PrusaSlicer-NonPlainar/xs/src/Geometry.cpp

284 lines
9.7 KiB
C++
Raw Normal View History

2013-11-22 21:38:30 +00:00
#include "Geometry.hpp"
#include "Line.hpp"
#include "PolylineCollection.hpp"
2013-11-23 22:21:59 +00:00
#include "clipper.hpp"
2013-11-22 21:38:30 +00:00
#include <algorithm>
2013-11-23 20:39:05 +00:00
#include <map>
#include <set>
#include <vector>
//#include "voronoi_visual_utils.hpp"
#ifdef SLIC3R_DEBUG
#include "SVG.hpp"
#endif
using namespace boost::polygon; // provides also high() and low()
2013-11-22 21:38:30 +00:00
namespace Slic3r { namespace Geometry {
2013-11-22 21:38:30 +00:00
static bool
sort_points (Point a, Point b)
{
return (a.x < b.x) || (a.x == b.x && a.y < b.y);
}
/* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */
2013-11-22 21:38:30 +00:00
void
convex_hull(Points &points, Polygon* hull)
2013-11-22 21:38:30 +00:00
{
2013-11-24 21:42:52 +00:00
assert(points.size() >= 3);
2013-11-22 21:38:30 +00:00
// sort input points
std::sort(points.begin(), points.end(), sort_points);
int n = points.size(), k = 0;
hull->points.resize(2*n);
// Build lower hull
for (int i = 0; i < n; i++) {
while (k >= 2 && points[i].ccw(hull->points[k-2], hull->points[k-1]) <= 0) k--;
hull->points[k++] = points[i];
2013-11-22 21:38:30 +00:00
}
// Build upper hull
for (int i = n-2, t = k+1; i >= 0; i--) {
while (k >= t && points[i].ccw(hull->points[k-2], hull->points[k-1]) <= 0) k--;
hull->points[k++] = points[i];
2013-11-22 21:38:30 +00:00
}
hull->points.resize(k);
2013-11-22 21:38:30 +00:00
assert( hull->points.front().coincides_with(hull->points.back()) );
hull->points.pop_back();
2013-11-22 21:38:30 +00:00
}
2013-11-23 20:39:05 +00:00
/* accepts an arrayref of points and returns a list of indices
according to a nearest-neighbor walk */
void
chained_path(Points &points, std::vector<Points::size_type> &retval, Point start_near)
{
PointPtrs my_points;
std::map<Point*,Points::size_type> indices;
my_points.reserve(points.size());
for (Points::iterator it = points.begin(); it != points.end(); ++it) {
my_points.push_back(&*it);
indices[&*it] = it - points.begin();
}
retval.reserve(points.size());
while (!my_points.empty()) {
Points::size_type idx = start_near.nearest_point_index(my_points);
start_near = *my_points[idx];
retval.push_back(indices[ my_points[idx] ]);
my_points.erase(my_points.begin() + idx);
}
}
void
chained_path(Points &points, std::vector<Points::size_type> &retval)
{
if (points.empty()) return; // can't call front() on empty vector
chained_path(points, retval, points.front());
}
2013-11-23 22:21:59 +00:00
/* retval and items must be different containers */
template<class T>
void
chained_path_items(Points &points, T &items, T &retval)
{
std::vector<Points::size_type> indices;
chained_path(points, indices);
for (std::vector<Points::size_type>::const_iterator it = indices.begin(); it != indices.end(); ++it)
retval.push_back(items[*it]);
}
template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval);
void
MedialAxis::build(Polylines* polylines)
{
/*
// build bounding box (we use it for clipping infinite segments)
// --> we have no infinite segments
this->bb = BoundingBox(this->lines);
*/
construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd);
// collect valid edges (i.e. prune those not belonging to MAT)
this->edges.clear();
for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
if (this->is_valid_edge(*edge)) this->edges.insert(&*edge);
}
// iterate through the valid edges to build polylines
while (!this->edges.empty()) {
const VD::edge_type& edge = **this->edges.begin();
// start a polyline
Polyline polyline;
polyline.points.push_back(Point( edge.vertex0()->x(), edge.vertex0()->y() ));
polyline.points.push_back(Point( edge.vertex1()->x(), edge.vertex1()->y() ));
// remove this edge and its twin from the available edges
(void)this->edges.erase(&edge);
(void)this->edges.erase(edge.twin());
// get next points
this->process_edge_neighbors(edge, &polyline.points);
// get previous points
Points pp;
this->process_edge_neighbors(*edge.twin(), &pp);
polyline.points.insert(polyline.points.begin(), pp.rbegin(), pp.rend());
// append polyline to result
polylines->push_back(polyline);
}
}
void
MedialAxis::process_edge_neighbors(const VD::edge_type& edge, Points* points)
{
// Since rot_next() works on the edge starting point but we want
// to find neighbors on the ending point, we just swap edge with
// its twin.
const VD::edge_type& twin = *edge.twin();
// count neighbors for this edge
std::vector<const VD::edge_type*> neighbors;
for (const VD::edge_type* neighbor = twin.rot_next(); neighbor != &twin; neighbor = neighbor->rot_next()) {
if (this->edges.count(neighbor) > 0) neighbors.push_back(neighbor);
}
// if we have a single neighbor then we can continue recursively
if (neighbors.size() == 1) {
const VD::edge_type& neighbor = *neighbors.front();
points->push_back(Point( neighbor.vertex1()->x(), neighbor.vertex1()->y() ));
(void)this->edges.erase(&neighbor);
(void)this->edges.erase(neighbor.twin());
this->process_edge_neighbors(neighbor, points);
}
}
bool
MedialAxis::is_valid_edge(const VD::edge_type& edge) const
{
// if we only process segments representing closed loops, none if the
// infinite edges (if any) would be part of our MAT anyway
if (edge.is_secondary() || edge.is_infinite()) return false;
/* If the cells sharing this edge have a common vertex, we're not interested
in this edge. Why? Because it means that the edge lies on the bisector of
two contiguous input lines and it was included in the Voronoi graph because
it's the locus of centers of circles tangent to both vertices. Due to the
"thin" nature of our input, these edges will be very short and not part of
our wanted output. The best way would be to just filter out the edges that
are not the locus of the maximally inscribed disks (requirement of MAT)
but I don't know how to do it. Maybe we could check the relative angle of
the two segments (we are only interested in facing segments). */
const voronoi_diagram<double>::cell_type &cell1 = *edge.cell();
const voronoi_diagram<double>::cell_type &cell2 = *edge.twin()->cell();
if (cell1.contains_segment() && cell2.contains_segment()) {
Line segment1 = this->retrieve_segment(cell1);
Line segment2 = this->retrieve_segment(cell2);
if (segment1.a == segment2.b || segment1.b == segment2.a) return false;
}
return true;
}
/*
void
MedialAxis::clip_infinite_edge(const voronoi_diagram<double>::edge_type& edge, Points* clipped_edge)
{
const voronoi_diagram<double>::cell_type& cell1 = *edge.cell();
const voronoi_diagram<double>::cell_type& cell2 = *edge.twin()->cell();
Point origin, direction;
// Infinite edges could not be created by two segment sites.
if (cell1.contains_point() && cell2.contains_point()) {
Point p1 = retrieve_point(cell1);
Point p2 = retrieve_point(cell2);
origin.x = (p1.x + p2.x) * 0.5;
origin.y = (p1.y + p2.y) * 0.5;
direction.x = p1.y - p2.y;
direction.y = p2.x - p1.x;
} else {
origin = cell1.contains_segment()
? retrieve_point(cell2)
: retrieve_point(cell1);
Line segment = cell1.contains_segment()
? retrieve_segment(cell1)
: retrieve_segment(cell2);
coord_t dx = high(segment).x - low(segment).x;
coord_t dy = high(segment).y - low(segment).y;
if ((low(segment) == origin) ^ cell1.contains_point()) {
direction.x = dy;
direction.y = -dx;
} else {
direction.x = -dy;
direction.y = dx;
}
}
coord_t side = this->bb.size().x;
coord_t koef = side / (std::max)(fabs(direction.x), fabs(direction.y));
if (edge.vertex0() == NULL) {
clipped_edge->push_back(Point(
origin.x - direction.x * koef,
origin.y - direction.y * koef
));
} else {
clipped_edge->push_back(
Point(edge.vertex0()->x(), edge.vertex0()->y()));
}
if (edge.vertex1() == NULL) {
clipped_edge->push_back(Point(
origin.x + direction.x * koef,
origin.y + direction.y * koef
));
} else {
clipped_edge->push_back(
Point(edge.vertex1()->x(), edge.vertex1()->y()));
}
}
void
MedialAxis::sample_curved_edge(const voronoi_diagram<double>::edge_type& edge, Points* sampled_edge)
{
Point point = edge.cell()->contains_point()
? retrieve_point(*edge.cell())
: retrieve_point(*edge.twin()->cell());
Line segment = edge.cell()->contains_point()
? retrieve_segment(*edge.twin()->cell())
: retrieve_segment(*edge.cell());
double max_dist = 1E-3 * this->bb.size().x;
voronoi_visual_utils<double>::discretize<coord_t,coord_t,Point,Line>(point, segment, max_dist, sampled_edge);
}
*/
Point
MedialAxis::retrieve_point(const voronoi_diagram<double>::cell_type& cell)
{
voronoi_diagram<double>::cell_type::source_index_type index = cell.source_index();
voronoi_diagram<double>::cell_type::source_category_type category = cell.source_category();
if (category == SOURCE_CATEGORY_SINGLE_POINT) {
return this->points[index];
}
index -= this->points.size();
if (category == SOURCE_CATEGORY_SEGMENT_START_POINT) {
return low(this->lines[index]);
} else {
return high(this->lines[index]);
}
}
Line
MedialAxis::retrieve_segment(const voronoi_diagram<double>::cell_type& cell) const
{
voronoi_diagram<double>::cell_type::source_index_type index = cell.source_index() - this->points.size();
return this->lines[index];
}
} }