PrusaSlicer-NonPlainar/tests/sla_print/sla_print_tests_main.cpp

554 lines
17 KiB
C++
Raw Normal View History

#include <map>
// Debug
#include <fstream>
#include <gtest/gtest.h>
#include "libslic3r/libslic3r.h"
#include "libslic3r/Format/OBJ.hpp"
#include "libslic3r/SLAPrint.hpp"
#include "libslic3r/TriangleMesh.hpp"
#include "libslic3r/SLA/SLAPad.hpp"
#include "libslic3r/SLA/SLASupportTreeBuilder.hpp"
#include "libslic3r/SLA/SLASupportTreeBuildsteps.hpp"
#include "libslic3r/SLA/SLAAutoSupports.hpp"
#include "libslic3r/SLA/SLARaster.hpp"
#include "libslic3r/MTUtils.hpp"
#include "libslic3r/SVG.hpp"
#if defined(WIN32) || defined(_WIN32)
#define PATH_SEPARATOR "\\"
#else
#define PATH_SEPARATOR "/"
#endif
namespace {
using namespace Slic3r;
TriangleMesh load_model(const std::string &obj_filename)
{
TriangleMesh mesh;
auto fpath = std::string(TEST_DATA_DIR PATH_SEPARATOR) + obj_filename;
load_obj(fpath.c_str(), &mesh);
return mesh;
}
enum e_validity {
ASSUME_NO_EMPTY = 1,
ASSUME_MANIFOLD = 2,
ASSUME_NO_REPAIR = 4
};
void check_validity(const TriangleMesh &input_mesh,
int flags = ASSUME_NO_EMPTY | ASSUME_MANIFOLD |
ASSUME_NO_REPAIR)
{
TriangleMesh mesh{input_mesh};
if (flags & ASSUME_NO_EMPTY) {
ASSERT_FALSE(mesh.empty());
} else if (mesh.empty())
return; // If it can be empty and it is, there is nothing left to do.
ASSERT_TRUE(stl_validate(&mesh.stl));
bool do_update_shared_vertices = false;
mesh.repair(do_update_shared_vertices);
if (flags & ASSUME_NO_REPAIR) {
ASSERT_FALSE(mesh.needed_repair());
}
if (flags & ASSUME_MANIFOLD) {
mesh.require_shared_vertices();
if (!mesh.is_manifold()) mesh.WriteOBJFile("non_manifold.obj");
ASSERT_TRUE(mesh.is_manifold());
}
}
struct PadByproducts
{
ExPolygons model_contours;
ExPolygons support_contours;
TriangleMesh mesh;
};
void test_pad(const std::string & obj_filename,
const sla::PadConfig &padcfg,
PadByproducts & out)
{
ASSERT_TRUE(padcfg.validate().empty());
TriangleMesh mesh = load_model(obj_filename);
ASSERT_FALSE(mesh.empty());
// Create pad skeleton only from the model
Slic3r::sla::pad_blueprint(mesh, out.model_contours);
ASSERT_FALSE(out.model_contours.empty());
// Create the pad geometry for the model contours only
Slic3r::sla::create_pad({}, out.model_contours, out.mesh, padcfg);
check_validity(out.mesh);
auto bb = out.mesh.bounding_box();
ASSERT_DOUBLE_EQ(bb.max.z() - bb.min.z(),
padcfg.full_height());
}
void test_pad(const std::string & obj_filename,
const sla::PadConfig &padcfg = {})
{
PadByproducts byproducts;
test_pad(obj_filename, padcfg, byproducts);
}
struct SupportByproducts
{
std::vector<float> slicegrid;
std::vector<ExPolygons> model_slices;
sla::SupportTreeBuilder supporttree;
};
const constexpr float CLOSING_RADIUS = 0.005f;
void check_support_tree_integrity(const sla::SupportTreeBuilder &stree,
const sla::SupportConfig &cfg)
{
double gnd = stree.ground_level;
double H1 = cfg.max_solo_pillar_height_mm;
double H2 = cfg.max_dual_pillar_height_mm;
for (const sla::Pillar &pillar : stree.pillars()) {
if (std::abs(pillar.endpoint().z() - gnd) < EPSILON) {
double h = pillar.height;
if (h > H1) ASSERT_GE(pillar.links, 1);
else if(h > H2) { ASSERT_GE(pillar.links, 2); }
}
ASSERT_LE(pillar.links, cfg.pillar_cascade_neighbors);
ASSERT_LE(pillar.bridges, cfg.max_bridges_on_pillar);
}
double max_bridgelen = 0.;
auto chck_bridge = [&cfg](const sla::Bridge &bridge, double &max_brlen) {
Vec3d n = bridge.endp - bridge.startp;
double d = sla::distance(n);
max_brlen = std::max(d, max_brlen);
double z = n.z();
double polar = std::acos(z / d);
double slope = -polar + PI / 2.;
ASSERT_TRUE(slope >= cfg.bridge_slope || slope <= -cfg.bridge_slope);
};
for (auto &bridge : stree.bridges()) chck_bridge(bridge, max_bridgelen);
ASSERT_LE(max_bridgelen, cfg.max_bridge_length_mm);
max_bridgelen = 0;
for (auto &bridge : stree.crossbridges()) chck_bridge(bridge, max_bridgelen);
double md = cfg.max_pillar_link_distance_mm / std::cos(-cfg.bridge_slope);
ASSERT_LE(max_bridgelen, md);
}
void test_supports(const std::string & obj_filename,
const sla::SupportConfig &supportcfg,
SupportByproducts & out)
{
using namespace Slic3r;
TriangleMesh mesh = load_model(obj_filename);
ASSERT_FALSE(mesh.empty());
TriangleMeshSlicer slicer{&mesh};
auto bb = mesh.bounding_box();
double zmin = bb.min.z();
double zmax = bb.max.z();
double gnd = zmin - supportcfg.object_elevation_mm;
auto layer_h = 0.05f;
out.slicegrid = grid(float(gnd), float(zmax), layer_h);
slicer.slice(out.slicegrid , CLOSING_RADIUS, &out.model_slices, []{});
// Create the special index-triangle mesh with spatial indexing which
// is the input of the support point and support mesh generators
sla::EigenMesh3D emesh{mesh};
// Create the support point generator
sla::SLAAutoSupports::Config autogencfg;
autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
sla::SLAAutoSupports point_gen{emesh, out.model_slices, out.slicegrid,
autogencfg, [] {}, [](int) {}};
// Get the calculated support points.
std::vector<sla::SupportPoint> support_points = point_gen.output();
int validityflags = ASSUME_NO_REPAIR;
// If there is no elevation, support points shall be removed from the
// bottom of the object.
if (supportcfg.object_elevation_mm < EPSILON) {
sla::remove_bottom_points(support_points, zmin,
supportcfg.base_height_mm);
} else {
// Should be support points at least on the bottom of the model
ASSERT_FALSE(support_points.empty());
// Also the support mesh should not be empty.
validityflags |= ASSUME_NO_EMPTY;
}
// Generate the actual support tree
sla::SupportTreeBuilder treebuilder;
treebuilder.build(sla::SupportableMesh{emesh, support_points, supportcfg});
check_support_tree_integrity(treebuilder, supportcfg);
const TriangleMesh &output_mesh = treebuilder.retrieve_mesh();
check_validity(output_mesh, validityflags);
// Quick check if the dimensions and placement of supports are correct
auto obb = output_mesh.bounding_box();
ASSERT_DOUBLE_EQ(obb.min.z(), zmin - supportcfg.object_elevation_mm);
ASSERT_LE(obb.max.z(), zmax);
// Move out the support tree into the byproducts, we can examine it further
// in various tests.
out.supporttree = std::move(treebuilder);
}
void test_supports(const std::string & obj_filename,
const sla::SupportConfig &supportcfg = {})
{
SupportByproducts byproducts;
test_supports(obj_filename, supportcfg, byproducts);
}
void test_support_model_collision(
const std::string & obj_filename,
const sla::SupportConfig &input_supportcfg = {})
{
SupportByproducts byproducts;
sla::SupportConfig supportcfg = input_supportcfg;
// Set head penetration to a small negative value which should ensure that
// the supports will not touch the model body.
supportcfg.head_penetration_mm = -0.1;
test_supports(obj_filename, supportcfg, byproducts);
// Slice the support mesh given the slice grid of the model.
std::vector<ExPolygons> support_slices =
byproducts.supporttree.slice(byproducts.slicegrid, CLOSING_RADIUS);
// The slices originate from the same slice grid so the numbers must match
ASSERT_EQ(support_slices.size(), byproducts.model_slices.size());
bool notouch = true;
for (size_t n = 0; notouch && n < support_slices.size(); ++n) {
const ExPolygons &sup_slice = support_slices[n];
const ExPolygons &mod_slice = byproducts.model_slices[n];
Polygons intersections = intersection(sup_slice, mod_slice);
notouch = notouch && intersections.empty();
}
ASSERT_TRUE(notouch);
}
const char * const BELOW_PAD_TEST_OBJECTS[] = {
"20mm_cube.obj",
"V.obj",
};
const char * const AROUND_PAD_TEST_OBJECTS[] = {
"20mm_cube.obj",
"V.obj",
"frog_legs.obj",
"cube_with_concave_hole_enlarged.obj",
};
const char *const SUPPORT_TEST_MODELS[] = {
"cube_with_concave_hole_enlarged_standing.obj",
};
} // namespace
template <class I, class II> void test_pairhash()
{
std::map<II, std::pair<I, I> > ints;
for (I i = 0; i < 1000; ++i)
for (I j = 0; j < 1000; ++j) {
if (j != i) {
II hash_ij = sla::pairhash<I, II>(i, j);
II hash_ji = sla::pairhash<I, II>(j, i);
ASSERT_EQ(hash_ij, hash_ji);
auto it = ints.find(hash_ij);
if (it != ints.end()) {
ASSERT_TRUE(
(it->second.first == i && it->second.second == j) ||
(it->second.first == j && it->second.second == i));
} else ints[hash_ij] = std::make_pair(i, j);
}
}
}
TEST(SLASupportGeneration, PillarPairHashShouldBeUnique) {
test_pairhash<int, long>();
test_pairhash<unsigned, unsigned>();
test_pairhash<unsigned, unsigned long>();
}
TEST(SLASupportGeneration, FlatPadGeometryIsValid) {
sla::PadConfig padcfg;
// Disable wings
padcfg.wall_height_mm = .0;
for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}
TEST(SLASupportGeneration, WingedPadGeometryIsValid) {
sla::PadConfig padcfg;
// Add some wings to the pad to test the cavity
padcfg.wall_height_mm = 1.;
for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}
TEST(SLASupportGeneration, FlatPadAroundObjectIsValid) {
sla::PadConfig padcfg;
// Add some wings to the pad to test the cavity
padcfg.wall_height_mm = 0.;
// padcfg.embed_object.stick_stride_mm = 0.;
padcfg.embed_object.enabled = true;
padcfg.embed_object.everywhere = true;
for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}
TEST(SLASupportGeneration, WingedPadAroundObjectIsValid) {
sla::PadConfig padcfg;
// Add some wings to the pad to test the cavity
padcfg.wall_height_mm = 1.;
padcfg.embed_object.enabled = true;
padcfg.embed_object.everywhere = true;
for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}
TEST(SLASupportGeneration, ElevatedSupportGeometryIsValid) {
sla::SupportConfig supportcfg;
supportcfg.object_elevation_mm = 5.;
for (auto fname : SUPPORT_TEST_MODELS) test_supports(fname);
}
TEST(SLASupportGeneration, FloorSupportGeometryIsValid) {
sla::SupportConfig supportcfg;
supportcfg.object_elevation_mm = 0;
for (auto &fname: SUPPORT_TEST_MODELS) test_supports(fname, supportcfg);
}
TEST(SLASupportGeneration, SupportsDoNotPierceModel) {
sla::SupportConfig supportcfg;
for (auto fname : SUPPORT_TEST_MODELS)
test_support_model_collision(fname, supportcfg);
}
TEST(SLARasterOutput, DefaultRasterShouldBeEmpty) {
sla::Raster raster;
ASSERT_TRUE(raster.empty());
}
TEST(SLARasterOutput, InitializedRasterShouldBeNONEmpty) {
// Default Prusa SL1 display parameters
sla::Raster::Resolution res{2560, 1440};
sla::Raster::PixelDim pixdim{120. / res.width_px, 68. / res.height_px};
sla::Raster raster;
raster.reset(res, pixdim);
ASSERT_FALSE(raster.empty());
ASSERT_EQ(raster.resolution().width_px, res.width_px);
ASSERT_EQ(raster.resolution().height_px, res.height_px);
ASSERT_DOUBLE_EQ(raster.pixel_dimensions().w_mm, pixdim.w_mm);
ASSERT_DOUBLE_EQ(raster.pixel_dimensions().h_mm, pixdim.h_mm);
}
using TPixel = uint8_t;
static constexpr const TPixel FullWhite = 255;
static constexpr const TPixel FullBlack = 0;
template <class A, int N> constexpr int arraysize(const A (&)[N]) { return N; }
static void check_raster_transformations(sla::Raster::Orientation o,
sla::Raster::TMirroring mirroring)
{
double disp_w = 120., disp_h = 68.;
sla::Raster::Resolution res{2560, 1440};
sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
sla::Raster::Trafo trafo{o, mirroring};
trafo.origin_x = bb.center().x();
trafo.origin_y = bb.center().y();
sla::Raster raster{res, pixdim, trafo};
// create box of size 32x32 pixels (not 1x1 to avoid antialiasing errors)
coord_t pw = 32 * coord_t(std::ceil(scaled<double>(pixdim.w_mm)));
coord_t ph = 32 * coord_t(std::ceil(scaled<double>(pixdim.h_mm)));
ExPolygon box;
box.contour.points = {{-pw, -ph}, {pw, -ph}, {pw, ph}, {-pw, ph}};
double tr_x = scaled<double>(20.), tr_y = tr_x;
box.translate(tr_x, tr_y);
ExPolygon expected_box = box;
// Now calculate the position of the translated box according to output
// trafo.
if (o == sla::Raster::Orientation::roPortrait) expected_box.rotate(PI / 2.);
if (mirroring[X])
for (auto &p : expected_box.contour.points) p.x() = -p.x();
if (mirroring[Y])
for (auto &p : expected_box.contour.points) p.y() = -p.y();
raster.draw(box);
Point expected_coords = expected_box.contour.bounding_box().center();
double rx = unscaled(expected_coords.x() + bb.center().x()) / pixdim.w_mm;
double ry = unscaled(expected_coords.y() + bb.center().y()) / pixdim.h_mm;
auto w = size_t(std::floor(rx));
auto h = res.height_px - size_t(std::floor(ry));
ASSERT_TRUE(w < res.width_px && h < res.height_px);
auto px = raster.read_pixel(w, h);
if (px != FullWhite) {
sla::PNGImage img;
std::fstream outf("out.png", std::ios::out);
outf << img.serialize(raster);
}
ASSERT_EQ(px, FullWhite);
}
TEST(SLARasterOutput, MirroringShouldBeCorrect) {
sla::Raster::TMirroring mirrorings[] = {sla::Raster::NoMirror,
sla::Raster::MirrorX,
sla::Raster::MirrorY,
sla::Raster::MirrorXY};
sla::Raster::Orientation orientations[] = {sla::Raster::roLandscape,
sla::Raster::roPortrait};
for (auto orientation : orientations)
for (auto &mirror : mirrorings)
check_raster_transformations(orientation, mirror);
}
static ExPolygon square_with_hole(double v)
{
ExPolygon poly;
coord_t V = scaled(v / 2.);
poly.contour.points = {{-V, -V}, {V, -V}, {V, V}, {-V, V}};
poly.holes.emplace_back();
V = V / 2;
poly.holes.front().points = {{-V, V}, {V, V}, {V, -V}, {-V, -V}};
return poly;
}
static double pixel_area(TPixel px, const sla::Raster::PixelDim &pxdim)
{
return (pxdim.h_mm * pxdim.w_mm) * px * 1. / (FullWhite - FullBlack);
}
static double raster_white_area(const sla::Raster &raster)
{
if (raster.empty()) return std::nan("");
auto res = raster.resolution();
double a = 0;
for (size_t x = 0; x < res.width_px; ++x)
for (size_t y = 0; y < res.height_px; ++y) {
auto px = raster.read_pixel(x, y);
a += pixel_area(px, raster.pixel_dimensions());
}
return a;
}
static double predict_error(const ExPolygon &p, const sla::Raster::PixelDim &pd)
{
auto lines = p.lines();
double pix_err = pixel_area(FullWhite, pd) / 2.;
// Worst case is when a line is parallel to the shorter axis of one pixel,
// when the line will be composed of the max number of pixels
double pix_l = std::min(pd.h_mm, pd.w_mm);
double error = 0.;
for (auto &l : lines)
error += (unscaled(l.length()) / pix_l) * pix_err;
return error;
}
TEST(SLARasterOutput, RasterizedPolygonAreaShouldMatch) {
double disp_w = 120., disp_h = 68.;
sla::Raster::Resolution res{2560, 1440};
sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
sla::Raster raster{res, pixdim};
auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
ExPolygon poly = square_with_hole(10.);
poly.translate(bb.center().x(), bb.center().y());
raster.draw(poly);
double a = poly.area() / (scaled<double>(1.) * scaled(1.));
double ra = raster_white_area(raster);
double diff = std::abs(a - ra);
ASSERT_LE(diff, predict_error(poly, pixdim));
raster.clear();
poly = square_with_hole(60.);
poly.translate(bb.center().x(), bb.center().y());
raster.draw(poly);
a = poly.area() / (scaled<double>(1.) * scaled(1.));
ra = raster_white_area(raster);
diff = std::abs(a - ra);
ASSERT_LE(diff, predict_error(poly, pixdim));
}
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}