PrusaSlicer-NonPlainar/src/libslic3r/Polyline.cpp

318 lines
9.4 KiB
C++
Raw Normal View History

#include "BoundingBox.hpp"
#include "Polyline.hpp"
#include "Exception.hpp"
#include "ExPolygon.hpp"
2014-11-15 21:41:22 +00:00
#include "Line.hpp"
#include "Polygon.hpp"
2014-11-15 22:06:15 +00:00
#include <iostream>
#include <utility>
namespace Slic3r {
const Point& Polyline::leftmost_point() const
{
const Point *p = &this->points.front();
for (Points::const_iterator it = this->points.begin() + 1; it != this->points.end(); ++ it) {
if (it->x() < p->x())
p = &(*it);
}
return *p;
}
double Polyline::length() const
{
double l = 0;
for (size_t i = 1; i < this->points.size(); ++ i)
l += (this->points[i] - this->points[i - 1]).cast<double>().norm();
return l;
}
Lines Polyline::lines() const
{
2013-09-13 13:19:15 +00:00
Lines lines;
if (this->points.size() >= 2) {
lines.reserve(this->points.size() - 1);
for (Points::const_iterator it = this->points.begin(); it != this->points.end()-1; ++it) {
lines.push_back(Line(*it, *(it + 1)));
}
}
2013-09-13 13:19:15 +00:00
return lines;
}
// removes the given distance from the end of the polyline
void Polyline::clip_end(double distance)
{
while (distance > 0) {
Vec2d last_point = this->last_point().cast<double>();
this->points.pop_back();
if (this->points.empty())
break;
Vec2d v = this->last_point().cast<double>() - last_point;
double lsqr = v.squaredNorm();
if (lsqr > distance * distance) {
this->points.emplace_back((last_point + v * (distance / sqrt(lsqr))).cast<coord_t>());
return;
}
distance -= sqrt(lsqr);
}
}
// removes the given distance from the start of the polyline
void Polyline::clip_start(double distance)
{
this->reverse();
this->clip_end(distance);
if (this->points.size() >= 2)
this->reverse();
}
void Polyline::extend_end(double distance)
{
// relocate last point by extending the last segment by the specified length
Vec2d v = (this->points.back() - *(this->points.end() - 2)).cast<double>().normalized();
this->points.back() += (v * distance).cast<coord_t>();
}
void Polyline::extend_start(double distance)
{
// relocate first point by extending the first segment by the specified length
Vec2d v = (this->points.front() - this->points[1]).cast<double>().normalized();
this->points.front() += (v * distance).cast<coord_t>();
}
/* this method returns a collection of points picked on the polygon contour
so that they are evenly spaced according to the input distance */
Points Polyline::equally_spaced_points(double distance) const
{
Points points;
points.emplace_back(this->first_point());
double len = 0;
for (Points::const_iterator it = this->points.begin() + 1; it != this->points.end(); ++it) {
Vec2d p1 = (it-1)->cast<double>();
Vec2d v = it->cast<double>() - p1;
double segment_length = v.norm();
len += segment_length;
if (len < distance)
continue;
if (len == distance) {
points.emplace_back(*it);
len = 0;
continue;
}
double take = segment_length - (len - distance); // how much we take of this segment
points.emplace_back((p1 + v * (take / v.norm())).cast<coord_t>());
-- it;
len = - take;
}
return points;
}
void Polyline::simplify(double tolerance)
2013-11-22 01:16:10 +00:00
{
this->points = MultiPoint::_douglas_peucker(this->points, tolerance);
}
#if 0
// This method simplifies all *lines* contained in the supplied area
template <class T>
void Polyline::simplify_by_visibility(const T &area)
{
Points &pp = this->points;
size_t s = 0;
bool did_erase = false;
for (size_t i = s+2; i < pp.size(); i = s + 2) {
if (area.contains(Line(pp[s], pp[i]))) {
pp.erase(pp.begin() + s + 1, pp.begin() + i);
did_erase = true;
} else {
++s;
}
}
if (did_erase)
this->simplify_by_visibility(area);
}
2015-01-06 20:29:32 +00:00
template void Polyline::simplify_by_visibility<ExPolygon>(const ExPolygon &area);
template void Polyline::simplify_by_visibility<ExPolygonCollection>(const ExPolygonCollection &area);
#endif
void Polyline::split_at(const Point &point, Polyline* p1, Polyline* p2) const
{
if (this->size() < 2) {
*p1 = *this;
p2->clear();
return;
}
if (this->points.front() == point) {
*p1 = { point };
*p2 = *this;
}
auto min_dist2 = std::numeric_limits<double>::max();
auto min_point_it = this->points.cbegin();
Point prev = this->points.front();
for (auto it = this->points.cbegin() + 1; it != this->points.cend(); ++ it) {
Point proj;
if (double d2 = line_alg::distance_to_squared(Line(prev, *it), point, &proj); d2 < min_dist2) {
min_dist2 = d2;
min_point_it = it;
}
prev = *it;
}
p1->points.assign(this->points.cbegin(), min_point_it);
if (p1->points.back() != point)
p1->points.emplace_back(point);
p2->points = { point };
if (*min_point_it == point)
++ min_point_it;
p2->points.insert(p2->points.end(), min_point_it, this->points.cend());
}
bool Polyline::is_straight() const
2014-11-15 22:06:15 +00:00
{
2018-09-17 13:12:13 +00:00
// Check that each segment's direction is equal to the line connecting
// first point and last point. (Checking each line against the previous
// one would cause the error to accumulate.)
2014-11-15 22:06:15 +00:00
double dir = Line(this->first_point(), this->last_point()).direction();
2018-09-17 13:12:13 +00:00
for (const auto &line: this->lines())
if (! line.parallel_to(dir))
return false;
2014-11-15 22:06:15 +00:00
return true;
}
BoundingBox get_extents(const Polyline &polyline)
{
return polyline.bounding_box();
}
BoundingBox get_extents(const Polylines &polylines)
{
BoundingBox bb;
if (! polylines.empty()) {
bb = polylines.front().bounding_box();
for (size_t i = 1; i < polylines.size(); ++ i)
bb.merge(polylines[i].points);
}
return bb;
}
const Point& leftmost_point(const Polylines &polylines)
{
if (polylines.empty())
throw Slic3r::InvalidArgument("leftmost_point() called on empty Polylines");
Polylines::const_iterator it = polylines.begin();
const Point *p = &it->leftmost_point();
for (++ it; it != polylines.end(); ++it) {
const Point *p2 = &it->leftmost_point();
if (p2->x() < p->x())
p = p2;
}
return *p;
}
bool remove_degenerate(Polylines &polylines)
{
bool modified = false;
size_t j = 0;
for (size_t i = 0; i < polylines.size(); ++ i) {
if (polylines[i].points.size() >= 2) {
if (j < i)
std::swap(polylines[i].points, polylines[j].points);
++ j;
} else
modified = true;
}
if (j < polylines.size())
polylines.erase(polylines.begin() + j, polylines.end());
return modified;
}
std::pair<int, Point> foot_pt(const Points &polyline, const Point &pt)
{
if (polyline.size() < 2)
return std::make_pair(-1, Point(0, 0));
auto d2_min = std::numeric_limits<double>::max();
Point foot_pt_min;
Point prev = polyline.front();
auto it = polyline.begin();
auto it_proj = polyline.begin();
for (++ it; it != polyline.end(); ++ it) {
Point foot_pt;
if (double d2 = line_alg::distance_to_squared(Line(prev, *it), pt, &foot_pt); d2 < d2_min) {
d2_min = d2;
foot_pt_min = foot_pt;
it_proj = it;
}
prev = *it;
}
return std::make_pair(int(it_proj - polyline.begin()) - 1, foot_pt_min);
}
ThickLines ThickPolyline::thicklines() const
2016-03-19 14:33:58 +00:00
{
ThickLines lines;
if (this->points.size() >= 2) {
lines.reserve(this->points.size() - 1);
for (size_t i = 0; i + 1 < this->points.size(); ++ i)
lines.emplace_back(this->points[i], this->points[i + 1], this->width[2 * i], this->width[2 * i + 1]);
2016-03-19 14:33:58 +00:00
}
return lines;
}
// Removes the given distance from the end of the ThickPolyline
void ThickPolyline::clip_end(double distance)
{
while (distance > 0) {
Vec2d last_point = this->last_point().cast<double>();
coordf_t last_width = this->width.back();
this->points.pop_back();
this->width.pop_back();
if (this->points.empty())
break;
Vec2d vec = this->last_point().cast<double>() - last_point;
coordf_t width_diff = this->width.back() - last_width;
double vec_length_sqr = vec.squaredNorm();
if (vec_length_sqr > distance * distance) {
double t = (distance / std::sqrt(vec_length_sqr));
this->points.emplace_back((last_point + vec * t).cast<coord_t>());
this->width.emplace_back(last_width + width_diff * t);
assert(this->width.size() == (this->points.size() - 1) * 2);
return;
} else
this->width.pop_back();
distance -= std::sqrt(vec_length_sqr);
}
assert(this->width.size() == (this->points.size() - 1) * 2);
}
double Polyline3::length() const
{
double l = 0;
for (size_t i = 1; i < this->points.size(); ++ i)
l += (this->points[i] - this->points[i - 1]).cast<double>().norm();
return l;
}
Lines3 Polyline3::lines() const
{
Lines3 lines;
if (points.size() >= 2)
{
lines.reserve(points.size() - 1);
for (Points3::const_iterator it = points.begin(); it != points.end() - 1; ++it)
{
lines.emplace_back(*it, *(it + 1));
}
}
return lines;
}
}