2016-09-12 14:25:15 +00:00
|
|
|
#include <memory.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include "../libslic3r.h"
|
|
|
|
#include "../PrintConfig.hpp"
|
|
|
|
|
|
|
|
#include "PressureEqualizer.hpp"
|
|
|
|
|
|
|
|
namespace Slic3r {
|
|
|
|
|
|
|
|
GCodePressureEqualizer::GCodePressureEqualizer(const Slic3r::GCodeConfig *config) :
|
|
|
|
m_config(config)
|
|
|
|
{
|
|
|
|
reset();
|
|
|
|
}
|
|
|
|
|
|
|
|
GCodePressureEqualizer::~GCodePressureEqualizer()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void GCodePressureEqualizer::reset()
|
|
|
|
{
|
|
|
|
circular_buffer_pos = 0;
|
|
|
|
circular_buffer_size = 100;
|
|
|
|
circular_buffer_items = 0;
|
|
|
|
circular_buffer.assign(circular_buffer_size, GCodeLine());
|
|
|
|
|
|
|
|
output_buffer.clear();
|
|
|
|
output_buffer_length = 0;
|
|
|
|
|
|
|
|
m_current_extruder = 0;
|
|
|
|
// Zero the position of the XYZE axes + the current feed
|
|
|
|
memset(m_current_pos, 0, sizeof(float) * 5);
|
|
|
|
m_current_extrusion_role = erNone;
|
|
|
|
// Expect the first command to fill the nozzle (deretract).
|
|
|
|
m_retracted = true;
|
|
|
|
|
|
|
|
// Calculate filamet crossections for the multiple extruders.
|
|
|
|
m_filament_crossections.clear();
|
|
|
|
for (size_t i = 0; i < m_config->filament_diameter.values.size(); ++ i) {
|
|
|
|
double r = m_config->filament_diameter.values[i];
|
|
|
|
double a = 0.25f*M_PI*r*r;
|
|
|
|
m_filament_crossections.push_back(float(a));
|
|
|
|
}
|
|
|
|
|
|
|
|
m_max_segment_length = 20.f;
|
2016-09-13 13:02:28 +00:00
|
|
|
// Volumetric rate of a 0.45mm x 0.2mm extrusion at 60mm/s XY movement: 0.45*0.2*60*60=5.4*60 = 324 mm^3/min
|
|
|
|
// Volumetric rate of a 0.45mm x 0.2mm extrusion at 20mm/s XY movement: 0.45*0.2*20*60=1.8*60 = 108 mm^3/min
|
|
|
|
// Slope of the volumetric rate, changing from 20mm/s to 60mm/s over 2 seconds: (5.4-1.8)*60*60/2=60*60*1.8 = 6480 mm^3/min^2 = 1.8 mm^3/s^2
|
|
|
|
m_max_volumetric_extrusion_rate_slope_positive = (this->m_config == NULL) ? 6480.f :
|
|
|
|
this->m_config->max_volumetric_extrusion_rate_slope_positive.value * 60. * 60.;
|
|
|
|
m_max_volumetric_extrusion_rate_slope_negative = (this->m_config == NULL) ? 6480.f :
|
|
|
|
this->m_config->max_volumetric_extrusion_rate_slope_negative.value * 60. * 60.;
|
2016-09-12 14:25:15 +00:00
|
|
|
|
|
|
|
for (size_t i = 0; i < numExtrusionRoles; ++ i) {
|
|
|
|
m_max_volumetric_extrusion_rate_slopes[i].negative = m_max_volumetric_extrusion_rate_slope_negative;
|
|
|
|
m_max_volumetric_extrusion_rate_slopes[i].positive = m_max_volumetric_extrusion_rate_slope_positive;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Don't regulate the pressure in infill.
|
|
|
|
m_max_volumetric_extrusion_rate_slopes[erBridgeInfill].negative = 0;
|
|
|
|
m_max_volumetric_extrusion_rate_slopes[erBridgeInfill].positive = 0;
|
|
|
|
// Don't regulate the pressure in gap fill.
|
|
|
|
m_max_volumetric_extrusion_rate_slopes[erGapFill].negative = 0;
|
|
|
|
m_max_volumetric_extrusion_rate_slopes[erGapFill].positive = 0;
|
|
|
|
|
|
|
|
m_stat.reset();
|
|
|
|
}
|
|
|
|
|
|
|
|
const char* GCodePressureEqualizer::process(const char *szGCode, bool flush)
|
|
|
|
{
|
|
|
|
// Reset length of the output_buffer.
|
|
|
|
output_buffer_length = 0;
|
|
|
|
|
|
|
|
if (szGCode != 0) {
|
|
|
|
const char *p = szGCode;
|
|
|
|
while (*p != 0) {
|
|
|
|
// Find end of the line.
|
|
|
|
const char *endl = p;
|
|
|
|
// Slic3r always generates end of lines in a Unix style.
|
|
|
|
for (; *endl != 0 && *endl != '\n'; ++ endl) ;
|
|
|
|
if (circular_buffer_items == circular_buffer_size)
|
|
|
|
// Buffer is full. Push out the oldest line.
|
|
|
|
output_gcode_line(circular_buffer[circular_buffer_pos]);
|
|
|
|
else
|
|
|
|
++ circular_buffer_items;
|
|
|
|
// Process a G-code line, store it into the provided GCodeLine object.
|
|
|
|
size_t idx_tail = circular_buffer_pos;
|
|
|
|
circular_buffer_pos = circular_buffer_idx_next(circular_buffer_pos);
|
|
|
|
if (! process_line(p, endl - p, circular_buffer[idx_tail])) {
|
|
|
|
// The line has to be forgotten. It contains comment marks, which shall be
|
|
|
|
// filtered out of the target g-code.
|
|
|
|
circular_buffer_pos = idx_tail;
|
|
|
|
-- circular_buffer_items;
|
|
|
|
}
|
|
|
|
p = endl;
|
|
|
|
if (*p == '\n')
|
|
|
|
++ p;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (flush) {
|
|
|
|
// Flush the remaining valid lines of the circular buffer.
|
|
|
|
for (size_t idx = circular_buffer_idx_head(); circular_buffer_items > 0; -- circular_buffer_items) {
|
|
|
|
output_gcode_line(circular_buffer[idx]);
|
|
|
|
if (++ idx == circular_buffer_size)
|
|
|
|
idx = 0;
|
|
|
|
}
|
|
|
|
// Reset the index pointer.
|
|
|
|
assert(circular_buffer_items == 0);
|
|
|
|
circular_buffer_pos = 0;
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
printf("Statistics: \n");
|
|
|
|
printf("Minimum volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_min);
|
|
|
|
printf("Maximum volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_max);
|
|
|
|
if (m_stat.extrusion_length > 0)
|
|
|
|
m_stat.volumetric_extrusion_rate_avg /= m_stat.extrusion_length;
|
|
|
|
printf("Average volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_avg);
|
|
|
|
m_stat.reset();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
return output_buffer.data();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Is a white space?
|
|
|
|
static inline bool is_ws(const char c) { return c == ' ' || c == '\t'; }
|
|
|
|
// Is it an end of line? Consider a comment to be an end of line as well.
|
|
|
|
static inline bool is_eol(const char c) { return c == 0 || c == '\r' || c == '\n' || c == ';'; };
|
|
|
|
// Is it a white space or end of line?
|
|
|
|
static inline bool is_ws_or_eol(const char c) { return is_ws(c) || is_eol(c); };
|
|
|
|
|
|
|
|
// Eat whitespaces.
|
|
|
|
static void eatws(const char *&line)
|
|
|
|
{
|
|
|
|
while (is_ws(*line))
|
|
|
|
++ line;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Parse an int starting at the current position of a line.
|
|
|
|
// If succeeded, the line pointer is advanced.
|
|
|
|
static inline int parse_int(const char *&line)
|
|
|
|
{
|
|
|
|
char *endptr = NULL;
|
|
|
|
long result = strtol(line, &endptr, 10);
|
|
|
|
if (endptr == NULL || !is_ws_or_eol(*endptr))
|
|
|
|
throw std::runtime_error("GCodePressureEqualizer: Error parsing an int");
|
|
|
|
line = endptr;
|
|
|
|
return int(result);
|
|
|
|
};
|
|
|
|
|
|
|
|
// Parse an int starting at the current position of a line.
|
|
|
|
// If succeeded, the line pointer is advanced.
|
|
|
|
static inline float parse_float(const char *&line)
|
|
|
|
{
|
|
|
|
char *endptr = NULL;
|
|
|
|
float result = strtof(line, &endptr);
|
|
|
|
if (endptr == NULL || !is_ws_or_eol(*endptr))
|
|
|
|
throw std::runtime_error("GCodePressureEqualizer: Error parsing a float");
|
|
|
|
line = endptr;
|
|
|
|
return result;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define EXTRUSION_ROLE_TAG ";_EXTRUSION_ROLE:"
|
|
|
|
bool GCodePressureEqualizer::process_line(const char *line, const size_t len, GCodeLine &buf)
|
|
|
|
{
|
|
|
|
if (strncmp(line, EXTRUSION_ROLE_TAG, strlen(EXTRUSION_ROLE_TAG)) == 0) {
|
|
|
|
line += strlen(EXTRUSION_ROLE_TAG);
|
|
|
|
int role = atoi(line);
|
|
|
|
this->m_current_extrusion_role = ExtrusionRole(role);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set the type, copy the line to the buffer.
|
|
|
|
buf.type = GCODELINETYPE_OTHER;
|
|
|
|
buf.modified = false;
|
|
|
|
if (buf.raw.size() < len + 1)
|
|
|
|
buf.raw.assign(line, line + len + 1);
|
|
|
|
else
|
|
|
|
memcpy(buf.raw.data(), line, len);
|
|
|
|
buf.raw[len] = 0;
|
|
|
|
buf.raw_length = len;
|
|
|
|
|
|
|
|
memcpy(buf.pos_start, m_current_pos, sizeof(float)*5);
|
|
|
|
memcpy(buf.pos_end, m_current_pos, sizeof(float)*5);
|
|
|
|
memset(buf.pos_provided, 0, 5);
|
|
|
|
|
|
|
|
buf.volumetric_extrusion_rate = 0.f;
|
|
|
|
buf.volumetric_extrusion_rate_start = 0.f;
|
|
|
|
buf.volumetric_extrusion_rate_end = 0.f;
|
|
|
|
buf.max_volumetric_extrusion_rate_slope_positive = 0.f;
|
|
|
|
buf.max_volumetric_extrusion_rate_slope_negative = 0.f;
|
|
|
|
buf.extrusion_role = m_current_extrusion_role;
|
|
|
|
|
|
|
|
// Parse the G-code line, store the result into the buf.
|
|
|
|
switch (toupper(*line ++)) {
|
|
|
|
case 'G': {
|
|
|
|
int gcode = parse_int(line);
|
|
|
|
eatws(line);
|
|
|
|
switch (gcode) {
|
|
|
|
case 0:
|
|
|
|
case 1:
|
|
|
|
{
|
|
|
|
// G0, G1: A FFF 3D printer does not make a difference between the two.
|
|
|
|
float new_pos[5];
|
|
|
|
memcpy(new_pos, m_current_pos, sizeof(float)*5);
|
|
|
|
bool changed[5] = { false, false, false, false, false };
|
|
|
|
while (!is_eol(*line)) {
|
|
|
|
char axis = toupper(*line++);
|
|
|
|
int i = -1;
|
|
|
|
switch (axis) {
|
|
|
|
case 'X':
|
|
|
|
case 'Y':
|
|
|
|
case 'Z':
|
|
|
|
i = axis - 'X';
|
|
|
|
break;
|
|
|
|
case 'E':
|
|
|
|
i = 3;
|
|
|
|
break;
|
|
|
|
case 'F':
|
|
|
|
i = 4;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
assert(false);
|
|
|
|
}
|
|
|
|
if (i == -1)
|
|
|
|
throw std::runtime_error(std::string("GCodePressureEqualizer: Invalid axis for G0/G1: ") + axis);
|
|
|
|
buf.pos_provided[i] = true;
|
|
|
|
new_pos[i] = parse_float(line);
|
|
|
|
if (i == 3 && m_config->use_relative_e_distances.value)
|
|
|
|
new_pos[i] += m_current_pos[i];
|
|
|
|
changed[i] = new_pos[i] != m_current_pos[i];
|
|
|
|
eatws(line);
|
|
|
|
}
|
|
|
|
if (changed[3]) {
|
|
|
|
// Extrusion, retract or unretract.
|
|
|
|
float diff = new_pos[3] - m_current_pos[3];
|
|
|
|
if (diff < 0) {
|
|
|
|
buf.type = GCODELINETYPE_RETRACT;
|
|
|
|
m_retracted = true;
|
|
|
|
} else if (! changed[0] && ! changed[1] && ! changed[2]) {
|
|
|
|
// assert(m_retracted);
|
|
|
|
buf.type = GCODELINETYPE_UNRETRACT;
|
|
|
|
m_retracted = false;
|
|
|
|
} else {
|
|
|
|
assert(changed[0] || changed[1]);
|
|
|
|
// Moving in XY plane.
|
|
|
|
buf.type = GCODELINETYPE_EXTRUDE;
|
|
|
|
// Calculate the volumetric extrusion rate.
|
|
|
|
float diff[4];
|
|
|
|
for (size_t i = 0; i < 4; ++ i)
|
|
|
|
diff[i] = new_pos[i] - m_current_pos[i];
|
|
|
|
// volumetric extrusion rate = A_filament * F_xyz * L_e / L_xyz [mm^3/min]
|
|
|
|
float len2 = diff[0]*diff[0]+diff[1]*diff[1]+diff[2]*diff[2];
|
|
|
|
float rate = m_filament_crossections[m_current_extruder] * new_pos[4] * sqrt((diff[3]*diff[3])/len2);
|
|
|
|
buf.volumetric_extrusion_rate = rate;
|
|
|
|
buf.volumetric_extrusion_rate_start = rate;
|
|
|
|
buf.volumetric_extrusion_rate_end = rate;
|
|
|
|
m_stat.update(rate, sqrt(len2));
|
|
|
|
if (rate < 10.f) {
|
|
|
|
printf("Extremely low flow rate: %f\n", rate);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (changed[0] || changed[1] || changed[2]) {
|
|
|
|
// Moving without extrusion.
|
|
|
|
buf.type = GCODELINETYPE_MOVE;
|
|
|
|
}
|
|
|
|
memcpy(m_current_pos, new_pos, sizeof(float) * 5);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 92:
|
|
|
|
{
|
|
|
|
// G92 : Set Position
|
|
|
|
// Set a logical coordinate position to a new value without actually moving the machine motors.
|
|
|
|
// Which axes to set?
|
|
|
|
bool set = false;
|
|
|
|
while (!is_eol(*line)) {
|
|
|
|
char axis = toupper(*line++);
|
|
|
|
switch (axis) {
|
|
|
|
case 'X':
|
|
|
|
case 'Y':
|
|
|
|
case 'Z':
|
|
|
|
m_current_pos[axis - 'X'] = (!is_ws_or_eol(*line)) ? parse_float(line) : 0.f;
|
|
|
|
set = true;
|
|
|
|
break;
|
|
|
|
case 'E':
|
|
|
|
m_current_pos[3] = (!is_ws_or_eol(*line)) ? parse_float(line) : 0.f;
|
|
|
|
set = true;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
throw std::runtime_error(std::string("GCodePressureEqualizer: Incorrect axis in a G92 G-code: ") + axis);
|
|
|
|
}
|
|
|
|
eatws(line);
|
|
|
|
}
|
|
|
|
assert(set);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 10:
|
|
|
|
case 22:
|
|
|
|
// Firmware retract.
|
|
|
|
buf.type = GCODELINETYPE_RETRACT;
|
|
|
|
m_retracted = true;
|
|
|
|
break;
|
|
|
|
case 11:
|
|
|
|
case 23:
|
|
|
|
// Firmware unretract.
|
|
|
|
buf.type = GCODELINETYPE_UNRETRACT;
|
|
|
|
m_retracted = false;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
// Ignore the rest.
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 'M': {
|
|
|
|
int mcode = parse_int(line);
|
|
|
|
eatws(line);
|
|
|
|
switch (mcode) {
|
|
|
|
default:
|
|
|
|
// Ignore the rest of the M-codes.
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 'T':
|
|
|
|
{
|
|
|
|
// Activate an extruder head.
|
|
|
|
int new_extruder = parse_int(line);
|
|
|
|
if (new_extruder != m_current_extruder) {
|
|
|
|
m_current_extruder = new_extruder;
|
|
|
|
m_retracted = true;
|
|
|
|
buf.type = GCODELINETYPE_TOOL_CHANGE;
|
|
|
|
} else {
|
|
|
|
buf.type = GCODELINETYPE_NOOP;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
buf.extruder_id = m_current_extruder;
|
|
|
|
memcpy(buf.pos_end, m_current_pos, sizeof(float)*5);
|
|
|
|
|
|
|
|
adjust_volumetric_rate();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void GCodePressureEqualizer::output_gcode_line(GCodeLine &line)
|
|
|
|
{
|
|
|
|
if (! line.modified) {
|
|
|
|
push_to_output(line.raw.data(), line.raw_length, true);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The line was modified.
|
|
|
|
// Find the comment.
|
|
|
|
const char *comment = line.raw.data();
|
|
|
|
while (*comment != ';' && *comment != 0) ++comment;
|
|
|
|
if (*comment != ';')
|
|
|
|
comment = NULL;
|
|
|
|
|
|
|
|
// Emit the line with lowered extrusion rates.
|
|
|
|
float l2 = line.dist_xyz2();
|
|
|
|
float l = sqrt(l2);
|
|
|
|
size_t nSegments = size_t(ceil(l / m_max_segment_length));
|
|
|
|
char text[2048];
|
|
|
|
if (nSegments == 1) {
|
|
|
|
// Just update this segment.
|
|
|
|
push_line_to_output(line, line.feedrate() * line.volumetric_correction_avg(), comment);
|
|
|
|
} else {
|
|
|
|
bool accelerating = line.volumetric_extrusion_rate_start < line.volumetric_extrusion_rate_end;
|
|
|
|
// Update the initial and final feed rate values.
|
|
|
|
line.pos_start[4] = line.volumetric_extrusion_rate_start * line.pos_end[4] / line.volumetric_extrusion_rate;
|
|
|
|
line.pos_end [4] = line.volumetric_extrusion_rate_end * line.pos_end[4] / line.volumetric_extrusion_rate;
|
|
|
|
float feed_avg = 0.5f * (line.pos_start[4] + line.pos_end[4]);
|
|
|
|
// Limiting volumetric extrusion rate slope for this segment.
|
|
|
|
float max_volumetric_extrusion_rate_slope = accelerating ?
|
|
|
|
line.max_volumetric_extrusion_rate_slope_positive : line.max_volumetric_extrusion_rate_slope_negative;
|
|
|
|
// Total time for the segment, corrected for the possibly lowered volumetric feed rate,
|
|
|
|
// if accelerating / decelerating over the complete segment.
|
|
|
|
float t_total = line.dist_xyz() / feed_avg;
|
|
|
|
// Time of the acceleration / deceleration part of the segment, if accelerating / decelerating
|
|
|
|
// with the maximum volumetric extrusion rate slope.
|
|
|
|
float t_acc = 0.5f * (line.volumetric_extrusion_rate_start + line.volumetric_extrusion_rate_end) / max_volumetric_extrusion_rate_slope;
|
|
|
|
float l_acc = l;
|
|
|
|
float l_steady = 0.f;
|
|
|
|
if (t_acc < t_total) {
|
|
|
|
// One may achieve higher print speeds if part of the segment is not speed limited.
|
|
|
|
float l_acc = t_acc * feed_avg;
|
|
|
|
float l_steady = l - l_acc;
|
|
|
|
if (l_steady < 0.5f * m_max_segment_length) {
|
|
|
|
l_acc = l;
|
|
|
|
l_steady = 0.f;
|
|
|
|
} else
|
|
|
|
nSegments = size_t(ceil(l_acc / m_max_segment_length));
|
|
|
|
}
|
|
|
|
float pos_start[5];
|
|
|
|
float pos_end [5];
|
|
|
|
float pos_end2 [4];
|
|
|
|
memcpy(pos_start, line.pos_start, sizeof(float)*5);
|
|
|
|
memcpy(pos_end , line.pos_end , sizeof(float)*5);
|
|
|
|
if (l_steady > 0.f) {
|
|
|
|
// There will be a steady feed segment emitted.
|
|
|
|
if (accelerating) {
|
|
|
|
// Prepare the final steady feed rate segment.
|
|
|
|
memcpy(pos_end2, pos_end, sizeof(float)*4);
|
|
|
|
float t = l_acc / l;
|
|
|
|
for (int i = 0; i < 4; ++ i) {
|
|
|
|
pos_end[i] = pos_start[i] + (pos_end[i] - pos_start[i]) * t;
|
|
|
|
line.pos_provided[i] = true;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Emit the steady feed rate segment.
|
|
|
|
float t = l_steady / l;
|
|
|
|
for (int i = 0; i < 4; ++ i) {
|
|
|
|
line.pos_end[i] = pos_start[i] + (pos_end[i] - pos_start[i]) * t;
|
|
|
|
line.pos_provided[i] = true;
|
|
|
|
}
|
|
|
|
push_line_to_output(line, pos_start[4], comment);
|
|
|
|
comment = NULL;
|
|
|
|
memcpy(line.pos_start, line.pos_end, sizeof(float)*5);
|
|
|
|
memcpy(pos_start, line.pos_end, sizeof(float)*5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Split the segment into pieces.
|
|
|
|
for (size_t i = 1; i < nSegments; ++ i) {
|
|
|
|
float t = float(i) / float(nSegments);
|
|
|
|
for (size_t j = 0; j < 4; ++ j) {
|
|
|
|
line.pos_end[j] = pos_start[j] + (pos_end[j] - pos_start[j]) * t;
|
|
|
|
line.pos_provided[j] = true;
|
|
|
|
}
|
|
|
|
// Interpolate the feed rate at the center of the segment.
|
|
|
|
push_line_to_output(line, pos_start[4] + (pos_end[4] - pos_start[4]) * (float(i) - 0.5f) / float(nSegments), comment);
|
|
|
|
comment = NULL;
|
|
|
|
memcpy(line.pos_start, line.pos_end, sizeof(float)*5);
|
|
|
|
}
|
|
|
|
if (l_steady > 0.f && accelerating) {
|
|
|
|
for (int i = 0; i < 4; ++ i) {
|
|
|
|
line.pos_end[i] = pos_end2[i];
|
|
|
|
line.pos_provided[i] = true;
|
|
|
|
}
|
|
|
|
push_line_to_output(line, pos_end[4], comment);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void GCodePressureEqualizer::adjust_volumetric_rate()
|
|
|
|
{
|
|
|
|
if (circular_buffer_items < 2)
|
|
|
|
return;
|
|
|
|
|
|
|
|
// Go back from the current circular_buffer_pos and lower the feedtrate to decrease the slope of the extrusion rate changes.
|
|
|
|
const size_t idx_head = circular_buffer_idx_head();
|
|
|
|
const size_t idx_tail = circular_buffer_idx_prev(circular_buffer_idx_tail());
|
|
|
|
size_t idx = idx_tail;
|
|
|
|
if (idx == idx_head || ! circular_buffer[idx].extruding())
|
|
|
|
// Nothing to do, the last move is not extruding.
|
|
|
|
return;
|
|
|
|
|
|
|
|
float feedrate_per_extrusion_role[numExtrusionRoles];
|
|
|
|
for (size_t i = 0; i < numExtrusionRoles; ++ i)
|
|
|
|
feedrate_per_extrusion_role[i] = FLT_MAX;
|
|
|
|
feedrate_per_extrusion_role[circular_buffer[idx].extrusion_role] = circular_buffer[idx].volumetric_extrusion_rate_start;
|
|
|
|
|
|
|
|
bool modified = true;
|
|
|
|
while (modified && idx != idx_head) {
|
|
|
|
size_t idx_prev = circular_buffer_idx_prev(idx);
|
|
|
|
for (; ! circular_buffer[idx_prev].extruding() && idx_prev != idx_head; idx_prev = circular_buffer_idx_prev(idx_prev)) ;
|
|
|
|
if (! circular_buffer[idx_prev].extruding())
|
|
|
|
break;
|
|
|
|
float rate_succ = circular_buffer[idx].volumetric_extrusion_rate_start;
|
|
|
|
// What is the gradient of the extrusion rate between idx_prev and idx?
|
|
|
|
idx = idx_prev;
|
|
|
|
GCodeLine &line = circular_buffer[idx];
|
|
|
|
for (size_t iRole = 1; iRole < numExtrusionRoles; ++ iRole) {
|
|
|
|
float rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].negative;
|
|
|
|
if (rate_slope == 0)
|
|
|
|
// The negative rate is unlimited.
|
|
|
|
continue;
|
|
|
|
float rate_end = feedrate_per_extrusion_role[iRole];
|
|
|
|
if (iRole == line.extrusion_role && rate_succ < rate_end)
|
|
|
|
rate_end = rate_succ;
|
|
|
|
if (line.volumetric_extrusion_rate_end > rate_end) {
|
|
|
|
line.volumetric_extrusion_rate_end = rate_end;
|
|
|
|
line.modified = true;
|
|
|
|
} else if (iRole == line.extrusion_role) {
|
|
|
|
rate_end = line.volumetric_extrusion_rate_end;
|
|
|
|
} else if (rate_end == FLT_MAX) {
|
|
|
|
// The rate for ExtrusionRole iRole is unlimited.
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
// Use the original, 'floating' extrusion rate as a starting point for the limiter.
|
|
|
|
}
|
|
|
|
// modified = false;
|
|
|
|
float rate_start = rate_end + rate_slope * line.time_corrected();
|
|
|
|
if (rate_start < line.volumetric_extrusion_rate_start) {
|
|
|
|
// Limit the volumetric extrusion rate at the start of this segment due to a segment
|
|
|
|
// of ExtrusionType iRole, which will be extruded in the future.
|
|
|
|
line.volumetric_extrusion_rate_start = rate_start;
|
|
|
|
line.max_volumetric_extrusion_rate_slope_negative = rate_slope;
|
|
|
|
line.modified = true;
|
|
|
|
// modified = true;
|
|
|
|
}
|
|
|
|
feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_start : rate_start;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Go forward and adjust the feedrate to decrease the slope of the extrusion rate changes.
|
|
|
|
for (size_t i = 0; i < numExtrusionRoles; ++ i)
|
|
|
|
feedrate_per_extrusion_role[i] = FLT_MAX;
|
|
|
|
feedrate_per_extrusion_role[circular_buffer[idx].extrusion_role] = circular_buffer[idx].volumetric_extrusion_rate_end;
|
|
|
|
|
|
|
|
assert(circular_buffer[idx].extruding());
|
|
|
|
while (idx != idx_tail) {
|
|
|
|
size_t idx_next = circular_buffer_idx_next(idx);
|
|
|
|
for (; ! circular_buffer[idx_next].extruding() && idx_next != idx_tail; idx_next = circular_buffer_idx_next(idx_next)) ;
|
|
|
|
if (! circular_buffer[idx_next].extruding())
|
|
|
|
break;
|
|
|
|
float rate_prec = circular_buffer[idx].volumetric_extrusion_rate_end;
|
|
|
|
// What is the gradient of the extrusion rate between idx_prev and idx?
|
|
|
|
idx = idx_next;
|
|
|
|
GCodeLine &line = circular_buffer[idx];
|
|
|
|
for (size_t iRole = 1; iRole < numExtrusionRoles; ++ iRole) {
|
|
|
|
float rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].positive;
|
|
|
|
if (rate_slope == 0)
|
|
|
|
// The positive rate is unlimited.
|
|
|
|
continue;
|
|
|
|
float rate_start = feedrate_per_extrusion_role[iRole];
|
|
|
|
if (iRole == line.extrusion_role && rate_prec < rate_start)
|
|
|
|
rate_start = rate_prec;
|
|
|
|
if (line.volumetric_extrusion_rate_start > rate_start) {
|
|
|
|
line.volumetric_extrusion_rate_start = rate_start;
|
|
|
|
line.modified = true;
|
|
|
|
} else if (iRole == line.extrusion_role) {
|
|
|
|
rate_start = line.volumetric_extrusion_rate_start;
|
|
|
|
} else if (rate_start == FLT_MAX) {
|
|
|
|
// The rate for ExtrusionRole iRole is unlimited.
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
// Use the original, 'floating' extrusion rate as a starting point for the limiter.
|
|
|
|
}
|
|
|
|
float rate_end = (rate_slope == 0) ? FLT_MAX : rate_start + rate_slope * line.time_corrected();
|
|
|
|
if (rate_end < line.volumetric_extrusion_rate_end) {
|
|
|
|
// Limit the volumetric extrusion rate at the start of this segment due to a segment
|
|
|
|
// of ExtrusionType iRole, which was extruded before.
|
|
|
|
line.volumetric_extrusion_rate_end = rate_end;
|
|
|
|
line.max_volumetric_extrusion_rate_slope_positive = rate_slope;
|
|
|
|
line.modified = true;
|
|
|
|
}
|
|
|
|
feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_end : rate_end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void GCodePressureEqualizer::push_axis_to_output(const char axis, const float value, bool add_eol)
|
|
|
|
{
|
|
|
|
char buf[2048];
|
|
|
|
int len = sprintf(buf,
|
|
|
|
(axis == 'E') ? " %c%.3f" : " %c%.5f",
|
|
|
|
axis, value);
|
|
|
|
push_to_output(buf, len, add_eol);
|
|
|
|
}
|
|
|
|
|
|
|
|
void GCodePressureEqualizer::push_to_output(const char *text, const size_t len, bool add_eol)
|
|
|
|
{
|
|
|
|
// New length of the output buffer content.
|
|
|
|
size_t len_new = output_buffer_length + len + 1;
|
|
|
|
if (add_eol)
|
|
|
|
++ len_new;
|
|
|
|
|
|
|
|
// Resize the output buffer to a power of 2 higher than the required memory.
|
|
|
|
if (output_buffer.size() < len_new) {
|
|
|
|
size_t v = len_new;
|
|
|
|
// Compute the next highest power of 2 of 32-bit v
|
|
|
|
// http://graphics.stanford.edu/~seander/bithacks.html
|
|
|
|
v--;
|
|
|
|
v |= v >> 1;
|
|
|
|
v |= v >> 2;
|
|
|
|
v |= v >> 4;
|
|
|
|
v |= v >> 8;
|
|
|
|
v |= v >> 16;
|
|
|
|
v++;
|
|
|
|
output_buffer.resize(v);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy the text to the output.
|
|
|
|
if (len != 0) {
|
|
|
|
memcpy(output_buffer.data() + output_buffer_length, text, len);
|
|
|
|
output_buffer_length += len;
|
|
|
|
}
|
|
|
|
if (add_eol)
|
|
|
|
output_buffer[output_buffer_length ++] = '\n';
|
|
|
|
output_buffer[output_buffer_length] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void GCodePressureEqualizer::push_line_to_output(const GCodeLine &line, const float new_feedrate, const char *comment)
|
|
|
|
{
|
|
|
|
push_to_output("G1", 2, false);
|
|
|
|
for (size_t i = 0; i < 3; ++ i)
|
|
|
|
if (line.pos_provided[i])
|
|
|
|
push_axis_to_output('X'+i, line.pos_end[i]);
|
|
|
|
push_axis_to_output('E', m_config->use_relative_e_distances.value ? (line.pos_end[3] - line.pos_start[3]) : line.pos_end[3]);
|
|
|
|
// if (line.pos_provided[4] || fabs(line.feedrate() - new_feedrate) > 1e-5)
|
|
|
|
push_axis_to_output('F', new_feedrate);
|
|
|
|
// output comment and EOL
|
|
|
|
push_to_output(comment, (comment == NULL) ? 0 : strlen(comment), true);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace Slic3r
|