47 lines
1.6 KiB
Plaintext
47 lines
1.6 KiB
Plaintext
|
#version 110
|
||
|
|
||
|
#define INTENSITY_CORRECTION 0.6
|
||
|
|
||
|
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
||
|
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
||
|
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
||
|
#define LIGHT_TOP_SHININESS 20.0
|
||
|
|
||
|
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
||
|
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
||
|
//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
|
||
|
//#define LIGHT_FRONT_SHININESS 5.0
|
||
|
|
||
|
#define INTENSITY_AMBIENT 0.3
|
||
|
|
||
|
// x = tainted, y = specular;
|
||
|
varying vec2 intensity;
|
||
|
|
||
|
varying float object_z;
|
||
|
|
||
|
void main()
|
||
|
{
|
||
|
// First transform the normal into camera space and normalize the result.
|
||
|
vec3 normal = normalize(gl_NormalMatrix * gl_Normal);
|
||
|
|
||
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||
|
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
|
||
|
|
||
|
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||
|
intensity.y = 0.0;
|
||
|
|
||
|
if (NdotL > 0.0)
|
||
|
intensity.y += LIGHT_TOP_SPECULAR * pow(max(dot(normal, reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
|
||
|
|
||
|
// Perform the same lighting calculation for the 2nd light source (no specular)
|
||
|
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
|
||
|
|
||
|
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||
|
|
||
|
// Scaled to widths of the Z texture.
|
||
|
object_z = gl_Vertex.z;
|
||
|
|
||
|
gl_Position = ftransform();
|
||
|
}
|