PrusaSlicer-NonPlainar/src/libslic3r/Geometry/Circle.cpp

95 lines
3.4 KiB
C++
Raw Normal View History

#include "Circle.hpp"
#include "../Polygon.hpp"
namespace Slic3r { namespace Geometry {
Point circle_center_taubin_newton(const Points::const_iterator& input_begin, const Points::const_iterator& input_end, size_t cycles)
{
Vec2ds tmp;
tmp.reserve(std::distance(input_begin, input_end));
std::transform(input_begin, input_end, std::back_inserter(tmp), [] (const Point& in) { return unscale(in); } );
Vec2d center = circle_center_taubin_newton(tmp.cbegin(), tmp.end(), cycles);
return Point::new_scale(center.x(), center.y());
}
/// Adapted from work in "Circular and Linear Regression: Fitting circles and lines by least squares", pg 126
/// Returns a point corresponding to the center of a circle for which all of the points from input_begin to input_end
/// lie on.
Vec2d circle_center_taubin_newton(const Vec2ds::const_iterator& input_begin, const Vec2ds::const_iterator& input_end, size_t cycles)
{
// calculate the centroid of the data set
const Vec2d sum = std::accumulate(input_begin, input_end, Vec2d(0,0));
const size_t n = std::distance(input_begin, input_end);
const double n_flt = static_cast<double>(n);
const Vec2d centroid { sum / n_flt };
// Compute the normalized moments of the data set.
double Mxx = 0, Myy = 0, Mxy = 0, Mxz = 0, Myz = 0, Mzz = 0;
for (auto it = input_begin; it < input_end; ++it) {
// center/normalize the data.
double Xi {it->x() - centroid.x()};
double Yi {it->y() - centroid.y()};
double Zi {Xi*Xi + Yi*Yi};
Mxy += (Xi*Yi);
Mxx += (Xi*Xi);
Myy += (Yi*Yi);
Mxz += (Xi*Zi);
Myz += (Yi*Zi);
Mzz += (Zi*Zi);
}
// divide by number of points to get the moments
Mxx /= n_flt;
Myy /= n_flt;
Mxy /= n_flt;
Mxz /= n_flt;
Myz /= n_flt;
Mzz /= n_flt;
// Compute the coefficients of the characteristic polynomial for the circle
// eq 5.60
const double Mz {Mxx + Myy}; // xx + yy = z
const double Cov_xy {Mxx*Myy - Mxy*Mxy}; // this shows up a couple times so cache it here.
const double C3 {4.0*Mz};
const double C2 {-3.0*(Mz*Mz) - Mzz};
const double C1 {Mz*(Mzz - (Mz*Mz)) + 4.0*Mz*Cov_xy - (Mxz*Mxz) - (Myz*Myz)};
const double C0 {(Mxz*Mxz)*Myy + (Myz*Myz)*Mxx - 2.0*Mxz*Myz*Mxy - Cov_xy*(Mzz - (Mz*Mz))};
const double C22 = {C2 + C2};
const double C33 = {C3 + C3 + C3};
// solve the characteristic polynomial with Newton's method.
double xnew = 0.0;
double ynew = 1e20;
for (size_t i = 0; i < cycles; ++i) {
const double yold {ynew};
ynew = C0 + xnew * (C1 + xnew*(C2 + xnew * C3));
if (std::abs(ynew) > std::abs(yold)) {
BOOST_LOG_TRIVIAL(error) << "Geometry: Fit is going in the wrong direction.\n";
return Vec2d(std::nan(""), std::nan(""));
}
const double Dy {C1 + xnew*(C22 + xnew*C33)};
const double xold {xnew};
xnew = xold - (ynew / Dy);
if (std::abs((xnew-xold) / xnew) < 1e-12) i = cycles; // converged, we're done here
if (xnew < 0) {
// reset, we went negative
xnew = 0.0;
}
}
// compute the determinant and the circle's parameters now that we've solved.
double DET = xnew*xnew - xnew*Mz + Cov_xy;
Vec2d center(Mxz * (Myy - xnew) - Myz * Mxy, Myz * (Mxx - xnew) - Mxz*Mxy);
center /= (DET * 2.);
return center + centroid;
}
} } // namespace Slic3r::Geometry