PrusaSlicer-NonPlainar/src/libslic3r/PrintExport.hpp

427 lines
14 KiB
C++
Raw Normal View History

#ifndef PRINTEXPORT_HPP
#define PRINTEXPORT_HPP
#include "Print.hpp"
// For png export of the sliced model
#include <fstream>
#include <sstream>
#include <boost/log/trivial.hpp>
#include "Rasterizer/Rasterizer.hpp"
#include <tbb/parallel_for.h>
#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
namespace Slic3r {
enum class FilePrinterFormat {
PNG,
SVG
};
/*
* Interface for a file printer of the slices. Implementation can be an SVG
* or PNG printer or any other format.
*
* The format argument specifies the output format of the printer and it enables
* different implementations of this class template for each supported format.
*
*/
template<FilePrinterFormat format, class LayerFormat = void>
class FilePrinter {
public:
void printConfig(const Print&);
// Draw an ExPolygon which is a polygon inside a slice on the specified layer.
void drawPolygon(const ExPolygon& p, unsigned lyr);
// Tell the printer how many layers should it consider.
void layers(unsigned layernum);
// Get the number of layers in the print.
unsigned layers() const;
/* Switch to a particular layer. If there where less layers then the
* specified layer number than an appropriate number of layers will be
* allocated in the printer.
*/
void beginLayer(unsigned layer);
// Allocate a new layer on top of the last and switch to it.
void beginLayer();
/*
* Finish the selected layer. It means that no drawing is allowed on that
* layer anymore. This fact can be used to prepare the file system output
* data like png comprimation and so on.
*/
void finishLayer(unsigned layer);
// Finish the top layer.
void finishLayer();
// Save all the layers into the file (or dir) specified in the path argument
void save(const std::string& path);
// Save only the selected layer to the file specified in path argument.
void saveLayer(unsigned lyr, const std::string& path);
};
template<class T = void> struct VeryFalse { static const bool value = false; };
// This has to be explicitly implemented in the gui layer or a default zlib
// based implementation is needed.
template<class Backend> class Zipper {
public:
Zipper(const std::string& /*zipfile_path*/) {
static_assert(VeryFalse<Backend>::value,
"No zipper implementation provided!");
}
void next_entry(const std::string& /*fname*/) {}
std::string get_name() { return ""; }
template<class T> Zipper& operator<<(const T& /*arg*/) {
return *this;
}
void close() {}
};
// Implementation for PNG raster output
// Be aware that if a large number of layers are allocated, it can very well
// exhaust the available memory especially on 32 bit platform.
template<class LyrFormat> class FilePrinter<FilePrinterFormat::PNG, LyrFormat> {
struct Layer {
Raster first;
std::stringstream second;
Layer() {}
Layer(const Layer&) = delete;
Layer(Layer&& m):
first(std::move(m.first))/*, second(std::move(m.second))*/ {}
};
// We will save the compressed PNG data into stringstreams which can be done
// in parallel. Later we can write every layer to the disk sequentially.
std::vector<Layer> layers_rst_;
Raster::Resolution res_;
Raster::PixelDim pxdim_;
const Print *print_ = nullptr;
double exp_time_s_ = .0, exp_time_first_s_ = .0;
std::string createIniContent(const std::string& projectname) {
double layer_height = print_?
2018-09-12 09:59:02 +00:00
print_->default_object_config().layer_height.getFloat() :
0.05;
using std::string;
using std::to_string;
auto expt_str = to_string(exp_time_s_);
auto expt_first_str = to_string(exp_time_first_s_);
auto stepnum_str = to_string(static_cast<unsigned>(800*layer_height));
auto layerh_str = to_string(layer_height);
return string(
"action = print\n"
"jobDir = ") + projectname + "\n" +
"expTime = " + expt_str + "\n"
"expTimeFirst = " + expt_first_str + "\n"
"stepNum = " + stepnum_str + "\n"
"wifiOn = 1\n"
"tiltSlow = 60\n"
"tiltFast = 15\n"
"numFade = 10\n"
"startdelay = 0\n"
"layerHeight = " + layerh_str + "\n"
"noteInfo = "
2018-07-03 15:05:09 +00:00
"expTime="+expt_str+"+resinType=generic+layerHeight="
+layerh_str+"+printer=DWARF3\n";
}
// Change this to TOP_LEFT if you want correct PNG orientation
static const Raster::Origin ORIGIN = Raster::Origin::BOTTOM_LEFT;
public:
inline FilePrinter(double width_mm, double height_mm,
unsigned width_px, unsigned height_px,
double exp_time, double exp_time_first):
res_(width_px, height_px),
pxdim_(width_mm/width_px, height_mm/height_px),
exp_time_s_(exp_time),
exp_time_first_s_(exp_time_first)
{
}
FilePrinter(const FilePrinter& ) = delete;
FilePrinter(FilePrinter&& m):
layers_rst_(std::move(m.layers_rst_)),
res_(m.res_),
pxdim_(m.pxdim_) {}
inline void layers(unsigned cnt) { if(cnt > 0) layers_rst_.resize(cnt); }
inline unsigned layers() const { return unsigned(layers_rst_.size()); }
void printConfig(const Print& printconf) { print_ = &printconf; }
inline void drawPolygon(const ExPolygon& p, unsigned lyr) {
assert(lyr < layers_rst_.size());
layers_rst_[lyr].first.draw(p);
}
inline void beginLayer(unsigned lyr) {
if(layers_rst_.size() <= lyr) layers_rst_.resize(lyr+1);
layers_rst_[lyr].first.reset(res_, pxdim_, ORIGIN);
}
inline void beginLayer() {
layers_rst_.emplace_back();
layers_rst_.front().first.reset(res_, pxdim_, ORIGIN);
}
inline void finishLayer(unsigned lyr_id) {
assert(lyr_id < layers_rst_.size());
layers_rst_[lyr_id].first.save(layers_rst_[lyr_id].second,
Raster::Compression::PNG);
layers_rst_[lyr_id].first.reset();
}
inline void finishLayer() {
if(!layers_rst_.empty()) {
layers_rst_.back().first.save(layers_rst_.back().second,
Raster::Compression::PNG);
layers_rst_.back().first.reset();
}
}
inline void save(const std::string& path) {
try {
Zipper<LyrFormat> zipper(path);
std::string project = zipper.get_name();
zipper.next_entry(project);
zipper << createIniContent(project);
for(unsigned i = 0; i < layers_rst_.size(); i++) {
if(layers_rst_[i].second.rdbuf()->in_avail() > 0) {
char lyrnum[6];
std::sprintf(lyrnum, "%.5d", i);
auto zfilename = project + lyrnum + ".png";
zipper.next_entry(zfilename);
zipper << layers_rst_[i].second.rdbuf();
layers_rst_[i].second.str("");
}
}
zipper.close();
} catch(std::exception&) {
BOOST_LOG_TRIVIAL(error) << "Can't create zip file for layers! "
<< path;
return;
}
// wxFileName filepath(path);
// wxFFileOutputStream zipfile(path);
// std::string project = filepath.GetName().ToStdString();
// if(!zipfile.IsOk()) {
// BOOST_LOG_TRIVIAL(error) << "Can't create zip file for layers! "
// << path;
// return;
// }
// wxZipOutputStream zipstream(zipfile);
// wxStdOutputStream pngstream(zipstream);
// zipstream.PutNextEntry("config.ini");
// pngstream << createIniContent(project);
// for(unsigned i = 0; i < layers_rst_.size(); i++) {
// if(layers_rst_[i].second.rdbuf()->in_avail() > 0) {
// char lyrnum[6];
// std::sprintf(lyrnum, "%.5d", i);
// auto zfilename = project + lyrnum + ".png";
// zipstream.PutNextEntry(zfilename);
// pngstream << layers_rst_[i].second.rdbuf();
// layers_rst_[i].second.str("");
// }
// }
// zipstream.Close();
// zipfile.Close();
}
void saveLayer(unsigned lyr, const std::string& path) {
unsigned i = lyr;
assert(i < layers_rst_.size());
char lyrnum[6];
std::sprintf(lyrnum, "%.5d", lyr);
std::string loc = path + "layer" + lyrnum + ".png";
std::fstream out(loc, std::fstream::out | std::fstream::binary);
if(out.good()) {
layers_rst_[i].first.save(out, Raster::Compression::PNG);
} else {
BOOST_LOG_TRIVIAL(error) << "Can't create file for layer";
}
out.close();
layers_rst_[i].first.reset();
}
};
// Let's shadow this eigen interface
inline coord_t px(const Point& p) { return p(0); }
inline coord_t py(const Point& p) { return p(1); }
inline coordf_t px(const Vec2d& p) { return p(0); }
inline coordf_t py(const Vec2d& p) { return p(1); }
template<FilePrinterFormat format, class LayerFormat, class...Args>
void print_to(Print& print,
std::string dirpath,
double width_mm,
double height_mm,
Args&&...args)
{
std::string& dir = dirpath;
// This map will hold the layers sorted by z coordinate. Layers on the
// same height (from different objects) will be mapped to the same key and
// rasterized to the same image.
std::map<long long, LayerPtrs> layers;
2018-09-12 09:59:02 +00:00
auto& objects = print.objects();
// Merge the sliced layers with the support layers
std::for_each(objects.cbegin(), objects.cend(),
[&layers](const PrintObject *o)
{
2018-09-12 09:59:02 +00:00
for(const auto l : o->layers()) {
auto& lyrs = layers[static_cast<long long>(scale_(l->print_z))];
lyrs.push_back(l);
}
2018-09-12 09:59:02 +00:00
for(const auto l : o->support_layers()) {
auto& lyrs = layers[static_cast<long long>(scale_(l->print_z))];
lyrs.push_back(l);
}
});
auto print_bb = print.bounding_box();
Vec2d punsc = unscale(print_bb.size());
// If the print does not fit into the print area we should cry about it.
if(px(punsc) > width_mm || py(punsc) > height_mm) {
BOOST_LOG_TRIVIAL(warning) << "Warning: Print will not fit!" << "\n"
<< "Width needed: " << px(punsc) << "\n"
<< "Height needed: " << py(punsc) << "\n";
}
// Offset for centering the print onto the print area
auto cx = scale_(width_mm)/2 - (px(print_bb.center()) - px(print_bb.min));
auto cy = scale_(height_mm)/2 - (py(print_bb.center()) - py(print_bb.min));
// Create the actual printer, forward any additional arguments to it.
FilePrinter<format, LayerFormat> printer(width_mm, height_mm,
std::forward<Args>(args)...);
printer.printConfig(print);
printer.layers(layers.size()); // Allocate space for all the layers
int st_prev = 0;
const std::string jobdesc = "Rasterizing and compressing sliced layers";
tbb::spin_mutex m;
std::vector<long long> keys;
keys.reserve(layers.size());
for(auto& e : layers) keys.push_back(e.first);
print.set_status(0, jobdesc);
// Method that prints one layer
auto process_layer = [&layers, &keys, &printer, &st_prev, &m,
&jobdesc, print_bb, dir, cx, cy, &print]
(unsigned layer_id)
{
LayerPtrs lrange = layers[keys[layer_id]];
printer.beginLayer(layer_id); // Switch to the appropriate layer
for(Layer *lp : lrange) {
Layer& l = *lp;
ExPolygonCollection slices = l.slices; // Copy the layer slices
// Sort the polygons in the layer
std::stable_sort(slices.expolygons.begin(), slices.expolygons.end(),
[](const ExPolygon& a, const ExPolygon& b) {
return a.contour.contains(b.contour.first_point()) ? false :
true;
});
// Draw all the polygons in the slice to the actual layer.
2018-09-12 09:59:02 +00:00
for (const Point &d : l.object()->copies())
for (ExPolygon slice : slices.expolygons) {
slice.translate(px(d), py(d));
slice.translate(-px(print_bb.min) + cx,
-py(print_bb.min) + cy);
printer.drawPolygon(slice, layer_id);
2018-09-12 09:59:02 +00:00
}
/*if(print.has_support_material() && layer_id > 0) {
BOOST_LOG_TRIVIAL(warning) << "support material for layer "
<< layer_id
<< " defined but export is "
"not yet implemented.";
}*/
}
printer.finishLayer(layer_id); // Finish the layer for later saving it.
auto st = static_cast<int>(layer_id*80.0/layers.size());
m.lock();
if( st - st_prev > 10) {
print.set_status(st, jobdesc);
st_prev = st;
}
m.unlock();
// printer.saveLayer(layer_id, dir); We could save the layer immediately
};
// Print all the layers in parallel
tbb::parallel_for<size_t, decltype(process_layer)>(0,
layers.size(),
process_layer);
// Sequential version (for testing)
// for(unsigned l = 0; l < layers.size(); ++l) process_layer(l);
// print.set_status(100, jobdesc);
// Save the print into the file system.
print.set_status(90, "Writing layers to disk");
printer.save(dir);
print.set_status(100, "Writing layers completed");
}
}
#endif // PRINTEXPORT_HPP