PrusaSlicer-NonPlainar/src/libslic3r/SLA/SupportTreeMesher.cpp

267 lines
8.7 KiB
C++
Raw Normal View History

#include "SupportTreeMesher.hpp"
namespace Slic3r { namespace sla {
Contour3D sphere(double rho, Portion portion, double fa) {
Contour3D ret;
// prohibit close to zero radius
if(rho <= 1e-6 && rho >= -1e-6) return ret;
auto& vertices = ret.points;
auto& facets = ret.faces3;
// Algorithm:
// Add points one-by-one to the sphere grid and form facets using relative
// coordinates. Sphere is composed effectively of a mesh of stacked circles.
// adjust via rounding to get an even multiple for any provided angle.
double angle = (2*PI / floor(2*PI / fa));
// Ring to be scaled to generate the steps of the sphere
std::vector<double> ring;
for (double i = 0; i < 2*PI; i+=angle) ring.emplace_back(i);
const auto sbegin = size_t(2*std::get<0>(portion)/angle);
const auto send = size_t(2*std::get<1>(portion)/angle);
const size_t steps = ring.size();
const double increment = 1.0 / double(steps);
// special case: first ring connects to 0,0,0
// insert and form facets.
if(sbegin == 0)
vertices.emplace_back(Vec3d(0.0, 0.0, -rho + increment*sbegin*2.0*rho));
auto id = coord_t(vertices.size());
for (size_t i = 0; i < ring.size(); i++) {
// Fixed scaling
const double z = -rho + increment*rho*2.0 * (sbegin + 1.0);
// radius of the circle for this step.
const double r = std::sqrt(std::abs(rho*rho - z*z));
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
vertices.emplace_back(Vec3d(b(0), b(1), z));
if (sbegin == 0)
(i == 0) ? facets.emplace_back(coord_t(ring.size()), 0, 1) :
facets.emplace_back(id - 1, 0, id);
++id;
}
// General case: insert and form facets for each step,
// joining it to the ring below it.
for (size_t s = sbegin + 2; s < send - 1; s++) {
const double z = -rho + increment*double(s*2.0*rho);
const double r = std::sqrt(std::abs(rho*rho - z*z));
for (size_t i = 0; i < ring.size(); i++) {
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
vertices.emplace_back(Vec3d(b(0), b(1), z));
auto id_ringsize = coord_t(id - int(ring.size()));
if (i == 0) {
// wrap around
facets.emplace_back(id - 1, id, id + coord_t(ring.size() - 1) );
facets.emplace_back(id - 1, id_ringsize, id);
} else {
facets.emplace_back(id_ringsize - 1, id_ringsize, id);
facets.emplace_back(id - 1, id_ringsize - 1, id);
}
id++;
}
}
// special case: last ring connects to 0,0,rho*2.0
// only form facets.
if(send >= size_t(2*PI / angle)) {
vertices.emplace_back(Vec3d(0.0, 0.0, -rho + increment*send*2.0*rho));
for (size_t i = 0; i < ring.size(); i++) {
auto id_ringsize = coord_t(id - int(ring.size()));
if (i == 0) {
// third vertex is on the other side of the ring.
facets.emplace_back(id - 1, id_ringsize, id);
} else {
auto ci = coord_t(id_ringsize + coord_t(i));
facets.emplace_back(ci - 1, ci, id);
}
}
}
id++;
return ret;
}
Contour3D cylinder(double r, double h, size_t ssteps, const Vec3d &sp)
{
assert(ssteps > 0);
Contour3D ret;
auto steps = int(ssteps);
auto& points = ret.points;
auto& indices = ret.faces3;
points.reserve(2*ssteps);
double a = 2*PI/steps;
Vec3d jp = sp;
Vec3d endp = {sp(X), sp(Y), sp(Z) + h};
// Upper circle points
for(int i = 0; i < steps; ++i) {
double phi = i*a;
double ex = endp(X) + r*std::cos(phi);
double ey = endp(Y) + r*std::sin(phi);
points.emplace_back(ex, ey, endp(Z));
}
// Lower circle points
for(int i = 0; i < steps; ++i) {
double phi = i*a;
double x = jp(X) + r*std::cos(phi);
double y = jp(Y) + r*std::sin(phi);
points.emplace_back(x, y, jp(Z));
}
// Now create long triangles connecting upper and lower circles
indices.reserve(2*ssteps);
auto offs = steps;
for(int i = 0; i < steps - 1; ++i) {
indices.emplace_back(i, i + offs, offs + i + 1);
indices.emplace_back(i, offs + i + 1, i + 1);
}
// Last triangle connecting the first and last vertices
auto last = steps - 1;
indices.emplace_back(0, last, offs);
indices.emplace_back(last, offs + last, offs);
// According to the slicing algorithms, we need to aid them with generating
// a watertight body. So we create a triangle fan for the upper and lower
// ending of the cylinder to close the geometry.
points.emplace_back(jp); int ci = int(points.size() - 1);
for(int i = 0; i < steps - 1; ++i)
indices.emplace_back(i + offs + 1, i + offs, ci);
indices.emplace_back(offs, steps + offs - 1, ci);
points.emplace_back(endp); ci = int(points.size() - 1);
for(int i = 0; i < steps - 1; ++i)
indices.emplace_back(ci, i, i + 1);
indices.emplace_back(steps - 1, 0, ci);
return ret;
}
Contour3D pinhead(double r_pin, double r_back, double length, size_t steps)
{
assert(steps > 0);
assert(length >= 0.);
assert(r_back > 0.);
assert(r_pin > 0.);
Contour3D mesh;
// We create two spheres which will be connected with a robe that fits
// both circles perfectly.
// Set up the model detail level
const double detail = 2 * PI / steps;
// We don't generate whole circles. Instead, we generate only the
// portions which are visible (not covered by the robe) To know the
// exact portion of the bottom and top circles we need to use some
// rules of tangent circles from which we can derive (using simple
// triangles the following relations:
// The height of the whole mesh
const double h = r_back + r_pin + length;
double phi = PI / 2. - std::acos((r_back - r_pin) / h);
// To generate a whole circle we would pass a portion of (0, Pi)
// To generate only a half horizontal circle we can pass (0, Pi/2)
// The calculated phi is an offset to the half circles needed to smooth
// the transition from the circle to the robe geometry
auto &&s1 = sphere(r_back, make_portion(0, PI / 2 + phi), detail);
auto &&s2 = sphere(r_pin, make_portion(PI / 2 + phi, PI), detail);
for (auto &p : s2.points) p.z() += h;
mesh.merge(s1);
mesh.merge(s2);
for (size_t idx1 = s1.points.size() - steps, idx2 = s1.points.size();
idx1 < s1.points.size() - 1; idx1++, idx2++) {
coord_t i1s1 = coord_t(idx1), i1s2 = coord_t(idx2);
coord_t i2s1 = i1s1 + 1, i2s2 = i1s2 + 1;
mesh.faces3.emplace_back(i1s1, i2s1, i2s2);
mesh.faces3.emplace_back(i1s1, i2s2, i1s2);
}
auto i1s1 = coord_t(s1.points.size()) - coord_t(steps);
auto i2s1 = coord_t(s1.points.size()) - 1;
auto i1s2 = coord_t(s1.points.size());
auto i2s2 = coord_t(s1.points.size()) + coord_t(steps) - 1;
mesh.faces3.emplace_back(i2s2, i2s1, i1s1);
mesh.faces3.emplace_back(i1s2, i2s2, i1s1);
return mesh;
}
Contour3D halfcone(double baseheight,
double r_bottom,
double r_top,
const Vec3d &pos,
size_t steps)
{
assert(steps > 0);
if (baseheight <= 0 || steps <= 0) return {};
Contour3D base;
double a = 2 * PI / steps;
auto last = int(steps - 1);
Vec3d ep{pos.x(), pos.y(), pos.z() + baseheight};
for (size_t i = 0; i < steps; ++i) {
double phi = i * a;
double x = pos.x() + r_top * std::cos(phi);
double y = pos.y() + r_top * std::sin(phi);
base.points.emplace_back(x, y, ep.z());
}
for (size_t i = 0; i < steps; ++i) {
double phi = i * a;
double x = pos.x() + r_bottom * std::cos(phi);
double y = pos.y() + r_bottom * std::sin(phi);
base.points.emplace_back(x, y, pos.z());
}
base.points.emplace_back(pos);
base.points.emplace_back(ep);
auto &indices = base.faces3;
auto hcenter = int(base.points.size() - 1);
auto lcenter = int(base.points.size() - 2);
auto offs = int(steps);
for (int i = 0; i < last; ++i) {
indices.emplace_back(i, i + offs, offs + i + 1);
indices.emplace_back(i, offs + i + 1, i + 1);
indices.emplace_back(i, i + 1, hcenter);
indices.emplace_back(lcenter, offs + i + 1, offs + i);
}
indices.emplace_back(0, last, offs);
indices.emplace_back(last, offs + last, offs);
indices.emplace_back(hcenter, last, 0);
indices.emplace_back(offs, offs + last, lcenter);
return base;
}
}} // namespace Slic3r::sla