21 10:02:10 +00:00
do_remove_object(object_idx);
2019-03-21 10:02:10 +00:00
update_type();
m_bounding_box_dirty = true;
}
void Selection::add_instance(unsigned int object_idx, unsigned int instance_idx, bool as_single_selection)
{
if (!m_valid)
return;
// resets the current list if needed
if (as_single_selection)
clear();
m_mode = Instance;
2019-03-21 10:02:10 +00:00
do_add_instance(object_idx, instance_idx);
2019-03-21 10:02:10 +00:00
update_type();
m_bounding_box_dirty = true;
}
void Selection::remove_instance(unsigned int object_idx, unsigned int instance_idx)
{
if (!m_valid)
return;
2019-03-21 10:02:10 +00:00
do_remove_instance(object_idx, instance_idx);
2019-03-21 10:02:10 +00:00
update_type();
m_bounding_box_dirty = true;
}
void Selection::add_volume(unsigned int object_idx, unsigned int volume_idx, int instance_idx, bool as_single_selection)
{
if (!m_valid)
return;
// resets the current list if needed
if (as_single_selection)
clear();
m_mode = Volume;
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
GLVolume* v = (*m_volumes)[i];
if ((v->object_idx() == object_idx) && (v->volume_idx() == volume_idx))
{
if ((instance_idx != -1) && (v->instance_idx() == instance_idx))
2019-03-21 10:02:10 +00:00
do_add_volume(i);
}
}
2019-03-21 10:02:10 +00:00
update_type();
m_bounding_box_dirty = true;
}
void Selection::remove_volume(unsigned int object_idx, unsigned int volume_idx)
{
if (!m_valid)
return;
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
GLVolume* v = (*m_volumes)[i];
if ((v->object_idx() == object_idx) && (v->volume_idx() == volume_idx))
2019-03-21 10:02:10 +00:00
do_remove_volume(i);
}
2019-03-21 10:02:10 +00:00
update_type();
m_bounding_box_dirty = true;
}
void Selection::add_all()
{
if (!m_valid)
return;
m_mode = Instance;
clear();
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
if (!(*m_volumes)[i]->is_wipe_tower)
2019-03-21 10:02:10 +00:00
do_add_volume(i);
}
2019-03-21 10:02:10 +00:00
update_type();
m_bounding_box_dirty = true;
}
void Selection::clear()
{
if (!m_valid)
return;
for (unsigned int i : m_list)
{
(*m_volumes)[i]->selected = false;
}
m_list.clear();
2019-03-21 10:02:10 +00:00
update_type();
m_bounding_box_dirty = true;
// resets the cache in the sidebar
wxGetApp().obj_manipul()->reset_cache();
}
// Update the selection based on the map from old indices to new indices after m_volumes changed.
// If the current selection is by instance, this call may select newly added volumes, if they belong to already selected instances.
void Selection::volumes_changed(const std::vector<size_t> &map_volume_old_to_new)
{
assert(m_valid);
// 1) Update the selection set.
IndicesList list_new;
std::vector<std::pair<unsigned int, unsigned int>> model_instances;
for (unsigned int idx : m_list) {
if (map_volume_old_to_new[idx] != size_t(-1)) {
unsigned int new_idx = (unsigned int)map_volume_old_to_new[idx];
list_new.insert(new_idx);
if (m_mode == Instance) {
// Save the object_idx / instance_idx pair of selected old volumes,
// so we may add the newly added volumes of the same object_idx / instance_idx pair
// to the selection.
const GLVolume *volume = (*m_volumes)[new_idx];
model_instances.emplace_back(volume->object_idx(), volume->instance_idx());
}
}
}
m_list = std::move(list_new);
if (!model_instances.empty()) {
// Instance selection mode. Add the newly added volumes of the same object_idx / instance_idx pair
// to the selection.
assert(m_mode == Instance);
sort_remove_duplicates(model_instances);
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i) {
const GLVolume* volume = (*m_volumes)[i];
for (const std::pair<int, int> &model_instance : model_instances)
if (volume->object_idx() == model_instance.first && volume->instance_idx() == model_instance.second)
2019-03-21 10:02:10 +00:00
do_add_volume(i);
}
}
2019-03-21 10:02:10 +00:00
update_type();
m_bounding_box_dirty = true;
}
bool Selection::is_single_full_instance() const
{
if (m_type == SingleFullInstance)
return true;
if (m_type == SingleFullObject)
return get_instance_idx() != -1;
if (m_list.empty() || m_volumes->empty())
return false;
int object_idx = m_valid ? get_object_idx() : -1;
if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx))
return false;
int instance_idx = (*m_volumes)[*m_list.begin()]->instance_idx();
std::set<int> volumes_idxs;
for (unsigned int i : m_list)
{
const GLVolume* v = (*m_volumes)[i];
if ((object_idx != v->object_idx()) || (instance_idx != v->instance_idx()))
return false;
int volume_idx = v->volume_idx();
if (volume_idx >= 0)
volumes_idxs.insert(volume_idx);
}
return m_model->objects[object_idx]->volumes.size() == volumes_idxs.size();
}
bool Selection::is_from_single_object() const
{
int idx = get_object_idx();
return (0 <= idx) && (idx < 1000);
}
bool Selection::requires_uniform_scale() const
{
if (is_single_full_instance() || is_single_modifier() || is_single_volume())
return false;
return true;
}
int Selection::get_object_idx() const
{
return (m_cache.content.size() == 1) ? m_cache.content.begin()->first : -1;
}
int Selection::get_instance_idx() const
{
if (m_cache.content.size() == 1)
{
const InstanceIdxsList& idxs = m_cache.content.begin()->second;
if (idxs.size() == 1)
return *idxs.begin();
}
return -1;
}
const Selection::InstanceIdxsList& Selection::get_instance_idxs() const
{
assert(m_cache.content.size() == 1);
return m_cache.content.begin()->second;
}
const GLVolume* Selection::get_volume(unsigned int volume_idx) const
{
return (m_valid && (volume_idx < (unsigned int)m_volumes->size())) ? (*m_volumes)[volume_idx] : nullptr;
}
const BoundingBoxf3& Selection::get_bounding_box() const
{
if (m_bounding_box_dirty)
2019-03-21 10:02:10 +00:00
calc_bounding_box();
return m_bounding_box;
}
void Selection::start_dragging()
{
if (!m_valid)
return;
2019-03-21 10:02:10 +00:00
set_caches();
}
void Selection::translate(const Vec3d& displacement, bool local)
{
if (!m_valid)
return;
for (unsigned int i : m_list)
{
if ((m_mode == Volume) || (*m_volumes)[i]->is_wipe_tower)
{
if (local)
(*m_volumes)[i]->set_volume_offset(m_cache.volumes_data[i].get_volume_position() + displacement);
else
{
Vec3d local_displacement = (m_cache.volumes_data[i].get_instance_rotation_matrix() * m_cache.volumes_data[i].get_instance_scale_matrix() * m_cache.volumes_data[i].get_instance_mirror_matrix()).inverse() * displacement;
(*m_volumes)[i]->set_volume_offset(m_cache.volumes_data[i].get_volume_position() + local_displacement);
}
}
else if (m_mode == Instance)
(*m_volumes)[i]->set_instance_offset(m_cache.volumes_data[i].get_instance_position() + displacement);
}
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
2019-03-21 10:02:10 +00:00
synchronize_unselected_instances(SYNC_ROTATION_NONE);
else if (m_mode == Volume)
2019-03-21 10:02:10 +00:00
synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
m_bounding_box_dirty = true;
}
static Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
{
return
// From the current coordinate system to world.
Eigen::AngleAxisd(rot_xyz_to(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rot_xyz_to(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rot_xyz_to(0), Vec3d::UnitX()) *
// From world to the initial coordinate system.
Eigen::AngleAxisd(-rot_xyz_from(0), Vec3d::UnitX()) * Eigen::AngleAxisd(-rot_xyz_from(1), Vec3d::UnitY()) * Eigen::AngleAxisd(-rot_xyz_from(2), Vec3d::UnitZ());
}
// This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
static double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
{
Eigen::AngleAxisd angle_axis(rotation_xyz_diff(rot_xyz_from, rot_xyz_to));
Vec3d axis = angle_axis.axis();
double angle = angle_axis.angle();
#ifndef NDEBUG
if (std::abs(angle) > 1e-8) {
assert(std::abs(axis.x()) < 1e-8);
assert(std::abs(axis.y()) < 1e-8);
}
#endif /* NDEBUG */
return (axis.z() < 0) ? -angle : angle;
}
// Rotate an object around one of the axes. Only one rotation component is expected to be changing.
void Selection::rotate(const Vec3d& rotation, TransformationType transformation_type)
{
if (!m_valid)
return;
// Only relative rotation values are allowed in the world coordinate system.
assert(!transformation_type.world() || transformation_type.relative());
int rot_axis_max = 0;
if (rotation.isApprox(Vec3d::Zero()))
{
for (unsigned int i : m_list)
{
GLVolume &volume = *(*m_volumes)[i];
if (m_mode == Instance)
{
volume.set_instance_rotation(m_cache.volumes_data[i].get_instance_rotation());
volume.set_instance_offset(m_cache.volumes_data[i].get_instance_position());
}
else if (m_mode == Volume)
{
volume.set_volume_rotation(m_cache.volumes_data[i].get_volume_rotation());
volume.set_volume_offset(m_cache.volumes_data[i].get_volume_position());
}
}
}
else
{
//FIXME this does not work for absolute rotations (transformation_type.absolute() is true)
rotation.cwiseAbs().maxCoeff(&rot_axis_max);
// For generic rotation, we want to rotate the first volume in selection, and then to synchronize the other volumes with it.
std::vector<int> object_instance_first(m_model->objects.size(), -1);
auto rotate_instance = [this, &rotation, &object_instance_first, rot_axis_max, transformation_type](GLVolume &volume, int i) {
int first_volume_idx = object_instance_first[volume.object_idx()];
if (rot_axis_max != 2 && first_volume_idx != -1) {
// Generic rotation, but no rotation around the Z axis.
// Always do a local rotation (do not consider the selection to be a rigid body).
assert(is_approx(rotation.z(), 0.0));
const GLVolume &first_volume = *(*m_volumes)[first_volume_idx];
const Vec3d &rotation = first_volume.get_instance_rotation();
double z_diff = rotation_diff_z(m_cache.volumes_data[first_volume_idx].get_instance_rotation(), m_cache.volumes_data[i].get_instance_rotation());
volume.set_instance_rotation(Vec3d(rotation(0), rotation(1), rotation(2) + z_diff));
}
else {
// extracts rotations from the composed transformation
Vec3d new_rotation = transformation_type.world() ?
Geometry::extract_euler_angles(Geometry::assemble_transform(Vec3d::Zero(), rotation) * m_cache.volumes_data[i].get_instance_rotation_matrix()) :
transformation_type.absolute() ? rotation : rotation + m_cache.volumes_data[i].get_instance_rotation();
if (rot_axis_max == 2 && transformation_type.joint()) {
// Only allow rotation of multiple instances as a single rigid body when rotating around the Z axis.
Vec3d offset = Geometry::assemble_transform(Vec3d::Zero(), Vec3d(0.0, 0.0, new_rotation(2) - m_cache.volumes_data[i].get_instance_rotation()(2))) * (m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center);
volume.set_instance_offset(m_cache.dragging_center + offset);
}
volume.set_instance_rotation(new_rotation);
object_instance_first[volume.object_idx()] = i;
}
};
for (unsigned int i : m_list)
{
GLVolume &volume = *(*m_volumes)[i];
if (is_single_full_instance())
rotate_instance(volume, i);
else if (is_single_volume() || is_single_modifier())
{
if (transformation_type.independent())
volume.set_volume_rotation(volume.get_volume_rotation() + rotation);
else
{
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), rotation);
Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_volume_rotation_matrix());
volume.set_volume_rotation(new_rotation);
}
}
else
{
if (m_mode == Instance)
rotate_instance(volume, i);
else if (m_mode == Volume)
{
// extracts rotations from the composed transformation
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), rotation);
Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_volume_rotation_matrix());
if (transformation_type.joint())
{
Vec3d local_pivot = m_cache.volumes_data[i].get_instance_full_matrix().inverse() * m_cache.dragging_center;
Vec3d offset = m * (m_cache.volumes_data[i].get_volume_position() - local_pivot);
volume.set_volume_offset(local_pivot + offset);
}
volume.set_volume_rotation(new_rotation);
}
}
}
}
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
2019-03-21 10:02:10 +00:00
synchronize_unselected_instances((rot_axis_max == 2) ? SYNC_ROTATION_NONE : SYNC_ROTATION_GENERAL);
else if (m_mode == Volume)
2019-03-21 10:02:10 +00:00
synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
m_bounding_box_dirty = true;
}
void Selection::flattening_rotate(const Vec3d& normal)
{
// We get the normal in untransformed coordinates. We must transform it using the instance matrix, find out
// how to rotate the instance so it faces downwards and do the rotation. All that for all selected instances.
// The function assumes that is_from_single_object() holds.
if (!m_valid)
return;
for (unsigned int i : m_list)
{
Transform3d wst = m_cache.volumes_data[i].get_instance_scale_matrix();
Vec3d scaling_factor = Vec3d(1. / wst(0, 0), 1. / wst(1, 1), 1. / wst(2, 2));
Transform3d wmt = m_cache.volumes_data[i].get_instance_mirror_matrix();
Vec3d mirror(wmt(0, 0), wmt(1, 1), wmt(2, 2));
Vec3d rotation = Geometry::extract_euler_angles(m_cache.volumes_data[i].get_instance_rotation_matrix());
Vec3d transformed_normal = Geometry::assemble_transform(Vec3d::Zero(), rotation, scaling_factor, mirror) * normal;
transformed_normal.normalize();
Vec3d axis = transformed_normal(2) > 0.999f ? Vec3d(1., 0., 0.) : Vec3d(transformed_normal.cross(Vec3d(0., 0., -1.)));
axis.normalize();
Transform3d extra_rotation = Transform3d::Identity();
extra_rotation.rotate(Eigen::AngleAxisd(acos(-transformed_normal(2)), axis));
Vec3d new_rotation = Geometry::extract_euler_angles(extra_rotation * m_cache.volumes_data[i].get_instance_rotation_matrix());
(*m_volumes)[i]->set_instance_rotation(new_rotation);
}
#if !DISABLE_INSTANCES_SYNCH
// we want to synchronize z-rotation as well, otherwise the flattening behaves funny
// when applied on one of several identical instances
if (m_mode == Instance)
2019-03-21 10:02:10 +00:00
synchronize_unselected_instances(SYNC_ROTATION_FULL);
#endif // !DISABLE_INSTANCES_SYNCH
m_bounding_box_dirty = true;
}
void Selection::scale(const Vec3d& scale, bool local)
{
if (!m_valid)
return;
for (unsigned int i : m_list)
{
if (is_single_full_instance())
(*m_volumes)[i]->set_instance_scaling_factor(scale);
else if (is_single_volume() || is_single_modifier())
(*m_volumes)[i]->set_volume_scaling_factor(scale);
else
{
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), scale);
if (m_mode == Instance)
{
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> new_matrix = (m * m_cache.volumes_data[i].get_instance_scale_matrix()).matrix().block(0, 0, 3, 3);
// extracts scaling factors from the composed transformation
Vec3d new_scale(new_matrix.col(0).norm(), new_matrix.col(1).norm(), new_matrix.col(2).norm());
if (!local)
(*m_volumes)[i]->set_instance_offset(m_cache.dragging_center + m * (m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center));
(*m_volumes)[i]->set_instance_scaling_factor(new_scale);
}
else if (m_mode == Volume)
{
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> new_matrix = (m * m_cache.volumes_data[i].get_volume_scale_matrix()).matrix().block(0, 0, 3, 3);
// extracts scaling factors from the composed transformation
Vec3d new_scale(new_matrix.col(0).norm(), new_matrix.col(1).norm(), new_matrix.col(2).norm());
if (!local)
{
Vec3d offset = m * (m_cache.volumes_data[i].get_volume_position() + m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center);
(*m_volumes)[i]->set_volume_offset(m_cache.dragging_center - m_cache.volumes_data[i].get_instance_position() + offset);
}
(*m_volumes)[i]->set_volume_scaling_factor(new_scale);
}
}
}
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
2019-03-21 10:02:10 +00:00
synchronize_unselected_instances(SYNC_ROTATION_NONE);
else if (m_mode == Volume)
2019-03-21 10:02:10 +00:00
synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
2019-03-21 10:02:10 +00:00
ensure_on_bed();
m_bounding_box_dirty = true;
}
void Selection::mirror(Axis axis)
{
if (!m_valid)
return;
bool single_full_instance = is_single_full_instance();
for (unsigned int i : m_list)
{
if (single_full_instance)
(*m_volumes)[i]->set_instance_mirror(axis, -(*m_volumes)[i]->get_instance_mirror(axis));
else if (m_mode == Volume)
(*m_volumes)[i]->set_volume_mirror(axis, -(*m_volumes)[i]->get_volume_mirror(axis));
}
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
2019-03-21 10:02:10 +00:00
synchronize_unselected_instances(SYNC_ROTATION_NONE);
else if (m_mode == Volume)
2019-03-21 10:02:10 +00:00
synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
m_bounding_box_dirty = true;
}
void Selection::translate(unsigned int object_idx, const Vec3d& displacement)
{
if (!m_valid)
return;
for (unsigned int i : m_list)
{
GLVolume* v = (*m_volumes)[i];
if (v->object_idx() == object_idx)
v->set_instance_offset(v->get_instance_offset() + displacement);
}
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list)
{
if (done.size() == m_volumes->size())
break;
int object_idx = (*m_volumes)[i]->object_idx();
if (object_idx >= 1000)
continue;
// Process unselected volumes of the object.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j)
{
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume* v = (*m_volumes)[j];
if (v->object_idx() != object_idx)
continue;
v->set_instance_offset(v->get_instance_offset() + displacement);
done.insert(j);
}
}
m_bounding_box_dirty = true;
}
void Selection::translate(unsigned int object_idx, unsigned int instance_idx, const Vec3d& displacement)
{
if (!m_valid)
return;
for (unsigned int i : m_list)
{
GLVolume* v = (*m_volumes)[i];
if ((v->object_idx() == object_idx) && (v->instance_idx() == instance_idx))
v->set_instance_offset(v->get_instance_offset() + displacement);
}
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list)
{
if (done.size() == m_volumes->size())
break;
int object_idx = (*m_volumes)[i]->object_idx();
if (object_idx >= 1000)
continue;
// Process unselected volumes of the object.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j)
{
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume* v = (*m_volumes)[j];
if ((v->object_idx() != object_idx) || (v->instance_idx() != instance_idx))
continue;
v->set_instance_offset(v->get_instance_offset() + displacement);
done.insert(j);
}
}
m_bounding_box_dirty = true;
}
void Selection::erase()
{
if (!m_valid)
return;
if (is_single_full_object())
wxGetApp().obj_list()->delete_from_model_and_list(ItemType::itObject, get_object_idx(), 0);
else if (is_multiple_full_object())
{
std::vector<ItemForDelete> items;
items.reserve(m_cache.content.size());
for (ObjectIdxsToInstanceIdxsMap::iterator it = m_cache.content.begin(); it != m_cache.content.end(); ++it)
{
items.emplace_back(ItemType::itObject, it->first, 0);
}
wxGetApp().obj_list()->delete_from_model_and_list(items);
}
else if (is_multiple_full_instance())
{
std::set<std::pair<int, int>> instances_idxs;
for (ObjectIdxsToInstanceIdxsMap::iterator obj_it = m_cache.content.begin(); obj_it != m_cache.content.end(); ++obj_it)
{
for (InstanceIdxsList::reverse_iterator inst_it = obj_it->second.rbegin(); inst_it != obj_it->second.rend(); ++inst_it)
{
instances_idxs.insert(std::make_pair(obj_it->first, *inst_it));
}
}
std::vector<ItemForDelete> items;
items.reserve(instances_idxs.size());
for (const std::pair<int, int>& i : instances_idxs)
{
items.emplace_back(ItemType::itInstance, i.first, i.second);
}
wxGetApp().obj_list()->delete_from_model_and_list(items);
}
else if (is_single_full_instance())
wxGetApp().obj_list()->delete_from_model_and_list(ItemType::itInstance, get_object_idx(), get_instance_idx());
else if (is_mixed())
{
std::set<ItemForDelete> items_set;
std::map<int, int> volumes_in_obj;
for (auto i : m_list) {
const auto gl_vol = (*m_volumes)[i];
const auto glv_obj_idx = gl_vol->object_idx();
const auto model_object = m_model->objects[glv_obj_idx];
if (model_object->instances.size() == 1) {
if (model_object->volumes.size() == 1)
items_set.insert(ItemForDelete(ItemType::itObject, glv_obj_idx, -1));
else {
items_set.insert(ItemForDelete(ItemType::itVolume, glv_obj_idx, gl_vol->volume_idx()));
int idx = (volumes_in_obj.find(glv_obj_idx) == volumes_in_obj.end()) ? 0 : volumes_in_obj.at(glv_obj_idx);
volumes_in_obj[glv_obj_idx] = ++idx;
}
continue;
}
const auto glv_ins_idx = gl_vol->instance_idx();
for (auto obj_ins : m_cache.content) {
if (obj_ins.first == glv_obj_idx) {
if (obj_ins.second.find(glv_ins_idx) != obj_ins.second.end()) {
if (obj_ins.second.size() == model_object->instances.size())
items_set.insert(ItemForDelete(ItemType::itVolume, glv_obj_idx, gl_vol->volume_idx()));
else
items_set.insert(ItemForDelete(ItemType::itInstance, glv_obj_idx, glv_ins_idx));
break;
}
}
}
}
std::vector<ItemForDelete> items;
items.reserve(items_set.size());
for (const ItemForDelete& i : items_set) {
if (i.type == ItemType::itVolume) {
const int vol_in_obj_cnt = volumes_in_obj.find(i.obj_idx) == volumes_in_obj.end() ? 0 : volumes_in_obj.at(i.obj_idx);
if (vol_in_obj_cnt == m_model->objects[i.obj_idx]->volumes.size()) {
if (i.sub_obj_idx == vol_in_obj_cnt - 1)
items.emplace_back(ItemType::itObject, i.obj_idx, 0);
continue;
}
}
items.emplace_back(i.type, i.obj_idx, i.sub_obj_idx);
}
wxGetApp().obj_list()->delete_from_model_and_list(items);
}
else
{
std::set<std::pair<int, int>> volumes_idxs;
for (unsigned int i : m_list)
{
const GLVolume* v = (*m_volumes)[i];
// Only remove volumes associated with ModelVolumes from the object list.
// Temporary meshes (SLA supports or pads) are not managed by the object list.
if (v->volume_idx() >= 0)
volumes_idxs.insert(std::make_pair(v->object_idx(), v->volume_idx()));
}
std::vector<ItemForDelete> items;
items.reserve(volumes_idxs.size());
for (const std::pair<int, int>& v : volumes_idxs)
{
items.emplace_back(ItemType::itVolume, v.first, v.second);
}
wxGetApp().obj_list()->delete_from_model_and_list(items);
}
}
void Selection::render(float scale_factor) const
{
if (!m_valid || is_empty())
return;
m_scale_factor = scale_factor;
// render cumulative bounding box of selected volumes
2019-03-21 10:02:10 +00:00
render_selected_volumes();
render_synchronized_volumes();
}
#if ENABLE_RENDER_SELECTION_CENTER
void Selection::render_center() const
{
if (!m_valid || is_empty() || (m_quadric == nullptr))
return;
const Vec3d& center = get_bounding_box().center();
2019-03-21 10:02:10 +00:00
glsafe(::glDisable(GL_DEPTH_TEST)));
2019-03-21 10:02:10 +00:00
glsafe(::glEnable(GL_LIGHTING));
2019-03-21 10:02:10 +00:00
glsafe(::glColor3f(1.0f, 1.0f, 1.0f));
glsafe(::glPushMatrix());
glsafe(::glTranslated(center(0), center(1), center(2)));
glsafe(::gluSphere(m_quadric, 0.75, 32, 32));
glsafe(::glPopMatrix());
2019-03-21 10:02:10 +00:00
glsafe(::glDisable(GL_LIGHTING));
}
#endif // ENABLE_RENDER_SELECTION_CENTER
void Selection::render_sidebar_hints(const std::string& sidebar_field) const
{
if (sidebar_field.empty())
return;
2019-03-21 10:02:10 +00:00
glsafe(::glClear(GL_DEPTH_BUFFER_BIT));
glsafe(::glEnable(GL_DEPTH_TEST));
2019-03-21 10:02:10 +00:00
glsafe(::glEnable(GL_LIGHTING));
2019-03-21 10:02:10 +00:00
glsafe(::glPushMatrix());
const Vec3d& center = get_bounding_box().center();
if (is_single_full_instance())
{
2019-03-21 10:02:10 +00:00
glsafe(::glTranslated(center(0), center(1), center(2)));
if (!boost::starts_with(sidebar_field, "position"))
{
Transform3d orient_matrix = Transform3d::Identity();
if (boost::starts_with(sidebar_field, "scale"))
orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
else if (boost::starts_with(sidebar_field, "rotation"))
{
if (boost::ends_with(sidebar_field, "x"))
orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
else if (boost::ends_with(sidebar_field, "y"))
{
const Vec3d& rotation = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_rotation();
if (rotation(0) == 0.0)
orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
else
orient_matrix.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()));
}
}
2019-03-21 10:02:10 +00:00
glsafe(::glMultMatrixd(orient_matrix.data()));
}
}
else if (is_single_volume() || is_single_modifier())
{
2019-03-21 10:02:10 +00:00
glsafe(::glTranslated(center(0), center(1), center(2)));
Transform3d orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
if (!boost::starts_with(sidebar_field, "position"))
orient_matrix = orient_matrix * (*m_volumes)[*m_list.begin()]->get_volume_transformation().get_matrix(true, false, true, true);
2019-03-21 10:02:10 +00:00
glsafe(::glMultMatrixd(orient_matrix.data()));
}
else
{
2019-03-21 10:02:10 +00:00
glsafe(::glTranslated(center(0), center(1), center(2)));
if (requires_local_axes())
{
Transform3d orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
2019-03-21 10:02:10 +00:00
glsafe(::glMultMatrixd(orient_matrix.data()));
}
}
if (boost::starts_with(sidebar_field, "position"))
2019-03-21 10:02:10 +00:00
render_sidebar_position_hints(sidebar_field);
else if (boost::starts_with(sidebar_field, "rotation"))
2019-03-21 10:02:10 +00:00
render_sidebar_rotation_hints(sidebar_field);
else if (boost::starts_with(sidebar_field, "scale"))
2019-03-21 10:02:10 +00:00
render_sidebar_scale_hints(sidebar_field);
else if (boost::starts_with(sidebar_field, "size"))
2019-03-21 10:02:10 +00:00
render_sidebar_size_hints(sidebar_field);
2019-03-21 10:02:10 +00:00
glsafe(::glPopMatrix());
2019-03-21 10:02:10 +00:00
glsafe(::glDisable(GL_LIGHTING));
}
bool Selection::requires_local_axes() const
{
return (m_mode == Volume) && is_from_single_instance();
}
2019-03-21 10:02:10 +00:00
void Selection::update_valid()
{
m_valid = (m_volumes != nullptr) && (m_model != nullptr);
}
2019-03-21 10:02:10 +00:00
void Selection::update_type()
{
m_cache.content.clear();
m_type = Mixed;
for (unsigned int i : m_list)
{
const GLVolume* volume = (*m_volumes)[i];
int obj_idx = volume->object_idx();
int inst_idx = volume->instance_idx();
ObjectIdxsToInstanceIdxsMap::iterator obj_it = m_cache.content.find(obj_idx);
if (obj_it == m_cache.content.end())
obj_it = m_cache.content.insert(ObjectIdxsToInstanceIdxsMap::value_type(obj_idx, InstanceIdxsList())).first;
obj_it->second.insert(inst_idx);
}
bool requires_disable = false;
if (!m_valid)
m_type = Invalid;
else
{
if (m_list.empty())
m_type = Empty;
else if (m_list.size() == 1)
{
const GLVolume* first = (*m_volumes)[*m_list.begin()];
if (first->is_wipe_tower)
m_type = WipeTower;
else if (first->is_modifier)
{
m_type = SingleModifier;
requires_disable = true;
}
else
{
const ModelObject* model_object = m_model->objects[first->object_idx()];
unsigned int volumes_count = (unsigned int)model_object->volumes.size();
unsigned int instances_count = (unsigned int)model_object->instances.size();
if (volumes_count * instances_count == 1)
{
m_type = SingleFullObject;
// ensures the correct mode is selected
m_mode = Instance;
}
else if (volumes_count == 1) // instances_count > 1
{
m_type = SingleFullInstance;
// ensures the correct mode is selected
m_mode = Instance;
}
else
{
m_type = SingleVolume;
requires_disable = true;
}
}
}
else
{
if (m_cache.content.size() == 1) // single object
{
const ModelObject* model_object = m_model->objects[m_cache.content.begin()->first];
unsigned int model_volumes_count = (unsigned int)model_object->volumes.size();
unsigned int sla_volumes_count = 0;
for (unsigned int i : m_list)
{
if ((*m_volumes)[i]->volume_idx() < 0)
++sla_volumes_count;
}
unsigned int volumes_count = model_volumes_count + sla_volumes_count;
unsigned int instances_count = (unsigned int)model_object->instances.size();
unsigned int selected_instances_count = (unsigned int)m_cache.content.begin()->second.size();
if (volumes_count * instances_count == (unsigned int)m_list.size())
{
m_type = SingleFullObject;
// ensures the correct mode is selected
m_mode = Instance;
}
else if (selected_instances_count == 1)
{
if (volumes_count == (unsigned int)m_list.size())
{
m_type = SingleFullInstance;
// ensures the correct mode is selected
m_mode = Instance;
}
else
{
unsigned int modifiers_count = 0;
for (unsigned int i : m_list)
{
if ((*m_volumes)[i]->is_modifier)
++modifiers_count;
}
if (modifiers_count == 0)
{
m_type = MultipleVolume;
requires_disable = true;
}
else if (modifiers_count == (unsigned int)m_list.size())
{
m_type = MultipleModifier;
requires_disable = true;
}
}
}
else if ((selected_instances_count > 1) && (selected_instances_count * volumes_count == (unsigned int)m_list.size()))
{
m_type = MultipleFullInstance;
// ensures the correct mode is selected
m_mode = Instance;
}
}
else
{
int sels_cntr = 0;
for (ObjectIdxsToInstanceIdxsMap::iterator it = m_cache.content.begin(); it != m_cache.content.end(); ++it)
{
const ModelObject* model_object = m_model->objects[it->first];
unsigned int volumes_count = (unsigned int)model_object->volumes.size();
unsigned int instances_count = (unsigned int)model_object->instances.size();
sels_cntr += volumes_count * instances_count;
}
if (sels_cntr == (unsigned int)m_list.size())
{
m_type = MultipleFullObject;
// ensures the correct mode is selected
m_mode = Instance;
}
}
}
}
int object_idx = get_object_idx();
int instance_idx = get_instance_idx();
for (GLVolume* v : *m_volumes)
{
v->disabled = requires_disable ? (v->object_idx() != object_idx) || (v->instance_idx() != instance_idx) : false;
}
#if ENABLE_SELECTION_DEBUG_OUTPUT
std::cout << "Selection: ";
std::cout << "mode: ";
switch (m_mode)
{
case Volume:
{
std::cout << "Volume";
break;
}
case Instance:
{
std::cout << "Instance";
break;
}
}
std::cout << " - type: ";
switch (m_type)
{
case Invalid:
{
std::cout << "Invalid" << std::endl;
break;
}
case Empty:
{
std::cout << "Empty" << std::endl;
break;
}
case WipeTower:
{
std::cout << "WipeTower" << std::endl;
break;
}
case SingleModifier:
{
std::cout << "SingleModifier" << std::endl;
break;
}
case MultipleModifier:
{
std::cout << "MultipleModifier" << std::endl;
break;
}
case SingleVolume:
{
std::cout << "SingleVolume" << std::endl;
break;
}
case MultipleVolume:
{
std::cout << "MultipleVolume" << std::endl;
break;
}
case SingleFullObject:
{
std::cout << "SingleFullObject" << std::endl;
break;
}
case MultipleFullObject:
{
std::cout << "MultipleFullObject" << std::endl;
break;
}
case SingleFullInstance:
{
std::cout << "SingleFullInstance" << std::endl;
break;
}
case MultipleFullInstance:
{
std::cout << "MultipleFullInstance" << std::endl;
break;
}
case Mixed:
{
std::cout << "Mixed" << std::endl;
break;
}
}
#endif // ENABLE_SELECTION_DEBUG_OUTPUT
}
2019-03-21 10:02:10 +00:00
void Selection::set_caches()
{
m_cache.volumes_data.clear();
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
const GLVolume* v = (*m_volumes)[i];
m_cache.volumes_data.emplace(i, VolumeCache(v->get_volume_transformation(), v->get_instance_transformation()));
}
m_cache.dragging_center = get_bounding_box().center();
}
2019-03-21 10:02:10 +00:00
void Selection::do_add_volume(unsigned int volume_idx)
{
m_list.insert(volume_idx);
(*m_volumes)[volume_idx]->selected = true;
}
2019-03-21 10:02:10 +00:00
void Selection::do_add_instance(unsigned int object_idx, unsigned int instance_idx)
{
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
GLVolume* v = (*m_volumes)[i];
if ((v->object_idx() == object_idx) && (v->instance_idx() == instance_idx))
2019-03-21 10:02:10 +00:00
do_add_volume(i);
}
}
2019-03-21 10:02:10 +00:00
void Selection::do_add_object(unsigned int object_idx)
{
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
GLVolume* v = (*m_volumes)[i];
if (v->object_idx() == object_idx)
2019-03-21 10:02:10 +00:00
do_add_volume(i);
}
}
2019-03-21 10:02:10 +00:00
void Selection::do_remove_volume(unsigned int volume_idx)
{
IndicesList::iterator v_it = m_list.find(volume_idx);
if (v_it == m_list.end())
return;
m_list.erase(v_it);
(*m_volumes)[volume_idx]->selected = false;
}
2019-03-21 10:02:10 +00:00
void Selection::do_remove_instance(unsigned int object_idx, unsigned int instance_idx)
{
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
GLVolume* v = (*m_volumes)[i];
if ((v->object_idx() == object_idx) && (v->instance_idx() == instance_idx))
2019-03-21 10:02:10 +00:00
do_remove_volume(i);
}
}
2019-03-21 10:02:10 +00:00
void Selection::do_remove_object(unsigned int object_idx)
{
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
GLVolume* v = (*m_volumes)[i];
if (v->object_idx() == object_idx)
2019-03-21 10:02:10 +00:00
do_remove_volume(i);
}
}
2019-03-21 10:02:10 +00:00
void Selection::calc_bounding_box() const
{
m_bounding_box = BoundingBoxf3();
if (m_valid)
{
for (unsigned int i : m_list)
{
m_bounding_box.merge((*m_volumes)[i]->transformed_convex_hull_bounding_box());
}
}
m_bounding_box_dirty = false;
}
2019-03-21 10:02:10 +00:00
void Selection::render_selected_volumes() const
{
float color[3] = { 1.0f, 1.0f, 1.0f };
2019-03-21 10:02:10 +00:00
render_bounding_box(get_bounding_box(), color);
}
2019-03-21 10:02:10 +00:00
void Selection::render_synchronized_volumes() const
{
if (m_mode == Instance)
return;
float color[3] = { 1.0f, 1.0f, 0.0f };
for (unsigned int i : m_list)
{
const GLVolume* volume = (*m_volumes)[i];
int object_idx = volume->object_idx();
int instance_idx = volume->instance_idx();
int volume_idx = volume->volume_idx();
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j)
{
if (i == j)
continue;
const GLVolume* v = (*m_volumes)[j];
if ((v->object_idx() != object_idx) || (v->volume_idx() != volume_idx))
continue;
2019-03-21 10:02:10 +00:00
render_bounding_box(v->transformed_convex_hull_bounding_box(), color);
}
}
}
2019-03-21 10:02:10 +00:00
void Selection::render_bounding_box(const BoundingBoxf3& box, float* color) const
{
if (color == nullptr)
return;
Vec3f b_min = box.min.cast<float>();
Vec3f b_max = box.max.cast<float>();
Vec3f size = 0.2f * box.size().cast<float>();
2019-03-21 10:02:10 +00:00
glsafe(::glEnable(GL_DEPTH_TEST));
2019-03-21 10:02:10 +00:00
glsafe(::glColor3fv(color));
glsafe(::glLineWidth(2.0f * m_scale_factor));
::glBegin(GL_LINES);
::glVertex3f(b_min(0), b_min(1), b_min(2)); ::glVertex3f(b_min(0) + size(0), b_min(1), b_min(2));
::glVertex3f(b_min(0), b_min(1), b_min(2)); ::glVertex3f(b_min(0), b_min(1) + size(1), b_min(2));
::glVertex3f(b_min(0), b_min(1), b_min(2)); ::glVertex3f(b_min(0), b_min(1), b_min(2) + size(2));
::glVertex3f(b_max(0), b_min(1), b_min(2)); ::glVertex3f(b_max(0) - size(0), b_min(1), b_min(2));
::glVertex3f(b_max(0), b_min(1), b_min(2)); ::glVertex3f(b_max(0), b_min(1) + size(1), b_min(2));
::glVertex3f(b_max(0), b_min(1), b_min(2)); ::glVertex3f(b_max(0), b_min(1), b_min(2) + size(2));
::glVertex3f(b_max(0), b_max(1), b_min(2)); ::glVertex3f(b_max(0) - size(0), b_max(1), b_min(2));
::glVertex3f(b_max(0), b_max(1), b_min(2)); ::glVertex3f(b_max(0), b_max(1) - size(1), b_min(2));
::glVertex3f(b_max(0), b_max(1), b_min(2)); ::glVertex3f(b_max(0), b_max(1), b_min(2) + size(2));
::glVertex3f(b_min(0), b_max(1), b_min(2)); ::glVertex3f(b_min(0) + size(0), b_max(1), b_min(2));
::glVertex3f(b_min(0), b_max(1), b_min(2)); ::glVertex3f(b_min(0), b_max(1) - size(1), b_min(2));
::glVertex3f(b_min(0), b_max(1), b_min(2)); ::glVertex3f(b_min(0), b_max(1), b_min(2) + size(2));
::glVertex3f(b_min(0), b_min(1), b_max(2)); ::glVertex3f(b_min(0) + size(0), b_min(1), b_max(2));
::glVertex3f(b_min(0), b_min(1), b_max(2)); ::glVertex3f(b_min(0), b_min(1) + size(1), b_max(2));
::glVertex3f(b_min(0), b_min(1), b_max(2)); ::glVertex3f(b_min(0), b_min(1), b_max(2) - size(2));
::glVertex3f(b_max(0), b_min(1), b_max(2)); ::glVertex3f(b_max(0) - size(0), b_min(1), b_max(2));
::glVertex3f(b_max(0), b_min(1), b_max(2)); ::glVertex3f(b_max(0), b_min(1) + size(1), b_max(2));
::glVertex3f(b_max(0), b_min(1), b_max(2)); ::glVertex3f(b_max(0), b_min(1), b_max(2) - size(2));
::glVertex3f(b_max(0), b_max(1), b_max(2)); ::glVertex3f(b_max(0) - size(0), b_max(1), b_max(2));
::glVertex3f(b_max(0), b_max(1), b_max(2)); ::glVertex3f(b_max(0), b_max(1) - size(1), b_max(2));
::glVertex3f(b_max(0), b_max(1), b_max(2)); ::glVertex3f(b_max(0), b_max(1), b_max(2) - size(2));
::glVertex3f(b_min(0), b_max(1), b_max(2)); ::glVertex3f(b_min(0) + size(0), b_max(1), b_max(2));
::glVertex3f(b_min(0), b_max(1), b_max(2)); ::glVertex3f(b_min(0), b_max(1) - size(1), b_max(2));
::glVertex3f(b_min(0), b_max(1), b_max(2)); ::glVertex3f(b_min(0), b_max(1), b_max(2) - size(2));
2019-03-21 10:02:10 +00:00
glsafe(::glEnd());
}
2019-03-21 10:02:10 +00:00
void Selection::render_sidebar_position_hints(const std::string& sidebar_field) const
{
if (boost::ends_with(sidebar_field, "x"))
{
2019-03-21 10:02:10 +00:00
glsafe(::glRotated(-90.0, 0.0, 0.0, 1.0));
render_sidebar_position_hint(X);
}
else if (boost::ends_with(sidebar_field, "y"))
2019-03-21 10:02:10 +00:00
render_sidebar_position_hint(Y);
else if (boost::ends_with(sidebar_field, "z"))
{
2019-03-21 10:02:10 +00:00
glsafe(::glRotated(90.0, 1.0, 0.0, 0.0));
render_sidebar_position_hint(Z);
}
}
2019-03-21 10:02:10 +00:00
void Selection::render_sidebar_rotation_hints(const std::string& sidebar_field) const
{
if (boost::ends_with(sidebar_field, "x"))
{
2019-03-21 10:02:10 +00:00
glsafe(::glRotated(90.0, 0.0, 1.0, 0.0));
render_sidebar_rotation_hint(X);
}
else if (boost::ends_with(sidebar_field, "y"))
{
2019-03-21 10:02:10 +00:00
glsafe(::glRotated(-90.0, 1.0, 0.0, 0.0));
render_sidebar_rotation_hint(Y);
}
else if (boost::ends_with(sidebar_field, "z"))
2019-03-21 10:02:10 +00:00
render_sidebar_rotation_hint(Z);
}
2019-03-21 10:02:10 +00:00
void Selection::render_sidebar_scale_hints(const std::string& sidebar_field) const
{
bool uniform_scale = requires_uniform_scale() || wxGetApp().obj_manipul()->get_uniform_scaling();
if (boost::ends_with(sidebar_field, "x") || uniform_scale)
{
2019-03-21 10:02:10 +00:00
glsafe(::glPushMatrix());
glsafe(::glRotated(-90.0, 0.0, 0.0, 1.0));
render_sidebar_scale_hint(X);
glsafe(::glPopMatrix());
}
if (boost::ends_with(sidebar_field, "y") || uniform_scale)
{
2019-03-21 10:02:10 +00:00
glsafe(::glPushMatrix());
render_sidebar_scale_hint(Y);
glsafe(::glPopMatrix());
}
if (boost::ends_with(sidebar_field, "z") || uniform_scale)
{
2019-03-21 10:02:10 +00:00
glsafe(::glPushMatrix());
glsafe(::glRotated(90.0, 1.0, 0.0, 0.0));
render_sidebar_scale_hint(Z);
glsafe(::glPopMatrix());
}
}
2019-03-21 10:02:10 +00:00
void Selection::render_sidebar_size_hints(const std::string& sidebar_field) const
{
2019-03-21 10:02:10 +00:00
render_sidebar_scale_hints(sidebar_field);
}
2019-03-21 10:02:10 +00:00
void Selection::render_sidebar_position_hint(Axis axis) const
{
m_arrow.set_color(AXES_COLOR[axis], 3);
m_arrow.render();
}
2019-03-21 10:02:10 +00:00
void Selection::render_sidebar_rotation_hint(Axis axis) const
{
m_curved_arrow.set_color(AXES_COLOR[axis], 3);
m_curved_arrow.render();
2019-03-21 10:02:10 +00:00
glsafe(::glRotated(180.0, 0.0, 0.0, 1.0));
m_curved_arrow.render();
}
2019-03-21 10:02:10 +00:00
void Selection::render_sidebar_scale_hint(Axis axis) const
{
m_arrow.set_color(((requires_uniform_scale() || wxGetApp().obj_manipul()->get_uniform_scaling()) ? UNIFORM_SCALE_COLOR : AXES_COLOR[axis]), 3);
2019-03-21 10:02:10 +00:00
glsafe(::glTranslated(0.0, 5.0, 0.0));
m_arrow.render();
2019-03-21 10:02:10 +00:00
glsafe(::glTranslated(0.0, -10.0, 0.0));
glsafe(::glRotated(180.0, 0.0, 0.0, 1.0));
m_arrow.render();
}
2019-03-21 10:02:10 +00:00
void Selection::render_sidebar_size_hint(Axis axis, double length) const
{
}
#ifndef NDEBUG
static bool is_rotation_xy_synchronized(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
{
Eigen::AngleAxisd angle_axis(rotation_xyz_diff(rot_xyz_from, rot_xyz_to));
Vec3d axis = angle_axis.axis();
double angle = angle_axis.angle();
if (std::abs(angle) < 1e-8)
return true;
assert(std::abs(axis.x()) < 1e-8);
assert(std::abs(axis.y()) < 1e-8);
assert(std::abs(std::abs(axis.z()) - 1.) < 1e-8);
return std::abs(axis.x()) < 1e-8 && std::abs(axis.y()) < 1e-8 && std::abs(std::abs(axis.z()) - 1.) < 1e-8;
}
static void verify_instances_rotation_synchronized(const Model &model, const GLVolumePtrs &volumes)
{
for (size_t idx_object = 0; idx_object < model.objects.size(); ++idx_object) {
int idx_volume_first = -1;
for (int i = 0; i < (int)volumes.size(); ++i) {
if (volumes[i]->object_idx() == idx_object) {
idx_volume_first = i;
break;
}
}
assert(idx_volume_first != -1); // object without instances?
if (idx_volume_first == -1)
continue;
const Vec3d &rotation0 = volumes[idx_volume_first]->get_instance_rotation();
for (int i = idx_volume_first + 1; i < (int)volumes.size(); ++i)
if (volumes[i]->object_idx() == idx_object) {
const Vec3d &rotation = volumes[i]->get_instance_rotation();
assert(is_rotation_xy_synchronized(rotation, rotation0));
}
}
}
#endif /* NDEBUG */
2019-03-21 10:02:10 +00:00
void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_type)
{
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list)
{
if (done.size() == m_volumes->size())
break;
const GLVolume* volume = (*m_volumes)[i];
int object_idx = volume->object_idx();
if (object_idx >= 1000)
continue;
int instance_idx = volume->instance_idx();
const Vec3d& rotation = volume->get_instance_rotation();
const Vec3d& scaling_factor = volume->get_instance_scaling_factor();
const Vec3d& mirror = volume->get_instance_mirror();
// Process unselected instances.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j)
{
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume* v = (*m_volumes)[j];
if ((v->object_idx() != object_idx) || (v->instance_idx() == instance_idx))
continue;
assert(is_rotation_xy_synchronized(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation()));
switch (sync_rotation_type) {
case SYNC_ROTATION_NONE:
// z only rotation -> keep instance z
// The X,Y rotations should be synchronized from start to end of the rotation.
assert(is_rotation_xy_synchronized(rotation, v->get_instance_rotation()));
break;
case SYNC_ROTATION_FULL:
// rotation comes from place on face -> force given z
v->set_instance_rotation(Vec3d(rotation(0), rotation(1), rotation(2)));
break;
case SYNC_ROTATION_GENERAL:
// generic rotation -> update instance z with the delta of the rotation.
double z_diff = rotation_diff_z(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation());
v->set_instance_rotation(Vec3d(rotation(0), rotation(1), rotation(2) + z_diff));
break;
}
v->set_instance_scaling_factor(scaling_factor);
v->set_instance_mirror(mirror);
done.insert(j);
}
}
#ifndef NDEBUG
verify_instances_rotation_synchronized(*m_model, *m_volumes);
#endif /* NDEBUG */
}
2019-03-21 10:02:10 +00:00
void Selection::synchronize_unselected_volumes()
{
for (unsigned int i : m_list)
{
const GLVolume* volume = (*m_volumes)[i];
int object_idx = volume->object_idx();
if (object_idx >= 1000)
continue;
int volume_idx = volume->volume_idx();
const Vec3d& offset = volume->get_volume_offset();
const Vec3d& rotation = volume->get_volume_rotation();
const Vec3d& scaling_factor = volume->get_volume_scaling_factor();
const Vec3d& mirror = volume->get_volume_mirror();
// Process unselected volumes.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j)
{
if (j == i)
continue;
GLVolume* v = (*m_volumes)[j];
if ((v->object_idx() != object_idx) || (v->volume_idx() != volume_idx))
continue;
v->set_volume_offset(offset);
v->set_volume_rotation(rotation);
v->set_volume_scaling_factor(scaling_factor);
v->set_volume_mirror(mirror);
}
}
}
2019-03-21 10:02:10 +00:00
void Selection::ensure_on_bed()
{
typedef std::map<std::pair<int, int>, double> InstancesToZMap;
InstancesToZMap instances_min_z;
for (GLVolume* volume : *m_volumes)
{
if (!volume->is_wipe_tower && !volume->is_modifier)
{
double min_z = volume->transformed_convex_hull_bounding_box().min(2);
std::pair<int, int> instance = std::make_pair(volume->object_idx(), volume->instance_idx());
InstancesToZMap::iterator it = instances_min_z.find(instance);
if (it == instances_min_z.end())
it = instances_min_z.insert(InstancesToZMap::value_type(instance, DBL_MAX)).first;
it->second = std::min(it->second, min_z);
}
}
for (GLVolume* volume : *m_volumes)
{
std::pair<int, int> instance = std::make_pair(volume->object_idx(), volume->instance_idx());
InstancesToZMap::iterator it = instances_min_z.find(instance);
if (it != instances_min_z.end())
volume->set_instance_offset(Z, volume->get_instance_offset(Z) - it->second);
}
}
} // namespace GUI
} // namespace Slic3r