PrusaSlicer-NonPlainar/xs/src/libslic3r/Fill/FillGyroid.cpp

237 lines
9.0 KiB
C++
Raw Normal View History

#include "../ClipperUtils.hpp"
#include "../PolylineCollection.hpp"
#include "../Surface.hpp"
#include <cmath>
#include <algorithm>
#include <iostream>
#include "FillGyroid.hpp"
namespace Slic3r {
Polyline FillGyroid::makeLineVert(double xPos, double yPos, double width, double height, double currentXBegin, double segmentSize, coord_t scaleFactor,
double zCs, double zSn, bool flip, double decal){
double maxSlope = abs(abs(zCs)-abs(zSn));
Polyline polyline;
polyline.points.push_back(Point(coord_t((std::max(std::min(currentXBegin, xPos+width),xPos) + decal) * scaleFactor), coord_t(yPos * scaleFactor)));
for(double y=yPos;y<yPos+height+segmentSize;y+=segmentSize){
if(y>yPos+height) y = yPos+height;
double ySn = sin(y +(zCs<0?3.14:0) + 3.14);
double yCs = cos(y +(zCs<0?3.14:0) + 3.14+(!flip?0:3.14));
double a = ySn;
double b = -zCs;
double res = zSn*yCs;
double r = sqrt(a*a + b*b);
double x = asin(a/r) + asin(res/r) +3.14;
x += currentXBegin;
double ydeviation = 0.5*(flip?-1:1)*(zSn>0?-1:1)*decal*(1-maxSlope)*(res/r - a/r);
polyline.points.push_back(Point(coord_t((std::max(std::min(x, xPos+width),xPos)+decal-ydeviation/2) * scaleFactor), coord_t((y + ydeviation) * scaleFactor)));
}
return polyline;
}
Polyline FillGyroid::makeLineHori(double xPos, double yPos, double width, double height, double currentYBegin, double segmentSize, coord_t scaleFactor,
double zCs, double zSn, bool flip, double decal){
double maxSlope = abs(abs(zCs)-abs(zSn));
Polyline polyline;
polyline.points.push_back(Point(coord_t(xPos * scaleFactor), coord_t((std::max(std::min(currentYBegin, yPos+height),yPos)+decal) * scaleFactor)));
for(double x=xPos;x<xPos+width+segmentSize;x+=segmentSize){
if(x>xPos+width) x = xPos+width;
double xSn = sin(x +(zSn<0?3.14:0) +(flip?0:3.14));
double xCs = cos(x +(zSn<0?3.14:0) );
double a = xCs;
double b = -zSn;
double res = zCs*xSn;
double r = sqrt(a*a + b*b);
double y = asin(a/r) + asin(res/r) +3.14/2;
y += currentYBegin;
double xdeviation = 0.5*(flip?-1:1)*(zCs>0?-1:1)*decal*(1-maxSlope)*(res/r - a/r);
polyline.points.push_back(Point(coord_t((x + xdeviation) * scaleFactor), coord_t((std::max(std::min(y, yPos+height),yPos)+decal-xdeviation/2) * scaleFactor)));
}
return polyline;
}
inline void FillGyroid::correctOrderAndAdd(const int num, Polyline &poly, Polylines &array){
if(num%2==0){
Points temp(poly.points.rbegin(), poly.points.rend());
poly.points.assign(temp.begin(),temp.end());
}
array.push_back(poly);
}
// Generate a set of curves (array of array of 2d points) that describe a
// horizontal slice of a truncated regular octahedron with a specified
// grid square size.
Polylines FillGyroid::makeGrid(coord_t gridZ, double density, double layer_width, size_t gridWidth, size_t gridHeight, size_t curveType)
{
coord_t scaleFactor = coord_t(scale_(layer_width) / density);
Polylines result;
Polyline *polyline2;
double segmentSize = density/2;
double decal = layer_width*density;
double xPos = 0, yPos=0, width=gridWidth, height=gridHeight;
//scale factor for 5% : 8 712 388
// 1z = 10^-6 mm ?
double z = gridZ/(1.0 * scaleFactor);
double zSn = sin(z);
double zCs = cos(z);
int numLine = 0;
if(abs(zSn)<=abs(zCs)){
//vertical
//begin to first one
int iter = 1;
double currentXBegin = xPos - PI/2;
currentXBegin = PI*(int)(currentXBegin/PI -1);
iter = (int)(currentXBegin/PI +1)%2;
bool flip = iter%2==1;
// bool needNewLine =false;
while(currentXBegin<xPos+width-PI/2){
correctOrderAndAdd(numLine, makeLineVert(xPos, yPos, width, height, currentXBegin, segmentSize, scaleFactor, zCs, zSn, flip, 0), result);
numLine++;
//then, return by the other side
iter++;
currentXBegin = currentXBegin + PI;
flip = iter%2==1;
if(currentXBegin < xPos+width-PI/2){
correctOrderAndAdd(numLine, makeLineVert(xPos, yPos, width, height, currentXBegin, segmentSize, scaleFactor, zCs, zSn, flip, 0), result);
numLine++;
// relance
iter++;
currentXBegin = currentXBegin + PI;
flip = iter%2==1;
}
}
}else{
//horizontal
//begin to first one
int iter = 1;
//search first line output
double currentYBegin = yPos ;
currentYBegin = PI*(int)(currentYBegin/PI -0);
iter = (int)(currentYBegin/PI +1)%2;
bool flip = iter%2==1;
while(currentYBegin < yPos+width){
correctOrderAndAdd(numLine, makeLineHori(xPos, yPos, width, height, currentYBegin, segmentSize, scaleFactor, zCs, zSn, flip, 0), result);
numLine++;
//then, return by the other side
iter++;
currentYBegin = currentYBegin + PI;
flip = iter%2==1;
if(currentYBegin<yPos+width){
correctOrderAndAdd(numLine, makeLineHori(xPos, yPos, width, height, currentYBegin, segmentSize, scaleFactor, zCs, zSn, flip, 0), result);
numLine++;
//relance
iter++;
currentYBegin = currentYBegin + PI;
flip = iter%2==1;
}
}
}
return result;
}
void FillGyroid::_fill_surface_single(
const FillParams &params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon &expolygon,
Polylines &polylines_out)
{
// no rotation is supported for this infill pattern
BoundingBox bb = expolygon.contour.bounding_box();
coord_t distance = coord_t(scale_(this->spacing) / (params.density*this->scaling));
// align bounding box to a multiple of our grid module
bb.merge(_align_to_grid(bb.min, Point(2*M_PI*distance, 2*M_PI*distance)));
// generate pattern
Polylines polylines = makeGrid(
(coord_t)scale_(this->z),
params.density*this->scaling,
this->spacing,
(size_t)(ceil(bb.size().x / distance) + 1),
(size_t)(ceil(bb.size().y / distance) + 1),
(size_t)(((this->layer_id/thickness_layers) % 2) + 1) );
// move pattern in place
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it)
it->translate(bb.min.x, bb.min.y);
// clip pattern to boundaries
polylines = intersection_pl(polylines, (Polygons)expolygon);
// connect lines
if (! params.dont_connect && ! polylines.empty()) { // prevent calling leftmost_point() on empty collections
ExPolygon expolygon_off;
{
ExPolygons expolygons_off = offset_ex(expolygon, (float)SCALED_EPSILON);
if (! expolygons_off.empty()) {
// When expanding a polygon, the number of islands could only shrink. Therefore the offset_ex shall generate exactly one expanded island for one input island.
assert(expolygons_off.size() == 1);
std::swap(expolygon_off, expolygons_off.front());
}
}
Polylines chained = PolylineCollection::chained_path_from(
#if SLIC3R_CPPVER >= 11
std::move(polylines),
#else
polylines,
#endif
PolylineCollection::leftmost_point(polylines), false); // reverse allowed
bool first = true;
for (Polylines::iterator it_polyline = chained.begin(); it_polyline != chained.end(); ++ it_polyline) {
if (! first) {
// Try to connect the lines.
Points &pts_end = polylines_out.back().points;
const Point &first_point = it_polyline->points.front();
const Point &last_point = pts_end.back();
// TODO: we should also check that both points are on a fill_boundary to avoid
// connecting paths on the boundaries of internal regions
// TODO: avoid crossing current infill path
if (first_point.distance_to(last_point) <= 5 * distance &&
expolygon_off.contains(Line(last_point, first_point))) {
// Append the polyline.
pts_end.insert(pts_end.end(), it_polyline->points.begin(), it_polyline->points.end());
continue;
}
}
// The lines cannot be connected.
#if SLIC3R_CPPVER >= 11
polylines_out.push_back(std::move(*it_polyline));
#else
polylines_out.push_back(Polyline());
std::swap(polylines_out.back(), *it_polyline);
#endif
first = false;
}
}
}
} // namespace Slic3r