PrusaSlicer-NonPlainar/src/libslic3r/SLA/SLASupportTreeBuilder.cpp

463 lines
14 KiB
C++
Raw Normal View History

#include "SLASupportTreeBuilder.hpp"
#include "SLASupportTreeBuildsteps.hpp"
namespace Slic3r {
namespace sla {
Contour3D sphere(double rho, Portion portion, double fa) {
Contour3D ret;
// prohibit close to zero radius
if(rho <= 1e-6 && rho >= -1e-6) return ret;
auto& vertices = ret.points;
auto& facets = ret.indices;
// Algorithm:
// Add points one-by-one to the sphere grid and form facets using relative
// coordinates. Sphere is composed effectively of a mesh of stacked circles.
// adjust via rounding to get an even multiple for any provided angle.
double angle = (2*PI / floor(2*PI / fa));
// Ring to be scaled to generate the steps of the sphere
std::vector<double> ring;
for (double i = 0; i < 2*PI; i+=angle) ring.emplace_back(i);
const auto sbegin = size_t(2*std::get<0>(portion)/angle);
const auto send = size_t(2*std::get<1>(portion)/angle);
const size_t steps = ring.size();
const double increment = 1.0 / double(steps);
// special case: first ring connects to 0,0,0
// insert and form facets.
if(sbegin == 0)
vertices.emplace_back(Vec3d(0.0, 0.0, -rho + increment*sbegin*2.0*rho));
auto id = coord_t(vertices.size());
for (size_t i = 0; i < ring.size(); i++) {
// Fixed scaling
const double z = -rho + increment*rho*2.0 * (sbegin + 1.0);
// radius of the circle for this step.
const double r = std::sqrt(std::abs(rho*rho - z*z));
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
vertices.emplace_back(Vec3d(b(0), b(1), z));
if (sbegin == 0)
facets.emplace_back((i == 0) ?
Vec3crd(coord_t(ring.size()), 0, 1) :
Vec3crd(id - 1, 0, id));
++id;
}
// General case: insert and form facets for each step,
// joining it to the ring below it.
for (size_t s = sbegin + 2; s < send - 1; s++) {
const double z = -rho + increment*double(s*2.0*rho);
const double r = std::sqrt(std::abs(rho*rho - z*z));
for (size_t i = 0; i < ring.size(); i++) {
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
vertices.emplace_back(Vec3d(b(0), b(1), z));
auto id_ringsize = coord_t(id - int(ring.size()));
if (i == 0) {
// wrap around
facets.emplace_back(Vec3crd(id - 1, id,
id + coord_t(ring.size() - 1)));
facets.emplace_back(Vec3crd(id - 1, id_ringsize, id));
} else {
facets.emplace_back(Vec3crd(id_ringsize - 1, id_ringsize, id));
facets.emplace_back(Vec3crd(id - 1, id_ringsize - 1, id));
}
id++;
}
}
// special case: last ring connects to 0,0,rho*2.0
// only form facets.
if(send >= size_t(2*PI / angle)) {
vertices.emplace_back(Vec3d(0.0, 0.0, -rho + increment*send*2.0*rho));
for (size_t i = 0; i < ring.size(); i++) {
auto id_ringsize = coord_t(id - int(ring.size()));
if (i == 0) {
// third vertex is on the other side of the ring.
facets.emplace_back(Vec3crd(id - 1, id_ringsize, id));
} else {
auto ci = coord_t(id_ringsize + coord_t(i));
facets.emplace_back(Vec3crd(ci - 1, ci, id));
}
}
}
id++;
return ret;
}
Contour3D cylinder(double r, double h, size_t ssteps, const Vec3d &sp)
{
Contour3D ret;
auto steps = int(ssteps);
auto& points = ret.points;
auto& indices = ret.indices;
points.reserve(2*ssteps);
double a = 2*PI/steps;
Vec3d jp = sp;
Vec3d endp = {sp(X), sp(Y), sp(Z) + h};
// Upper circle points
for(int i = 0; i < steps; ++i) {
double phi = i*a;
double ex = endp(X) + r*std::cos(phi);
double ey = endp(Y) + r*std::sin(phi);
points.emplace_back(ex, ey, endp(Z));
}
// Lower circle points
for(int i = 0; i < steps; ++i) {
double phi = i*a;
double x = jp(X) + r*std::cos(phi);
double y = jp(Y) + r*std::sin(phi);
points.emplace_back(x, y, jp(Z));
}
// Now create long triangles connecting upper and lower circles
indices.reserve(2*ssteps);
auto offs = steps;
for(int i = 0; i < steps - 1; ++i) {
indices.emplace_back(i, i + offs, offs + i + 1);
indices.emplace_back(i, offs + i + 1, i + 1);
}
// Last triangle connecting the first and last vertices
auto last = steps - 1;
indices.emplace_back(0, last, offs);
indices.emplace_back(last, offs + last, offs);
// According to the slicing algorithms, we need to aid them with generating
// a watertight body. So we create a triangle fan for the upper and lower
// ending of the cylinder to close the geometry.
points.emplace_back(jp); int ci = int(points.size() - 1);
for(int i = 0; i < steps - 1; ++i)
indices.emplace_back(i + offs + 1, i + offs, ci);
indices.emplace_back(offs, steps + offs - 1, ci);
points.emplace_back(endp); ci = int(points.size() - 1);
for(int i = 0; i < steps - 1; ++i)
indices.emplace_back(ci, i, i + 1);
indices.emplace_back(steps - 1, 0, ci);
return ret;
}
Head::Head(double r_big_mm,
double r_small_mm,
double length_mm,
double penetration,
const Vec3d &direction,
const Vec3d &offset,
const size_t circlesteps)
: steps(circlesteps)
, dir(direction)
, tr(offset)
, r_back_mm(r_big_mm)
, r_pin_mm(r_small_mm)
, width_mm(length_mm)
, penetration_mm(penetration)
{
// We create two spheres which will be connected with a robe that fits
// both circles perfectly.
// Set up the model detail level
const double detail = 2*PI/steps;
// We don't generate whole circles. Instead, we generate only the
// portions which are visible (not covered by the robe) To know the
// exact portion of the bottom and top circles we need to use some
// rules of tangent circles from which we can derive (using simple
// triangles the following relations:
// The height of the whole mesh
const double h = r_big_mm + r_small_mm + width_mm;
double phi = PI/2 - std::acos( (r_big_mm - r_small_mm) / h );
// To generate a whole circle we would pass a portion of (0, Pi)
// To generate only a half horizontal circle we can pass (0, Pi/2)
// The calculated phi is an offset to the half circles needed to smooth
// the transition from the circle to the robe geometry
auto&& s1 = sphere(r_big_mm, make_portion(0, PI/2 + phi), detail);
auto&& s2 = sphere(r_small_mm, make_portion(PI/2 + phi, PI), detail);
for(auto& p : s2.points) p.z() += h;
mesh.merge(s1);
mesh.merge(s2);
for(size_t idx1 = s1.points.size() - steps, idx2 = s1.points.size();
idx1 < s1.points.size() - 1;
idx1++, idx2++)
{
coord_t i1s1 = coord_t(idx1), i1s2 = coord_t(idx2);
coord_t i2s1 = i1s1 + 1, i2s2 = i1s2 + 1;
mesh.indices.emplace_back(i1s1, i2s1, i2s2);
mesh.indices.emplace_back(i1s1, i2s2, i1s2);
}
auto i1s1 = coord_t(s1.points.size()) - coord_t(steps);
auto i2s1 = coord_t(s1.points.size()) - 1;
auto i1s2 = coord_t(s1.points.size());
auto i2s2 = coord_t(s1.points.size()) + coord_t(steps) - 1;
mesh.indices.emplace_back(i2s2, i2s1, i1s1);
mesh.indices.emplace_back(i1s2, i2s2, i1s1);
// To simplify further processing, we translate the mesh so that the
// last vertex of the pointing sphere (the pinpoint) will be at (0,0,0)
for(auto& p : mesh.points) p.z() -= (h + r_small_mm - penetration_mm);
}
Pillar::Pillar(const Vec3d &jp, const Vec3d &endp, double radius, size_t st):
r(radius), steps(st), endpt(endp), starts_from_head(false)
{
assert(steps > 0);
height = jp(Z) - endp(Z);
if(height > EPSILON) { // Endpoint is below the starting point
// We just create a bridge geometry with the pillar parameters and
// move the data.
Contour3D body = cylinder(radius, height, st, endp);
mesh.points.swap(body.points);
mesh.indices.swap(body.indices);
}
}
Pillar &Pillar::add_base(double baseheight, double radius)
{
if(baseheight <= 0) return *this;
if(baseheight > height) baseheight = height;
assert(steps >= 0);
auto last = int(steps - 1);
if(radius < r ) radius = r;
double a = 2*PI/steps;
double z = endpt(Z) + baseheight;
for(size_t i = 0; i < steps; ++i) {
double phi = i*a;
double x = endpt(X) + r*std::cos(phi);
double y = endpt(Y) + r*std::sin(phi);
base.points.emplace_back(x, y, z);
}
for(size_t i = 0; i < steps; ++i) {
double phi = i*a;
double x = endpt(X) + radius*std::cos(phi);
double y = endpt(Y) + radius*std::sin(phi);
base.points.emplace_back(x, y, z - baseheight);
}
auto ep = endpt; ep(Z) += baseheight;
base.points.emplace_back(endpt);
base.points.emplace_back(ep);
auto& indices = base.indices;
auto hcenter = int(base.points.size() - 1);
auto lcenter = int(base.points.size() - 2);
auto offs = int(steps);
for(int i = 0; i < last; ++i) {
indices.emplace_back(i, i + offs, offs + i + 1);
indices.emplace_back(i, offs + i + 1, i + 1);
indices.emplace_back(i, i + 1, hcenter);
indices.emplace_back(lcenter, offs + i + 1, offs + i);
}
indices.emplace_back(0, last, offs);
indices.emplace_back(last, offs + last, offs);
indices.emplace_back(hcenter, last, 0);
indices.emplace_back(offs, offs + last, lcenter);
return *this;
}
Bridge::Bridge(const Vec3d &j1, const Vec3d &j2, double r_mm, size_t steps):
r(r_mm), startp(j1), endp(j2)
{
using Quaternion = Eigen::Quaternion<double>;
Vec3d dir = (j2 - j1).normalized();
double d = distance(j2, j1);
mesh = cylinder(r, d, steps);
auto quater = Quaternion::FromTwoVectors(Vec3d{0,0,1}, dir);
for(auto& p : mesh.points) p = quater * p + j1;
}
CompactBridge::CompactBridge(const Vec3d &sp,
const Vec3d &ep,
const Vec3d &n,
double r,
bool endball,
size_t steps)
{
Vec3d startp = sp + r * n;
Vec3d dir = (ep - startp).normalized();
Vec3d endp = ep - r * dir;
Bridge br(startp, endp, r, steps);
mesh.merge(br.mesh);
// now add the pins
double fa = 2*PI/steps;
auto upperball = sphere(r, Portion{PI / 2 - fa, PI}, fa);
for(auto& p : upperball.points) p += startp;
if(endball) {
auto lowerball = sphere(r, Portion{0, PI/2 + 2*fa}, fa);
for(auto& p : lowerball.points) p += endp;
mesh.merge(lowerball);
}
mesh.merge(upperball);
}
Pad::Pad(const TriangleMesh &support_mesh,
const ExPolygons & model_contours,
double ground_level,
const PadConfig & pcfg,
ThrowOnCancel thr)
: cfg(pcfg)
, zlevel(ground_level + pcfg.full_height() - pcfg.required_elevation())
{
thr();
ExPolygons sup_contours;
float zstart = float(zlevel);
float zend = zstart + float(pcfg.full_height() + EPSILON);
pad_blueprint(support_mesh, sup_contours, grid(zstart, zend, 0.1f), thr);
create_pad(sup_contours, model_contours, tmesh, pcfg);
tmesh.translate(0, 0, float(zlevel));
if (!tmesh.empty()) tmesh.require_shared_vertices();
}
const TriangleMesh &SupportTreeBuilder::add_pad(const ExPolygons &modelbase,
const PadConfig & cfg)
{
m_pad = Pad{merged_mesh(), modelbase, ground_level, cfg, ctl().cancelfn};
return m_pad.tmesh;
}
const TriangleMesh &SupportTreeBuilder::merged_mesh() const
{
if (m_meshcache_valid) return m_meshcache;
Contour3D merged;
for (auto &head : m_heads) {
if (ctl().stopcondition()) break;
if (head.is_valid()) merged.merge(head.mesh);
}
for (auto &stick : m_pillars) {
if (ctl().stopcondition()) break;
merged.merge(stick.mesh);
merged.merge(stick.base);
}
for (auto &j : m_junctions) {
if (ctl().stopcondition()) break;
merged.merge(j.mesh);
}
for (auto &cb : m_compact_bridges) {
if (ctl().stopcondition()) break;
merged.merge(cb.mesh);
}
for (auto &bs : m_bridges) {
if (ctl().stopcondition()) break;
merged.merge(bs.mesh);
}
for (auto &bs : m_crossbridges) {
if (ctl().stopcondition()) break;
merged.merge(bs.mesh);
}
if (ctl().stopcondition()) {
// In case of failure we have to return an empty mesh
m_meshcache = TriangleMesh();
return m_meshcache;
}
m_meshcache = mesh(merged);
// The mesh will be passed by const-pointer to TriangleMeshSlicer,
// which will need this.
if (!m_meshcache.empty()) m_meshcache.require_shared_vertices();
BoundingBoxf3 &&bb = m_meshcache.bounding_box();
m_model_height = bb.max(Z) - bb.min(Z);
m_meshcache_valid = true;
return m_meshcache;
}
double SupportTreeBuilder::full_height() const
{
if (merged_mesh().empty() && !pad().empty())
return pad().cfg.full_height();
double h = mesh_height();
if (!pad().empty()) h += pad().cfg.required_elevation();
return h;
}
const TriangleMesh &SupportTreeBuilder::merge_and_cleanup()
{
// in case the mesh is not generated, it should be...
auto &ret = merged_mesh();
// Doing clear() does not garantee to release the memory.
m_heads = {};
m_head_indices = {};
m_pillars = {};
m_junctions = {};
m_bridges = {};
m_compact_bridges = {};
return ret;
}
const TriangleMesh &SupportTreeBuilder::retrieve_mesh(MeshType meshtype) const
{
switch(meshtype) {
case MeshType::Support: return merged_mesh();
case MeshType::Pad: return pad().tmesh;
}
return m_meshcache;
}
bool SupportTreeBuilder::build(const SupportableMesh &sm)
{
ground_level = sm.emesh.ground_level() - sm.cfg.object_elevation_mm;
return SupportTreeBuildsteps::execute(*this, sm);
}
}
}