2013-11-22 21:38:30 +00:00
|
|
|
#include "Geometry.hpp"
|
2014-01-10 15:18:55 +00:00
|
|
|
#include "Line.hpp"
|
|
|
|
#include "PolylineCollection.hpp"
|
2013-11-23 22:21:59 +00:00
|
|
|
#include "clipper.hpp"
|
2013-11-22 21:38:30 +00:00
|
|
|
#include <algorithm>
|
2013-11-23 20:39:05 +00:00
|
|
|
#include <map>
|
2014-01-10 10:47:16 +00:00
|
|
|
#include <set>
|
2013-12-12 19:19:33 +00:00
|
|
|
#include <vector>
|
2014-01-09 18:56:12 +00:00
|
|
|
#include "voronoi_visual_utils.hpp"
|
|
|
|
|
|
|
|
using namespace boost::polygon; // provides also high() and low()
|
2013-11-22 21:38:30 +00:00
|
|
|
|
2013-11-23 20:54:56 +00:00
|
|
|
namespace Slic3r { namespace Geometry {
|
2013-11-22 21:38:30 +00:00
|
|
|
|
|
|
|
static bool
|
|
|
|
sort_points (Point a, Point b)
|
|
|
|
{
|
|
|
|
return (a.x < b.x) || (a.x == b.x && a.y < b.y);
|
|
|
|
}
|
|
|
|
|
2013-12-12 19:19:33 +00:00
|
|
|
/* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */
|
2013-11-22 21:38:30 +00:00
|
|
|
void
|
2013-12-12 19:19:33 +00:00
|
|
|
convex_hull(Points &points, Polygon* hull)
|
2013-11-22 21:38:30 +00:00
|
|
|
{
|
2013-11-24 21:42:52 +00:00
|
|
|
assert(points.size() >= 3);
|
2013-11-22 21:38:30 +00:00
|
|
|
// sort input points
|
|
|
|
std::sort(points.begin(), points.end(), sort_points);
|
|
|
|
|
2013-12-12 19:19:33 +00:00
|
|
|
int n = points.size(), k = 0;
|
|
|
|
hull->points.resize(2*n);
|
|
|
|
|
|
|
|
// Build lower hull
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
while (k >= 2 && points[i].ccw(hull->points[k-2], hull->points[k-1]) <= 0) k--;
|
|
|
|
hull->points[k++] = points[i];
|
2013-11-22 21:38:30 +00:00
|
|
|
}
|
2013-12-12 19:19:33 +00:00
|
|
|
|
|
|
|
// Build upper hull
|
|
|
|
for (int i = n-2, t = k+1; i >= 0; i--) {
|
|
|
|
while (k >= t && points[i].ccw(hull->points[k-2], hull->points[k-1]) <= 0) k--;
|
|
|
|
hull->points[k++] = points[i];
|
2013-11-22 21:38:30 +00:00
|
|
|
}
|
2013-12-12 19:19:33 +00:00
|
|
|
|
|
|
|
hull->points.resize(k);
|
2013-11-22 21:38:30 +00:00
|
|
|
|
2013-12-12 19:19:33 +00:00
|
|
|
assert( hull->points.front().coincides_with(hull->points.back()) );
|
|
|
|
hull->points.pop_back();
|
2013-11-22 21:38:30 +00:00
|
|
|
}
|
|
|
|
|
2013-11-23 20:39:05 +00:00
|
|
|
/* accepts an arrayref of points and returns a list of indices
|
|
|
|
according to a nearest-neighbor walk */
|
|
|
|
void
|
|
|
|
chained_path(Points &points, std::vector<Points::size_type> &retval, Point start_near)
|
|
|
|
{
|
|
|
|
PointPtrs my_points;
|
|
|
|
std::map<Point*,Points::size_type> indices;
|
|
|
|
my_points.reserve(points.size());
|
|
|
|
for (Points::iterator it = points.begin(); it != points.end(); ++it) {
|
|
|
|
my_points.push_back(&*it);
|
|
|
|
indices[&*it] = it - points.begin();
|
|
|
|
}
|
|
|
|
|
|
|
|
retval.reserve(points.size());
|
|
|
|
while (!my_points.empty()) {
|
|
|
|
Points::size_type idx = start_near.nearest_point_index(my_points);
|
|
|
|
start_near = *my_points[idx];
|
|
|
|
retval.push_back(indices[ my_points[idx] ]);
|
|
|
|
my_points.erase(my_points.begin() + idx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
chained_path(Points &points, std::vector<Points::size_type> &retval)
|
|
|
|
{
|
|
|
|
if (points.empty()) return; // can't call front() on empty vector
|
|
|
|
chained_path(points, retval, points.front());
|
|
|
|
}
|
|
|
|
|
2013-11-23 22:21:59 +00:00
|
|
|
/* retval and items must be different containers */
|
|
|
|
template<class T>
|
|
|
|
void
|
|
|
|
chained_path_items(Points &points, T &items, T &retval)
|
|
|
|
{
|
|
|
|
std::vector<Points::size_type> indices;
|
|
|
|
chained_path(points, indices);
|
|
|
|
for (std::vector<Points::size_type>::const_iterator it = indices.begin(); it != indices.end(); ++it)
|
|
|
|
retval.push_back(items[*it]);
|
|
|
|
}
|
|
|
|
template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval);
|
|
|
|
|
2014-01-09 18:56:12 +00:00
|
|
|
void
|
|
|
|
MedialAxis::build(Polylines* polylines)
|
|
|
|
{
|
|
|
|
// build bounding box (we use it for clipping infinite segments)
|
|
|
|
this->bb = BoundingBox(this->lines);
|
|
|
|
|
|
|
|
construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd);
|
|
|
|
|
2014-01-10 15:18:55 +00:00
|
|
|
// iterate through the diagram by starting from a random edge
|
|
|
|
this->edge_cache.clear();
|
|
|
|
for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge)
|
|
|
|
this->process_edge(*edge, polylines);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
MedialAxis::process_edge(const VD::edge_type& edge, Polylines* polylines)
|
|
|
|
{
|
|
|
|
// if we already visited this edge or its twin skip it
|
|
|
|
if (this->edge_cache.count(&edge) > 0) return;
|
2014-01-10 10:47:16 +00:00
|
|
|
|
2014-01-10 15:18:55 +00:00
|
|
|
// mark this as already visited
|
|
|
|
(void)this->edge_cache.insert(&edge);
|
|
|
|
(void)this->edge_cache.insert(edge.twin());
|
|
|
|
|
|
|
|
if (this->is_valid_edge(edge)) {
|
|
|
|
Line line = Line(
|
|
|
|
Point( edge.vertex0()->x(), edge.vertex0()->y() ),
|
|
|
|
Point( edge.vertex1()->x(), edge.vertex1()->y() )
|
|
|
|
);
|
|
|
|
bool appended = false;
|
|
|
|
if (!polylines->empty()) {
|
|
|
|
Polyline &last_p = polylines->back();
|
|
|
|
if (line.a == last_p.points.back()) {
|
|
|
|
// if this line starts where last polyline ends, just append the other point
|
|
|
|
last_p.points.push_back(line.b);
|
|
|
|
appended = true;
|
|
|
|
} else if (line.b == last_p.points.back()) {
|
|
|
|
// if this line ends where last polyline ends, just append the other point
|
|
|
|
last_p.points.push_back(line.a);
|
|
|
|
appended = true;
|
2014-01-09 18:56:12 +00:00
|
|
|
}
|
|
|
|
}
|
2014-01-10 15:18:55 +00:00
|
|
|
if (polylines->empty() || !appended) {
|
|
|
|
// start a new polyline
|
|
|
|
polylines->push_back(Polyline());
|
|
|
|
Polyline &p = polylines->back();
|
|
|
|
p.points.push_back(line.a);
|
|
|
|
p.points.push_back(line.b);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// look for connected edges (on both sides)
|
|
|
|
this->process_edge_neighbors(edge, polylines);
|
|
|
|
this->process_edge_neighbors(*edge.twin(), polylines);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
MedialAxis::process_edge_neighbors(const VD::edge_type& edge, Polylines* polylines)
|
|
|
|
{
|
|
|
|
std::vector<const VD::edge_type*> neighbors;
|
|
|
|
for (const VD::edge_type* neighbor = edge.rot_next(); neighbor != &edge; neighbor = neighbor->rot_next()) {
|
|
|
|
// skip already seen edges
|
|
|
|
if (this->edge_cache.count(neighbor) > 0) continue;
|
|
|
|
|
|
|
|
// skip edges that we wouldn't include in the MAT anyway
|
|
|
|
if (!this->is_valid_edge(*neighbor)) continue;
|
|
|
|
|
|
|
|
neighbors.push_back(neighbor);
|
|
|
|
}
|
|
|
|
|
|
|
|
// process neighbors recursively
|
|
|
|
if (neighbors.size() == 1) {
|
|
|
|
this->process_edge(*neighbors.front(), polylines);
|
|
|
|
} else if (neighbors.size() > 1) {
|
|
|
|
// close current polyline and start a new one for each branch
|
|
|
|
for (std::vector<const VD::edge_type*>::const_iterator neighbor = neighbors.begin(); neighbor != neighbors.end(); ++neighbor) {
|
|
|
|
Polylines pp;
|
|
|
|
this->process_edge(**neighbor, &pp);
|
|
|
|
polylines->insert(polylines->end(), pp.begin(), pp.end());
|
|
|
|
}
|
2014-01-09 18:56:12 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-01-10 15:18:55 +00:00
|
|
|
bool
|
|
|
|
MedialAxis::is_valid_edge(const VD::edge_type& edge) const
|
|
|
|
{
|
|
|
|
// if we only process segments representing closed loops, none if the
|
|
|
|
// infinite edges (if any) would be part of our MAT anyway
|
|
|
|
if (edge.is_secondary() || edge.is_infinite()) return false;
|
|
|
|
|
|
|
|
/* If the cells sharing this edge have a common vertex, we're not interested
|
|
|
|
in this edge. Why? Because it means that the edge lies on the bisector of
|
|
|
|
two contiguous input lines and it was included in the Voronoi graph because
|
|
|
|
it's the locus of centers of circles tangent to both vertices. Due to the
|
|
|
|
"thin" nature of our input, these edges will be very short and not part of
|
|
|
|
our wanted output. The best way would be to just filter out the edges that
|
|
|
|
are not the locus of the maximally inscribed disks (requirement of MAT)
|
|
|
|
but I don't know how to do it. Maybe we could check the relative angle of
|
|
|
|
the two segments (we are only interested in facing segments). */
|
|
|
|
|
|
|
|
const voronoi_diagram<double>::cell_type &cell1 = *edge.cell();
|
|
|
|
const voronoi_diagram<double>::cell_type &cell2 = *edge.twin()->cell();
|
|
|
|
if (cell1.contains_segment() && cell2.contains_segment()) {
|
|
|
|
Line segment1 = this->retrieve_segment(cell1);
|
|
|
|
Line segment2 = this->retrieve_segment(cell2);
|
|
|
|
if (segment1.a == segment2.b || segment1.b == segment2.a) return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2014-01-09 18:56:12 +00:00
|
|
|
void
|
|
|
|
MedialAxis::clip_infinite_edge(const voronoi_diagram<double>::edge_type& edge, Points* clipped_edge)
|
|
|
|
{
|
|
|
|
const voronoi_diagram<double>::cell_type& cell1 = *edge.cell();
|
|
|
|
const voronoi_diagram<double>::cell_type& cell2 = *edge.twin()->cell();
|
|
|
|
Point origin, direction;
|
|
|
|
// Infinite edges could not be created by two segment sites.
|
|
|
|
if (cell1.contains_point() && cell2.contains_point()) {
|
|
|
|
Point p1 = retrieve_point(cell1);
|
|
|
|
Point p2 = retrieve_point(cell2);
|
|
|
|
origin.x = (p1.x + p2.x) * 0.5;
|
|
|
|
origin.y = (p1.y + p2.y) * 0.5;
|
|
|
|
direction.x = p1.y - p2.y;
|
|
|
|
direction.y = p2.x - p1.x;
|
|
|
|
} else {
|
|
|
|
origin = cell1.contains_segment()
|
|
|
|
? retrieve_point(cell2)
|
|
|
|
: retrieve_point(cell1);
|
|
|
|
Line segment = cell1.contains_segment()
|
|
|
|
? retrieve_segment(cell1)
|
|
|
|
: retrieve_segment(cell2);
|
|
|
|
coord_t dx = high(segment).x - low(segment).x;
|
|
|
|
coord_t dy = high(segment).y - low(segment).y;
|
|
|
|
if ((low(segment) == origin) ^ cell1.contains_point()) {
|
|
|
|
direction.x = dy;
|
|
|
|
direction.y = -dx;
|
|
|
|
} else {
|
|
|
|
direction.x = -dy;
|
|
|
|
direction.y = dx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
coord_t side = this->bb.size().x;
|
|
|
|
coord_t koef = side / (std::max)(fabs(direction.x), fabs(direction.y));
|
|
|
|
if (edge.vertex0() == NULL) {
|
|
|
|
clipped_edge->push_back(Point(
|
|
|
|
origin.x - direction.x * koef,
|
|
|
|
origin.y - direction.y * koef
|
|
|
|
));
|
|
|
|
} else {
|
|
|
|
clipped_edge->push_back(
|
|
|
|
Point(edge.vertex0()->x(), edge.vertex0()->y()));
|
|
|
|
}
|
|
|
|
if (edge.vertex1() == NULL) {
|
|
|
|
clipped_edge->push_back(Point(
|
|
|
|
origin.x + direction.x * koef,
|
|
|
|
origin.y + direction.y * koef
|
|
|
|
));
|
|
|
|
} else {
|
|
|
|
clipped_edge->push_back(
|
|
|
|
Point(edge.vertex1()->x(), edge.vertex1()->y()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
MedialAxis::sample_curved_edge(const voronoi_diagram<double>::edge_type& edge, Points* sampled_edge)
|
|
|
|
{
|
|
|
|
Point point = edge.cell()->contains_point()
|
|
|
|
? retrieve_point(*edge.cell())
|
|
|
|
: retrieve_point(*edge.twin()->cell());
|
|
|
|
|
|
|
|
Line segment = edge.cell()->contains_point()
|
|
|
|
? retrieve_segment(*edge.twin()->cell())
|
|
|
|
: retrieve_segment(*edge.cell());
|
|
|
|
|
2014-01-10 10:47:16 +00:00
|
|
|
double max_dist = 1E-3 * this->bb.size().x;
|
|
|
|
voronoi_visual_utils<double>::discretize<coord_t,coord_t,Point,Line>(point, segment, max_dist, sampled_edge);
|
2014-01-09 18:56:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
Point
|
|
|
|
MedialAxis::retrieve_point(const voronoi_diagram<double>::cell_type& cell)
|
|
|
|
{
|
|
|
|
voronoi_diagram<double>::cell_type::source_index_type index = cell.source_index();
|
|
|
|
voronoi_diagram<double>::cell_type::source_category_type category = cell.source_category();
|
|
|
|
if (category == SOURCE_CATEGORY_SINGLE_POINT) {
|
|
|
|
return this->points[index];
|
|
|
|
}
|
|
|
|
index -= this->points.size();
|
|
|
|
if (category == SOURCE_CATEGORY_SEGMENT_START_POINT) {
|
|
|
|
return low(this->lines[index]);
|
|
|
|
} else {
|
|
|
|
return high(this->lines[index]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Line
|
2014-01-10 15:18:55 +00:00
|
|
|
MedialAxis::retrieve_segment(const voronoi_diagram<double>::cell_type& cell) const
|
2014-01-09 18:56:12 +00:00
|
|
|
{
|
|
|
|
voronoi_diagram<double>::cell_type::source_index_type index = cell.source_index() - this->points.size();
|
|
|
|
return this->lines[index];
|
|
|
|
}
|
|
|
|
|
2013-11-23 20:54:56 +00:00
|
|
|
} }
|