64 lines
2.2 KiB
Forth
64 lines
2.2 KiB
Forth
|
#version 110
|
||
|
|
||
|
#define INTENSITY_CORRECTION 0.6
|
||
|
|
||
|
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
||
|
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
||
|
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
||
|
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
||
|
#define LIGHT_TOP_SHININESS 20.0
|
||
|
|
||
|
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
||
|
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
||
|
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
||
|
|
||
|
#define INTENSITY_AMBIENT 0.3
|
||
|
|
||
|
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
|
||
|
const float EPSILON = 0.0001;
|
||
|
|
||
|
uniform vec4 uniform_color;
|
||
|
|
||
|
uniform bool volume_mirrored;
|
||
|
|
||
|
uniform mat4 view_model_matrix;
|
||
|
uniform mat3 normal_matrix;
|
||
|
|
||
|
varying vec3 clipping_planes_dots;
|
||
|
varying vec4 model_pos;
|
||
|
|
||
|
void main()
|
||
|
{
|
||
|
if (any(lessThan(clipping_planes_dots, ZERO)))
|
||
|
discard;
|
||
|
vec3 color = uniform_color.rgb;
|
||
|
float alpha = uniform_color.a;
|
||
|
|
||
|
vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
|
||
|
#ifdef FLIP_TRIANGLE_NORMALS
|
||
|
triangle_normal = -triangle_normal;
|
||
|
#endif
|
||
|
|
||
|
if (volume_mirrored)
|
||
|
triangle_normal = -triangle_normal;
|
||
|
|
||
|
// First transform the normal into camera space and normalize the result.
|
||
|
vec3 eye_normal = normalize(normal_matrix * triangle_normal);
|
||
|
|
||
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||
|
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
||
|
|
||
|
// x = diffuse, y = specular;
|
||
|
vec2 intensity = vec2(0.0);
|
||
|
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||
|
vec3 position = (view_model_matrix * model_pos).xyz;
|
||
|
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
||
|
|
||
|
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||
|
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
||
|
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||
|
|
||
|
gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
|
||
|
}
|