PrusaSlicer-NonPlainar/xs/src/libslic3r/GCodeTimeEstimator.cpp

1167 lines
38 KiB
C++
Raw Normal View History

#include "GCodeTimeEstimator.hpp"
#include <boost/bind.hpp>
#include <cmath>
#include <Shiny/Shiny.h>
2017-12-06 13:12:10 +00:00
static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
static const float MILLISEC_TO_SEC = 0.001f;
static const float INCHES_TO_MM = 25.4f;
static const float DEFAULT_FEEDRATE = 1500.0f; // from Prusa Firmware (Marlin_main.cpp)
static const float DEFAULT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_RETRACT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_AXIS_MAX_FEEDRATE[] = { 500.0f, 500.0f, 12.0f, 120.0f }; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_AXIS_MAX_ACCELERATION[] = { 9000.0f, 9000.0f, 500.0f, 10000.0f }; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_AXIS_MAX_JERK[] = { 10.0f, 10.0f, 0.2f, 2.5f }; // from Prusa Firmware (Configuration.h)
static const float DEFAULT_MINIMUM_FEEDRATE = 0.0f; // from Prusa Firmware (Configuration_adv.h)
static const float DEFAULT_MINIMUM_TRAVEL_FEEDRATE = 0.0f; // from Prusa Firmware (Configuration_adv.h)
static const float DEFAULT_EXTRUDE_FACTOR_OVERRIDE_PERCENTAGE = 1.0f; // 100 percent
2017-12-08 09:50:36 +00:00
static const float PREVIOUS_FEEDRATE_THRESHOLD = 0.0001f;
2017-12-06 13:12:10 +00:00
#if ENABLE_MOVE_STATS
static const std::string MOVE_TYPE_STR[Slic3r::GCodeTimeEstimator::Block::Num_Types] =
{
"Noop",
"Retract",
"Unretract",
"Tool_change",
"Move",
"Extrude"
};
#endif // ENABLE_MOVE_STATS
namespace Slic3r {
void GCodeTimeEstimator::Feedrates::reset()
{
feedrate = 0.0f;
safe_feedrate = 0.0f;
::memset(axis_feedrate, 0, Num_Axis * sizeof(float));
::memset(abs_axis_feedrate, 0, Num_Axis * sizeof(float));
}
float GCodeTimeEstimator::Block::Trapezoid::acceleration_time(float acceleration) const
{
return acceleration_time_from_distance(feedrate.entry, accelerate_until, acceleration);
}
float GCodeTimeEstimator::Block::Trapezoid::cruise_time() const
{
return (feedrate.cruise != 0.0f) ? cruise_distance() / feedrate.cruise : 0.0f;
}
float GCodeTimeEstimator::Block::Trapezoid::deceleration_time(float acceleration) const
{
return acceleration_time_from_distance(feedrate.cruise, (distance - decelerate_after), -acceleration);
}
float GCodeTimeEstimator::Block::Trapezoid::cruise_distance() const
{
return decelerate_after - accelerate_until;
}
float GCodeTimeEstimator::Block::Trapezoid::acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration)
{
return (acceleration != 0.0f) ? (speed_from_distance(initial_feedrate, distance, acceleration) - initial_feedrate) / acceleration : 0.0f;
}
float GCodeTimeEstimator::Block::Trapezoid::speed_from_distance(float initial_feedrate, float distance, float acceleration)
{
// to avoid invalid negative numbers due to numerical imprecision
float value = std::max(0.0f, sqr(initial_feedrate) + 2.0f * acceleration * distance);
return ::sqrt(value);
}
float GCodeTimeEstimator::Block::move_length() const
{
float length = ::sqrt(sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z]));
return (length > 0.0f) ? length : std::abs(delta_pos[E]);
}
float GCodeTimeEstimator::Block::is_extruder_only_move() const
{
return (delta_pos[X] == 0.0f) && (delta_pos[Y] == 0.0f) && (delta_pos[Z] == 0.0f) && (delta_pos[E] != 0.0f);
}
float GCodeTimeEstimator::Block::is_travel_move() const
{
return delta_pos[E] == 0.0f;
}
float GCodeTimeEstimator::Block::acceleration_time() const
{
return trapezoid.acceleration_time(acceleration);
}
float GCodeTimeEstimator::Block::cruise_time() const
{
return trapezoid.cruise_time();
}
float GCodeTimeEstimator::Block::deceleration_time() const
{
return trapezoid.deceleration_time(acceleration);
}
float GCodeTimeEstimator::Block::cruise_distance() const
{
return trapezoid.cruise_distance();
}
void GCodeTimeEstimator::Block::calculate_trapezoid()
{
float distance = move_length();
trapezoid.distance = distance;
trapezoid.feedrate = feedrate;
float accelerate_distance = estimate_acceleration_distance(feedrate.entry, feedrate.cruise, acceleration);
float decelerate_distance = estimate_acceleration_distance(feedrate.cruise, feedrate.exit, -acceleration);
float cruise_distance = distance - accelerate_distance - decelerate_distance;
// Not enough space to reach the nominal feedrate.
// This means no cruising, and we'll have to use intersection_distance() to calculate when to abort acceleration
// and start braking in order to reach the exit_feedrate exactly at the end of this block.
if (cruise_distance < 0.0f)
{
accelerate_distance = clamp(0.0f, distance, intersection_distance(feedrate.entry, feedrate.exit, acceleration, distance));
cruise_distance = 0.0f;
trapezoid.feedrate.cruise = Trapezoid::speed_from_distance(feedrate.entry, accelerate_distance, acceleration);
}
trapezoid.accelerate_until = accelerate_distance;
trapezoid.decelerate_after = accelerate_distance + cruise_distance;
}
float GCodeTimeEstimator::Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
{
// to avoid invalid negative numbers due to numerical imprecision
float value = std::max(0.0f, sqr(target_velocity) - 2.0f * acceleration * distance);
return ::sqrt(value);
}
float GCodeTimeEstimator::Block::estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
{
return (acceleration == 0.0f) ? 0.0f : (sqr(target_rate) - sqr(initial_rate)) / (2.0f * acceleration);
}
float GCodeTimeEstimator::Block::intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
{
return (acceleration == 0.0f) ? 0.0f : (2.0f * acceleration * distance - sqr(initial_rate) + sqr(final_rate)) / (4.0f * acceleration);
}
#if ENABLE_MOVE_STATS
GCodeTimeEstimator::MoveStats::MoveStats()
: count(0)
, time(0.0f)
{
}
#endif // ENABLE_MOVE_STATS
GCodeTimeEstimator::GCodeTimeEstimator()
{
reset();
set_default();
}
void GCodeTimeEstimator::calculate_time_from_text(const std::string& gcode)
{
reset();
_parser.parse_buffer(gcode,
[this](GCodeReader &reader, const GCodeReader::GCodeLine &line)
{ this->_process_gcode_line(reader, line); });
_calculate_time();
#if ENABLE_MOVE_STATS
_log_moves_stats();
#endif // ENABLE_MOVE_STATS
_reset_blocks();
_reset();
}
void GCodeTimeEstimator::calculate_time_from_file(const std::string& file)
{
reset();
_parser.parse_file(file, boost::bind(&GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
_calculate_time();
#if ENABLE_MOVE_STATS
_log_moves_stats();
#endif // ENABLE_MOVE_STATS
_reset_blocks();
_reset();
}
void GCodeTimeEstimator::calculate_time_from_lines(const std::vector<std::string>& gcode_lines)
{
reset();
auto action = [this](GCodeReader &reader, const GCodeReader::GCodeLine &line)
{ this->_process_gcode_line(reader, line); };
for (const std::string& line : gcode_lines)
_parser.parse_line(line, action);
_calculate_time();
#if ENABLE_MOVE_STATS
_log_moves_stats();
#endif // ENABLE_MOVE_STATS
_reset_blocks();
_reset();
}
void GCodeTimeEstimator::add_gcode_line(const std::string& gcode_line)
{
PROFILE_FUNC();
_parser.parse_line(gcode_line,
[this](GCodeReader &reader, const GCodeReader::GCodeLine &line)
{ this->_process_gcode_line(reader, line); });
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::add_gcode_block(const char *ptr)
{
PROFILE_FUNC();
GCodeReader::GCodeLine gline;
auto action = [this](GCodeReader &reader, const GCodeReader::GCodeLine &line)
{ this->_process_gcode_line(reader, line); };
for (; *ptr != 0;) {
gline.reset();
ptr = _parser.parse_line(ptr, gline, action);
2017-12-06 13:12:10 +00:00
}
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::calculate_time()
{
PROFILE_FUNC();
_calculate_time();
#if ENABLE_MOVE_STATS
_log_moves_stats();
#endif // ENABLE_MOVE_STATS
_reset_blocks();
_reset();
}
void GCodeTimeEstimator::set_axis_position(EAxis axis, float position)
{
_state.axis[axis].position = position;
2017-12-06 13:12:10 +00:00
}
void GCodeTimeEstimator::set_axis_max_feedrate(EAxis axis, float feedrate_mm_sec)
{
_state.axis[axis].max_feedrate = feedrate_mm_sec;
}
void GCodeTimeEstimator::set_axis_max_acceleration(EAxis axis, float acceleration)
2017-12-06 13:12:10 +00:00
{
_state.axis[axis].max_acceleration = acceleration;
2017-12-06 13:12:10 +00:00
}
void GCodeTimeEstimator::set_axis_max_jerk(EAxis axis, float jerk)
{
_state.axis[axis].max_jerk = jerk;
}
float GCodeTimeEstimator::get_axis_position(EAxis axis) const
{
return _state.axis[axis].position;
}
float GCodeTimeEstimator::get_axis_max_feedrate(EAxis axis) const
{
return _state.axis[axis].max_feedrate;
}
float GCodeTimeEstimator::get_axis_max_acceleration(EAxis axis) const
{
return _state.axis[axis].max_acceleration;
}
2017-12-06 13:12:10 +00:00
float GCodeTimeEstimator::get_axis_max_jerk(EAxis axis) const
{
return _state.axis[axis].max_jerk;
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::set_feedrate(float feedrate_mm_sec)
2017-12-06 13:12:10 +00:00
{
_state.feedrate = feedrate_mm_sec;
2017-12-06 13:12:10 +00:00
}
float GCodeTimeEstimator::get_feedrate() const
{
return _state.feedrate;
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::set_acceleration(float acceleration_mm_sec2)
{
_state.acceleration = acceleration_mm_sec2;
}
2017-12-06 13:12:10 +00:00
float GCodeTimeEstimator::get_acceleration() const
{
return _state.acceleration;
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::set_retract_acceleration(float acceleration_mm_sec2)
2017-12-06 13:12:10 +00:00
{
_state.retract_acceleration = acceleration_mm_sec2;
2017-12-06 13:12:10 +00:00
}
2017-12-08 09:50:36 +00:00
float GCodeTimeEstimator::get_retract_acceleration() const
2017-12-06 13:12:10 +00:00
{
return _state.retract_acceleration;
2017-12-06 13:12:10 +00:00
}
void GCodeTimeEstimator::set_minimum_feedrate(float feedrate_mm_sec)
{
_state.minimum_feedrate = feedrate_mm_sec;
}
float GCodeTimeEstimator::get_minimum_feedrate() const
{
return _state.minimum_feedrate;
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::set_minimum_travel_feedrate(float feedrate_mm_sec)
2017-12-06 13:12:10 +00:00
{
_state.minimum_travel_feedrate = feedrate_mm_sec;
2017-12-06 13:12:10 +00:00
}
float GCodeTimeEstimator::get_minimum_travel_feedrate() const
{
return _state.minimum_travel_feedrate;
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::set_extrude_factor_override_percentage(float percentage)
{
_state.extrude_factor_override_percentage = percentage;
}
float GCodeTimeEstimator::get_extrude_factor_override_percentage() const
{
return _state.extrude_factor_override_percentage;
}
void GCodeTimeEstimator::set_dialect(GCodeFlavor dialect)
{
_state.dialect = dialect;
}
2017-12-06 13:12:10 +00:00
GCodeFlavor GCodeTimeEstimator::get_dialect() const
2017-12-06 13:12:10 +00:00
{
return _state.dialect;
2017-12-06 13:12:10 +00:00
}
void GCodeTimeEstimator::set_units(GCodeTimeEstimator::EUnits units)
{
_state.units = units;
}
2017-12-06 13:12:10 +00:00
GCodeTimeEstimator::EUnits GCodeTimeEstimator::get_units() const
2017-12-08 09:50:36 +00:00
{
return _state.units;
}
2017-12-08 09:50:36 +00:00
void GCodeTimeEstimator::set_global_positioning_type(GCodeTimeEstimator::EPositioningType type)
{
_state.global_positioning_type = type;
}
2017-12-08 09:50:36 +00:00
GCodeTimeEstimator::EPositioningType GCodeTimeEstimator::get_global_positioning_type() const
{
return _state.global_positioning_type;
}
2017-12-08 09:50:36 +00:00
void GCodeTimeEstimator::set_e_local_positioning_type(GCodeTimeEstimator::EPositioningType type)
{
_state.e_local_positioning_type = type;
}
2017-12-08 09:50:36 +00:00
GCodeTimeEstimator::EPositioningType GCodeTimeEstimator::get_e_local_positioning_type() const
{
return _state.e_local_positioning_type;
}
void GCodeTimeEstimator::add_additional_time(float timeSec)
{
_state.additional_time += timeSec;
}
void GCodeTimeEstimator::set_additional_time(float timeSec)
{
_state.additional_time = timeSec;
}
float GCodeTimeEstimator::get_additional_time() const
{
return _state.additional_time;
}
2017-12-08 09:50:36 +00:00
void GCodeTimeEstimator::set_default()
{
set_units(Millimeters);
set_dialect(gcfRepRap);
set_global_positioning_type(Absolute);
set_e_local_positioning_type(Absolute);
set_feedrate(DEFAULT_FEEDRATE);
set_acceleration(DEFAULT_ACCELERATION);
set_retract_acceleration(DEFAULT_RETRACT_ACCELERATION);
set_minimum_feedrate(DEFAULT_MINIMUM_FEEDRATE);
set_minimum_travel_feedrate(DEFAULT_MINIMUM_TRAVEL_FEEDRATE);
set_extrude_factor_override_percentage(DEFAULT_EXTRUDE_FACTOR_OVERRIDE_PERCENTAGE);
for (unsigned char a = X; a < Num_Axis; ++a)
2017-12-08 09:50:36 +00:00
{
EAxis axis = (EAxis)a;
set_axis_max_feedrate(axis, DEFAULT_AXIS_MAX_FEEDRATE[a]);
set_axis_max_acceleration(axis, DEFAULT_AXIS_MAX_ACCELERATION[a]);
set_axis_max_jerk(axis, DEFAULT_AXIS_MAX_JERK[a]);
2017-12-08 09:50:36 +00:00
}
}
2017-12-08 09:50:36 +00:00
void GCodeTimeEstimator::reset()
{
_time = 0.0f;
#if ENABLE_MOVE_STATS
_moves_stats.clear();
#endif // ENABLE_MOVE_STATS
_reset_blocks();
_reset();
}
2017-12-08 09:50:36 +00:00
float GCodeTimeEstimator::get_time() const
{
return _time;
}
2017-12-08 09:50:36 +00:00
std::string GCodeTimeEstimator::get_time_hms() const
{
float timeinsecs = get_time();
int hours = (int)(timeinsecs / 3600.0f);
timeinsecs -= (float)hours * 3600.0f;
int minutes = (int)(timeinsecs / 60.0f);
timeinsecs -= (float)minutes * 60.0f;
char buffer[64];
if (hours > 0)
::sprintf(buffer, "%dh %dm %ds", hours, minutes, (int)timeinsecs);
else if (minutes > 0)
::sprintf(buffer, "%dm %ds", minutes, (int)timeinsecs);
else
::sprintf(buffer, "%ds", (int)timeinsecs);
return buffer;
2017-12-08 09:50:36 +00:00
}
void GCodeTimeEstimator::_reset()
{
_curr.reset();
_prev.reset();
2017-12-06 13:12:10 +00:00
set_axis_position(X, 0.0f);
set_axis_position(Y, 0.0f);
set_axis_position(Z, 0.0f);
2017-12-06 13:12:10 +00:00
set_additional_time(0.0f);
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::_reset_blocks()
{
_blocks.clear();
}
void GCodeTimeEstimator::_calculate_time()
2017-12-06 13:12:10 +00:00
{
_forward_pass();
_reverse_pass();
_recalculate_trapezoids();
_time += get_additional_time();
for (const Block& block : _blocks)
{
#if ENABLE_MOVE_STATS
float block_time = 0.0f;
block_time += block.acceleration_time();
block_time += block.cruise_time();
block_time += block.deceleration_time();
_time += block_time;
MovesStatsMap::iterator it = _moves_stats.find(block.move_type);
if (it == _moves_stats.end())
it = _moves_stats.insert(MovesStatsMap::value_type(block.move_type, MoveStats())).first;
it->second.count += 1;
it->second.time += block_time;
#else
_time += block.acceleration_time();
_time += block.cruise_time();
_time += block.deceleration_time();
#endif // ENABLE_MOVE_STATS
}
}
void GCodeTimeEstimator::_process_gcode_line(GCodeReader&, const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
std::string cmd = line.cmd();
if (cmd.length() > 1)
{
switch (::toupper(cmd[0]))
{
case 'G':
{
switch (::atoi(&cmd[1]))
{
case 1: // Move
{
_processG1(line);
break;
}
case 4: // Dwell
{
_processG4(line);
break;
}
case 20: // Set Units to Inches
{
_processG20(line);
break;
}
case 21: // Set Units to Millimeters
{
_processG21(line);
break;
}
case 28: // Move to Origin (Home)
{
_processG28(line);
break;
}
case 90: // Set to Absolute Positioning
{
_processG90(line);
break;
}
case 91: // Set to Relative Positioning
{
_processG91(line);
break;
}
case 92: // Set Position
{
_processG92(line);
break;
}
}
break;
}
case 'M':
{
switch (::atoi(&cmd[1]))
{
case 1: // Sleep or Conditional stop
{
_processM1(line);
break;
}
case 82: // Set extruder to absolute mode
{
_processM82(line);
break;
}
case 83: // Set extruder to relative mode
{
_processM83(line);
break;
}
case 109: // Set Extruder Temperature and Wait
{
_processM109(line);
break;
}
case 201: // Set max printing acceleration
{
_processM201(line);
break;
}
case 203: // Set maximum feedrate
{
_processM203(line);
break;
}
case 204: // Set default acceleration
{
_processM204(line);
break;
}
case 205: // Advanced settings
{
_processM205(line);
break;
}
case 221: // Set extrude factor override percentage
{
_processM221(line);
break;
}
case 566: // Set allowable instantaneous speed change
{
_processM566(line);
break;
}
}
break;
}
}
}
2017-12-06 13:12:10 +00:00
}
// Returns the new absolute position on the given axis in dependence of the given parameters
float axis_absolute_position_from_G1_line(GCodeTimeEstimator::EAxis axis, const GCodeReader::GCodeLine& lineG1, GCodeTimeEstimator::EUnits units, bool is_relative, float current_absolute_position)
{
float lengthsScaleFactor = (units == GCodeTimeEstimator::Inches) ? INCHES_TO_MM : 1.0f;
if (lineG1.has(Slic3r::Axis(axis)))
{
float ret = lineG1.value(Slic3r::Axis(axis)) * lengthsScaleFactor;
return is_relative ? current_absolute_position + ret : ret;
}
else
return current_absolute_position;
}
void GCodeTimeEstimator::_processG1(const GCodeReader::GCodeLine& line)
{
// updates axes positions from line
EUnits units = get_units();
float new_pos[Num_Axis];
for (unsigned char a = X; a < Num_Axis; ++a)
{
bool is_relative = (get_global_positioning_type() == Relative);
if (a == E)
is_relative |= (get_e_local_positioning_type() == Relative);
new_pos[a] = axis_absolute_position_from_G1_line((EAxis)a, line, units, is_relative, get_axis_position((EAxis)a));
}
2017-12-06 13:12:10 +00:00
// updates feedrate from line, if present
if (line.has_f())
set_feedrate(std::max(line.f() * MMMIN_TO_MMSEC, get_minimum_feedrate()));
2017-12-06 13:12:10 +00:00
// fills block data
Block block;
// calculates block movement deltas
float max_abs_delta = 0.0f;
for (unsigned char a = X; a < Num_Axis; ++a)
{
block.delta_pos[a] = new_pos[a] - get_axis_position((EAxis)a);
max_abs_delta = std::max(max_abs_delta, std::abs(block.delta_pos[a]));
}
// is it a move ?
if (max_abs_delta == 0.0f)
return;
// calculates block feedrate
_curr.feedrate = std::max(get_feedrate(), block.is_travel_move() ? get_minimum_travel_feedrate() : get_minimum_feedrate());
float distance = block.move_length();
float invDistance = 1.0f / distance;
float min_feedrate_factor = 1.0f;
for (unsigned char a = X; a < Num_Axis; ++a)
{
_curr.axis_feedrate[a] = _curr.feedrate * block.delta_pos[a] * invDistance;
if (a == E)
_curr.axis_feedrate[a] *= get_extrude_factor_override_percentage();
_curr.abs_axis_feedrate[a] = std::abs(_curr.axis_feedrate[a]);
if (_curr.abs_axis_feedrate[a] > 0.0f)
min_feedrate_factor = std::min(min_feedrate_factor, get_axis_max_feedrate((EAxis)a) / _curr.abs_axis_feedrate[a]);
}
block.feedrate.cruise = min_feedrate_factor * _curr.feedrate;
for (unsigned char a = X; a < Num_Axis; ++a)
{
_curr.axis_feedrate[a] *= min_feedrate_factor;
_curr.abs_axis_feedrate[a] *= min_feedrate_factor;
}
// calculates block acceleration
float acceleration = block.is_extruder_only_move() ? get_retract_acceleration() : get_acceleration();
for (unsigned char a = X; a < Num_Axis; ++a)
{
float axis_max_acceleration = get_axis_max_acceleration((EAxis)a);
if (acceleration * std::abs(block.delta_pos[a]) * invDistance > axis_max_acceleration)
acceleration = axis_max_acceleration;
}
block.acceleration = acceleration;
// calculates block exit feedrate
_curr.safe_feedrate = block.feedrate.cruise;
for (unsigned char a = X; a < Num_Axis; ++a)
{
float axis_max_jerk = get_axis_max_jerk((EAxis)a);
if (_curr.abs_axis_feedrate[a] > axis_max_jerk)
_curr.safe_feedrate = std::min(_curr.safe_feedrate, axis_max_jerk);
}
block.feedrate.exit = _curr.safe_feedrate;
// calculates block entry feedrate
float vmax_junction = _curr.safe_feedrate;
if (!_blocks.empty() && (_prev.feedrate > PREVIOUS_FEEDRATE_THRESHOLD))
{
bool prev_speed_larger = _prev.feedrate > block.feedrate.cruise;
float smaller_speed_factor = prev_speed_larger ? (block.feedrate.cruise / _prev.feedrate) : (_prev.feedrate / block.feedrate.cruise);
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
vmax_junction = prev_speed_larger ? block.feedrate.cruise : _prev.feedrate;
float v_factor = 1.0f;
bool limited = false;
for (unsigned char a = X; a < Num_Axis; ++a)
{
// Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
float v_exit = _prev.axis_feedrate[a];
float v_entry = _curr.axis_feedrate[a];
if (prev_speed_larger)
v_exit *= smaller_speed_factor;
if (limited)
{
v_exit *= v_factor;
v_entry *= v_factor;
}
// Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
float jerk =
(v_exit > v_entry) ?
(((v_entry > 0.0f) || (v_exit < 0.0f)) ?
// coasting
(v_exit - v_entry) :
// axis reversal
std::max(v_exit, -v_entry)) :
// v_exit <= v_entry
(((v_entry < 0.0f) || (v_exit > 0.0f)) ?
// coasting
(v_entry - v_exit) :
// axis reversal
std::max(-v_exit, v_entry));
float axis_max_jerk = get_axis_max_jerk((EAxis)a);
if (jerk > axis_max_jerk)
{
v_factor *= axis_max_jerk / jerk;
limited = true;
}
}
if (limited)
vmax_junction *= v_factor;
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
float vmax_junction_threshold = vmax_junction * 0.99f;
// Not coasting. The machine will stop and start the movements anyway, better to start the segment from start.
if ((_prev.safe_feedrate > vmax_junction_threshold) && (_curr.safe_feedrate > vmax_junction_threshold))
vmax_junction = _curr.safe_feedrate;
}
float v_allowable = Block::max_allowable_speed(-acceleration, _curr.safe_feedrate, distance);
block.feedrate.entry = std::min(vmax_junction, v_allowable);
block.max_entry_speed = vmax_junction;
block.flags.nominal_length = (block.feedrate.cruise <= v_allowable);
block.flags.recalculate = true;
block.safe_feedrate = _curr.safe_feedrate;
// calculates block trapezoid
block.calculate_trapezoid();
// updates previous
_prev = _curr;
// updates axis positions
for (unsigned char a = X; a < Num_Axis; ++a)
{
set_axis_position((EAxis)a, new_pos[a]);
}
#if ENABLE_MOVE_STATS
// detects block move type
block.move_type = Block::Noop;
if (block.delta_pos[E] < 0.0f)
{
if ((block.delta_pos[X] != 0.0f) || (block.delta_pos[Y] != 0.0f) || (block.delta_pos[Z] != 0.0f))
block.move_type = Block::Move;
else
block.move_type = Block::Retract;
}
else if (block.delta_pos[E] > 0.0f)
{
if ((block.delta_pos[X] == 0.0f) && (block.delta_pos[Y] == 0.0f) && (block.delta_pos[Z] == 0.0f))
block.move_type = Block::Unretract;
else if ((block.delta_pos[X] != 0.0f) || (block.delta_pos[Y] != 0.0f))
block.move_type = Block::Extrude;
}
else if ((block.delta_pos[X] != 0.0f) || (block.delta_pos[Y] != 0.0f) || (block.delta_pos[Z] != 0.0f))
block.move_type = Block::Move;
#endif // ENABLE_MOVE_STATS
// adds block to blocks list
_blocks.emplace_back(block);
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::_processG4(const GCodeReader::GCodeLine& line)
2017-12-06 13:12:10 +00:00
{
GCodeFlavor dialect = get_dialect();
float value;
if (line.has_value('P', value))
add_additional_time(value * MILLISEC_TO_SEC);
// see: http://reprap.org/wiki/G-code#G4:_Dwell
if ((dialect == gcfRepetier) ||
(dialect == gcfMarlin) ||
(dialect == gcfSmoothie) ||
(dialect == gcfRepRap))
{
if (line.has_value('S', value))
add_additional_time(value);
}
_simulate_st_synchronize();
}
void GCodeTimeEstimator::_processG20(const GCodeReader::GCodeLine& line)
{
set_units(Inches);
}
void GCodeTimeEstimator::_processG21(const GCodeReader::GCodeLine& line)
{
set_units(Millimeters);
2017-12-06 13:12:10 +00:00
}
void GCodeTimeEstimator::_processG28(const GCodeReader::GCodeLine& line)
{
// TODO
}
void GCodeTimeEstimator::_processG90(const GCodeReader::GCodeLine& line)
{
set_global_positioning_type(Absolute);
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::_processG91(const GCodeReader::GCodeLine& line)
{
set_global_positioning_type(Relative);
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::_processG92(const GCodeReader::GCodeLine& line)
{
float lengthsScaleFactor = (get_units() == Inches) ? INCHES_TO_MM : 1.0f;
bool anyFound = false;
2017-12-06 13:12:10 +00:00
if (line.has_x())
{
set_axis_position(X, line.x() * lengthsScaleFactor);
anyFound = true;
}
2017-12-06 13:12:10 +00:00
if (line.has_y())
{
set_axis_position(Y, line.y() * lengthsScaleFactor);
anyFound = true;
}
if (line.has_z())
{
set_axis_position(Z, line.z() * lengthsScaleFactor);
anyFound = true;
}
if (line.has_e())
{
set_axis_position(E, line.e() * lengthsScaleFactor);
anyFound = true;
}
else
_simulate_st_synchronize();
2017-12-06 13:12:10 +00:00
if (!anyFound)
{
for (unsigned char a = X; a < Num_Axis; ++a)
{
set_axis_position((EAxis)a, 0.0f);
}
}
}
void GCodeTimeEstimator::_processM1(const GCodeReader::GCodeLine& line)
{
_simulate_st_synchronize();
}
void GCodeTimeEstimator::_processM82(const GCodeReader::GCodeLine& line)
{
set_e_local_positioning_type(Absolute);
}
void GCodeTimeEstimator::_processM83(const GCodeReader::GCodeLine& line)
{
set_e_local_positioning_type(Relative);
}
void GCodeTimeEstimator::_processM109(const GCodeReader::GCodeLine& line)
{
// TODO
}
void GCodeTimeEstimator::_processM201(const GCodeReader::GCodeLine& line)
{
GCodeFlavor dialect = get_dialect();
// see http://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration
float factor = ((dialect != gcfRepRap) && (get_units() == GCodeTimeEstimator::Inches)) ? INCHES_TO_MM : 1.0f;
if (line.has_x())
set_axis_max_acceleration(X, line.x() * factor);
if (line.has_y())
set_axis_max_acceleration(Y, line.y() * factor);
if (line.has_z())
set_axis_max_acceleration(Z, line.z() * factor);
if (line.has_e())
set_axis_max_acceleration(E, line.e() * factor);
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::_processM203(const GCodeReader::GCodeLine& line)
{
GCodeFlavor dialect = get_dialect();
// see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate
if (dialect == gcfRepetier)
return;
// see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate
float factor = (dialect == gcfMarlin) ? 1.0f : MMMIN_TO_MMSEC;
2017-12-06 13:12:10 +00:00
if (line.has_x())
set_axis_max_feedrate(X, line.x() * factor);
if (line.has_y())
set_axis_max_feedrate(Y, line.y() * factor);
if (line.has_z())
set_axis_max_feedrate(Z, line.z() * factor);
if (line.has_e())
set_axis_max_feedrate(E, line.e() * factor);
}
void GCodeTimeEstimator::_processM204(const GCodeReader::GCodeLine& line)
{
float value;
if (line.has_value('S', value))
set_acceleration(value);
if (line.has_value('T', value))
set_retract_acceleration(value);
}
void GCodeTimeEstimator::_processM205(const GCodeReader::GCodeLine& line)
{
if (line.has_x())
{
float max_jerk = line.x();
set_axis_max_jerk(X, max_jerk);
set_axis_max_jerk(Y, max_jerk);
}
if (line.has_y())
set_axis_max_jerk(Y, line.y());
if (line.has_z())
set_axis_max_jerk(Z, line.z());
2017-12-06 13:12:10 +00:00
if (line.has_e())
set_axis_max_jerk(E, line.e());
2017-12-06 13:12:10 +00:00
float value;
if (line.has_value('S', value))
set_minimum_feedrate(value);
if (line.has_value('T', value))
set_minimum_travel_feedrate(value);
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::_processM221(const GCodeReader::GCodeLine& line)
{
float value_s;
float value_t;
if (line.has_value('S', value_s) && !line.has_value('T', value_t))
set_extrude_factor_override_percentage(value_s * 0.01f);
}
void GCodeTimeEstimator::_processM566(const GCodeReader::GCodeLine& line)
{
if (line.has_x())
set_axis_max_jerk(X, line.x() * MMMIN_TO_MMSEC);
2017-12-06 13:12:10 +00:00
if (line.has_y())
set_axis_max_jerk(Y, line.y() * MMMIN_TO_MMSEC);
2017-12-06 13:12:10 +00:00
if (line.has_z())
set_axis_max_jerk(Z, line.z() * MMMIN_TO_MMSEC);
2017-12-06 13:12:10 +00:00
if (line.has_e())
set_axis_max_jerk(E, line.e() * MMMIN_TO_MMSEC);
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::_simulate_st_synchronize()
{
_calculate_time();
_reset_blocks();
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::_forward_pass()
{
if (_blocks.size() > 1)
{
for (unsigned int i = 0; i < (unsigned int)_blocks.size() - 1; ++i)
{
_planner_forward_pass_kernel(_blocks[i], _blocks[i + 1]);
}
}
}
2017-12-06 13:12:10 +00:00
void GCodeTimeEstimator::_reverse_pass()
2017-12-08 09:50:36 +00:00
{
if (_blocks.size() > 1)
{
for (int i = (int)_blocks.size() - 1; i >= 1; --i)
{
_planner_reverse_pass_kernel(_blocks[i - 1], _blocks[i]);
}
}
2017-12-08 09:50:36 +00:00
}
void GCodeTimeEstimator::_planner_forward_pass_kernel(Block& prev, Block& curr)
{
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (!prev.flags.nominal_length)
{
if (prev.feedrate.entry < curr.feedrate.entry)
{
float entry_speed = std::min(curr.feedrate.entry, Block::max_allowable_speed(-prev.acceleration, prev.feedrate.entry, prev.move_length()));
// Check for junction speed change
if (curr.feedrate.entry != entry_speed)
{
curr.feedrate.entry = entry_speed;
curr.flags.recalculate = true;
}
}
}
}
2017-12-08 09:50:36 +00:00
void GCodeTimeEstimator::_planner_reverse_pass_kernel(Block& curr, Block& next)
{
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
if (curr.feedrate.entry != curr.max_entry_speed)
2017-12-08 09:50:36 +00:00
{
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
if (!curr.flags.nominal_length && (curr.max_entry_speed > next.feedrate.entry))
curr.feedrate.entry = std::min(curr.max_entry_speed, Block::max_allowable_speed(-curr.acceleration, next.feedrate.entry, curr.move_length()));
else
curr.feedrate.entry = curr.max_entry_speed;
curr.flags.recalculate = true;
}
}
void GCodeTimeEstimator::_recalculate_trapezoids()
2017-12-08 09:50:36 +00:00
{
Block* curr = nullptr;
Block* next = nullptr;
for (Block& b : _blocks)
{
curr = next;
next = &b;
if (curr != nullptr)
{
// Recalculate if current block entry or exit junction speed has changed.
if (curr->flags.recalculate || next->flags.recalculate)
{
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
Block block = *curr;
block.feedrate.exit = next->feedrate.entry;
block.calculate_trapezoid();
curr->trapezoid = block.trapezoid;
curr->flags.recalculate = false; // Reset current only to ensure next trapezoid is computed
}
}
}
// Last/newest block in buffer. Always recalculated.
if (next != nullptr)
{
Block block = *next;
block.feedrate.exit = next->safe_feedrate;
block.calculate_trapezoid();
next->trapezoid = block.trapezoid;
next->flags.recalculate = false;
}
}
#if ENABLE_MOVE_STATS
void GCodeTimeEstimator::_log_moves_stats() const
{
float moves_count = 0.0f;
for (const MovesStatsMap::value_type& move : _moves_stats)
{
moves_count += (float)move.second.count;
}
for (const MovesStatsMap::value_type& move : _moves_stats)
{
std::cout << MOVE_TYPE_STR[move.first];
std::cout << ": count " << move.second.count << " (" << 100.0f * (float)move.second.count / moves_count << "%)";
std::cout << " - time: " << move.second.time << "s (" << 100.0f * move.second.time / _time << "%)";
std::cout << std::endl;
}
std::cout << std::endl;
}
#endif // ENABLE_MOVE_STATS
}