Improved robustness of slicing when the slicing plane
crosses a horizontal plane of an object exactly. Should improve Github issues #831, #895, #1102
This commit is contained in:
parent
93b8f3147c
commit
00e9f07a03
5 changed files with 188 additions and 86 deletions
|
@ -86,8 +86,8 @@ void FillHoneycomb::_fill_surface_single(
|
|||
Polylines paths;
|
||||
{
|
||||
Polylines p;
|
||||
for (Polygons::iterator it = polygons.begin(); it != polygons.end(); ++ it)
|
||||
p.push_back((Polyline)(*it));
|
||||
for (Polygon &poly : polygons)
|
||||
p.emplace_back(poly.points);
|
||||
paths = intersection_pl(p, to_polygons(expolygon));
|
||||
}
|
||||
|
||||
|
|
|
@ -613,6 +613,7 @@ const BoundingBoxf3& ModelObject::bounding_box() const
|
|||
BoundingBoxf3 raw_bbox;
|
||||
for (const ModelVolume *v : this->volumes)
|
||||
if (! v->modifier)
|
||||
// mesh.bounding_box() returns a cached value.
|
||||
raw_bbox.merge(v->mesh.bounding_box());
|
||||
BoundingBoxf3 bb;
|
||||
for (const ModelInstance *i : this->instances)
|
||||
|
|
|
@ -19,6 +19,8 @@ public:
|
|||
Polyline() {};
|
||||
Polyline(const Polyline &other) : MultiPoint(other.points) {}
|
||||
Polyline(Polyline &&other) : MultiPoint(std::move(other.points)) {}
|
||||
explicit Polyline(const Points &points) : MultiPoint(points) {}
|
||||
explicit Polyline(Points &&points) : MultiPoint(std::move(points)) {}
|
||||
Polyline& operator=(const Polyline &other) { points = other.points; return *this; }
|
||||
Polyline& operator=(Polyline &&other) { points = std::move(other.points); return *this; }
|
||||
static Polyline new_scale(std::vector<Pointf> points) {
|
||||
|
|
|
@ -696,8 +696,7 @@ TriangleMeshSlicer::TriangleMeshSlicer(TriangleMesh* _mesh) :
|
|||
}
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<Polygons>* layers) const
|
||||
void TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<Polygons>* layers) const
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::slice";
|
||||
|
||||
|
@ -800,35 +799,37 @@ void TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLin
|
|||
for (std::vector<float>::const_iterator it = min_layer; it != max_layer + 1; ++it) {
|
||||
std::vector<float>::size_type layer_idx = it - z.begin();
|
||||
IntersectionLine il;
|
||||
if (this->slice_facet(*it / SCALING_FACTOR, facet, facet_idx, min_z, max_z, &il)) {
|
||||
if (this->slice_facet(*it / SCALING_FACTOR, facet, facet_idx, min_z, max_z, &il) == TriangleMeshSlicer::Slicing) {
|
||||
boost::lock_guard<boost::mutex> l(*lines_mutex);
|
||||
if (il.edge_type == feHorizontal) {
|
||||
// Insert all three edges of the face.
|
||||
const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
|
||||
const bool reverse = this->mesh->stl.facet_start[facet_idx].normal.z < 0;
|
||||
for (int j = 0; j < 3; ++ j) {
|
||||
int a_id = vertices[j % 3];
|
||||
int b_id = vertices[(j+1) % 3];
|
||||
if (reverse)
|
||||
std::swap(a_id, b_id);
|
||||
const stl_vertex *a = &this->v_scaled_shared[a_id];
|
||||
const stl_vertex *b = &this->v_scaled_shared[b_id];
|
||||
il.a.x = a->x;
|
||||
il.a.y = a->y;
|
||||
il.b.x = b->x;
|
||||
il.b.y = b->y;
|
||||
il.a_id = a_id;
|
||||
il.b_id = b_id;
|
||||
(*lines)[layer_idx].push_back(il);
|
||||
}
|
||||
// Insert all marked edges of the face. The marked edges do not share an edge with another horizontal face
|
||||
// (they may not have a nighbor, or their neighbor is vertical)
|
||||
const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
|
||||
const bool reverse = this->mesh->stl.facet_start[facet_idx].normal.z < 0;
|
||||
uint32_t edge_mask = IntersectionLine::EDGE0;
|
||||
for (int j = 0; j < 3; ++ j, edge_mask <<= 1)
|
||||
if (il.flags & edge_mask) {
|
||||
int a_id = vertices[j % 3];
|
||||
int b_id = vertices[(j+1) % 3];
|
||||
if (reverse)
|
||||
std::swap(a_id, b_id);
|
||||
const stl_vertex *a = &this->v_scaled_shared[a_id];
|
||||
const stl_vertex *b = &this->v_scaled_shared[b_id];
|
||||
il.a.x = a->x;
|
||||
il.a.y = a->y;
|
||||
il.b.x = b->x;
|
||||
il.b.y = b->y;
|
||||
il.a_id = a_id;
|
||||
il.b_id = b_id;
|
||||
(*lines)[layer_idx].emplace_back(il);
|
||||
}
|
||||
} else
|
||||
(*lines)[layer_idx].push_back(il);
|
||||
(*lines)[layer_idx].emplace_back(il);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<ExPolygons>* layers) const
|
||||
void TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<ExPolygons>* layers) const
|
||||
{
|
||||
std::vector<Polygons> layers_p;
|
||||
this->slice(z, &layers_p);
|
||||
|
@ -848,8 +849,18 @@ TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<ExPolygons>*
|
|||
BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::make_expolygons in parallel - end";
|
||||
}
|
||||
|
||||
static inline float cross_product(const stl_vertex *a, const stl_vertex *b, const stl_vertex *c)
|
||||
{
|
||||
float v1_x = b->x - a->x;
|
||||
float v1_y = b->y - a->y;
|
||||
float v2_x = c->x - a->x;
|
||||
float v2_y = c->y - a->y;
|
||||
float dir = (b->x - a->x) * (c->y - a->y) - (b->y - a->y) * (c->x - a->x);
|
||||
return dir;
|
||||
}
|
||||
|
||||
// Return true, if the facet has been sliced and line_out has been filled.
|
||||
bool TriangleMeshSlicer::slice_facet(
|
||||
TriangleMeshSlicer::FacetSliceType TriangleMeshSlicer::slice_facet(
|
||||
float slice_z, const stl_facet &facet, const int facet_idx,
|
||||
const float min_z, const float max_z,
|
||||
IntersectionLine *line_out) const
|
||||
|
@ -877,22 +888,61 @@ bool TriangleMeshSlicer::slice_facet(
|
|||
const stl_vertex &v0 = this->v_scaled_shared[vertices[0]];
|
||||
const stl_vertex &v1 = this->v_scaled_shared[vertices[1]];
|
||||
const stl_vertex &v2 = this->v_scaled_shared[vertices[2]];
|
||||
// We may ignore this edge for slicing purposes, but we may still use it for object cutting.
|
||||
FacetSliceType result = Slicing;
|
||||
const stl_neighbors &nbr = this->mesh->stl.neighbors_start[facet_idx];
|
||||
if (min_z == max_z) {
|
||||
// All three vertices are aligned with slice_z.
|
||||
line_out->edge_type = feHorizontal;
|
||||
// Mark neighbor edges, which do not have a neighbor.
|
||||
uint32_t edges = 0;
|
||||
uint32_t mask = IntersectionLine::EDGE0;
|
||||
for (int nbr_idx = 2; nbr_idx != 5; ++ nbr_idx, mask <<= 1)
|
||||
// If the neighbor with an edge starting with a vertex idx (nbr_idx - 2) shares no
|
||||
// opposite face, add it to the edges to process when slicing.
|
||||
if (nbr.neighbor[nbr_idx % 3] == -1)
|
||||
// Mark this edge.
|
||||
edges |= mask;
|
||||
// Use some edges of this triangle for slicing only if at least one of its edge does not have an opposite face.
|
||||
result = (edges == 0) ? Cutting : Slicing;
|
||||
line_out->flags |= edges;
|
||||
if (this->mesh->stl.facet_start[facet_idx].normal.z < 0) {
|
||||
// If normal points downwards this is a bottom horizontal facet so we reverse its point order.
|
||||
std::swap(a, b);
|
||||
std::swap(a_id, b_id);
|
||||
}
|
||||
} else if (v0.z < slice_z || v1.z < slice_z || v2.z < slice_z) {
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is below the cutting plane.
|
||||
line_out->edge_type = feTop;
|
||||
std::swap(a, b);
|
||||
std::swap(a_id, b_id);
|
||||
} else {
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane.
|
||||
line_out->edge_type = feBottom;
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is below or above the cutting plane.
|
||||
int nbr_idx = (j + 2) % 3;
|
||||
int nbr_face = nbr.neighbor[nbr_idx];
|
||||
// Is the third vertex below the cutting plane?
|
||||
bool third_below = v0.z < slice_z || v1.z < slice_z || v2.z < slice_z;
|
||||
// Is this a concave corner?
|
||||
if (nbr_face == -1) {
|
||||
#ifdef _DEBUG
|
||||
printf("Face has no neighbor!\n");
|
||||
#endif
|
||||
} else {
|
||||
int idx_vertex_opposite = this->mesh->stl.v_indices[nbr_face].vertex[nbr.which_vertex_not[nbr_idx]];
|
||||
const stl_vertex *c = &this->v_scaled_shared[idx_vertex_opposite];
|
||||
if (c->z > slice_z) {
|
||||
// If an edge resides on a cutting plane, and none of the two triangles are coplanar with the cutting plane,
|
||||
// igore the lower triangle.
|
||||
if (third_below)
|
||||
result = Cutting;
|
||||
} else if (c->z == slice_z) {
|
||||
// A vertical face shares edge with a horizontal face. Verify, whether the shared corner is convex or concave.
|
||||
float dir = cross_product(a, b, c);
|
||||
if (third_below ? (dir < 0.) : (dir > 0.))
|
||||
result = Cutting;
|
||||
}
|
||||
}
|
||||
if (third_below) {
|
||||
line_out->edge_type = feTop;
|
||||
std::swap(a, b);
|
||||
std::swap(a_id, b_id);
|
||||
} else
|
||||
line_out->edge_type = feBottom;
|
||||
}
|
||||
line_out->a.x = a->x;
|
||||
line_out->a.y = a->y;
|
||||
|
@ -900,7 +950,7 @@ bool TriangleMeshSlicer::slice_facet(
|
|||
line_out->b.y = b->y;
|
||||
line_out->a_id = a_id;
|
||||
line_out->b_id = b_id;
|
||||
return true;
|
||||
return result;
|
||||
}
|
||||
|
||||
if (a->z == slice_z) {
|
||||
|
@ -935,7 +985,7 @@ bool TriangleMeshSlicer::slice_facet(
|
|||
assert(num_points == 2 || num_points == 3);
|
||||
if (num_points < 3)
|
||||
// This triangle touches the cutting plane with a single vertex. Ignore it.
|
||||
return false;
|
||||
return NoSlice;
|
||||
// Erase one of the duplicate points.
|
||||
-- num_points;
|
||||
for (int i = points_on_layer[1]; i < num_points; ++ i)
|
||||
|
@ -945,52 +995,86 @@ bool TriangleMeshSlicer::slice_facet(
|
|||
// Facets must intersect each plane 0 or 2 times.
|
||||
assert(num_points == 0 || num_points == 2);
|
||||
if (num_points == 2) {
|
||||
line_out->edge_type = feNone;
|
||||
line_out->edge_type = feGeneral;
|
||||
line_out->a = (Point)points[1];
|
||||
line_out->b = (Point)points[0];
|
||||
line_out->a_id = points[1].point_id;
|
||||
line_out->b_id = points[0].point_id;
|
||||
line_out->edge_a_id = points[1].edge_id;
|
||||
line_out->edge_b_id = points[0].edge_id;
|
||||
return true;
|
||||
// General slicing position, use the segment for both slicing and object cutting.
|
||||
return Slicing;
|
||||
}
|
||||
return NoSlice;
|
||||
}
|
||||
|
||||
//FIXME Should this go away? For valid meshes the function slice_facet() returns Slicing
|
||||
// and sets edges of vertical triangles to produce only a single edge per pair of neighbor faces.
|
||||
// So the following code makes only sense now to handle degenerate meshes with more than two faces
|
||||
// sharing a single edge.
|
||||
static inline void remove_tangent_edges(std::vector<IntersectionLine> &lines)
|
||||
{
|
||||
std::vector<IntersectionLine*> by_vertex_pair;
|
||||
by_vertex_pair.reserve(lines.size());
|
||||
for (IntersectionLine& line : lines)
|
||||
if (line.edge_type != feGeneral && line.a_id != -1)
|
||||
// This is a face edge. Check whether there is its neighbor stored in lines.
|
||||
by_vertex_pair.emplace_back(&line);
|
||||
auto edges_lower_sorted = [](const IntersectionLine *l1, const IntersectionLine *l2) {
|
||||
// Sort vertices of l1, l2 lexicographically
|
||||
int l1a = l1->a_id;
|
||||
int l1b = l1->b_id;
|
||||
int l2a = l2->a_id;
|
||||
int l2b = l2->b_id;
|
||||
if (l1a > l1b)
|
||||
std::swap(l1a, l1b);
|
||||
if (l2a > l2b)
|
||||
std::swap(l2a, l2b);
|
||||
// Lexicographical "lower" operator on lexicographically sorted vertices should bring equal edges together when sored.
|
||||
return l1a < l2a || (l1a == l2a && l1b < l2b);
|
||||
};
|
||||
std::sort(by_vertex_pair.begin(), by_vertex_pair.end(), edges_lower_sorted);
|
||||
for (auto line = by_vertex_pair.begin(); line != by_vertex_pair.end(); ++ line) {
|
||||
IntersectionLine &l1 = **line;
|
||||
if (! l1.skip()) {
|
||||
// Iterate as long as line and line2 edges share the same end points.
|
||||
for (auto line2 = line + 1; line2 != by_vertex_pair.end() && ! edges_lower_sorted(*line, *line2); ++ line2) {
|
||||
// Lines must share the end points.
|
||||
assert(! edges_lower_sorted(*line, *line2));
|
||||
assert(! edges_lower_sorted(*line2, *line));
|
||||
IntersectionLine &l2 = **line2;
|
||||
if (l2.skip())
|
||||
continue;
|
||||
if (l1.a_id == l2.a_id) {
|
||||
assert(l1.b_id == l2.b_id);
|
||||
l2.set_skip();
|
||||
// If they are both oriented upwards or downwards (like a 'V'),
|
||||
// then we can remove both edges from this layer since it won't
|
||||
// affect the sliced shape.
|
||||
// If one of them is oriented upwards and the other is oriented
|
||||
// downwards, let's only keep one of them (it doesn't matter which
|
||||
// one since all 'top' lines were reversed at slicing).
|
||||
if (l1.edge_type == l2.edge_type) {
|
||||
l1.set_skip();
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
assert(l1.a_id == l2.b_id && l1.b_id == l2.a_id);
|
||||
// If this edge joins two horizontal facets, remove both of them.
|
||||
if (l1.edge_type == feHorizontal && l2.edge_type == feHorizontal) {
|
||||
l1.set_skip();
|
||||
l2.set_skip();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygons* loops) const
|
||||
{
|
||||
// Remove tangent edges.
|
||||
//FIXME This is O(n^2) in rare cases when many faces intersect the cutting plane.
|
||||
for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++ line)
|
||||
if (! line->skip && line->edge_type != feNone) {
|
||||
// This line is af facet edge. There may be a duplicate line with the same end vertices.
|
||||
// If the line is is an edge connecting two facets, find another facet edge
|
||||
// having the same endpoints but in reverse order.
|
||||
for (IntersectionLines::iterator line2 = line + 1; line2 != lines.end(); ++ line2)
|
||||
if (! line2->skip && line2->edge_type != feNone) {
|
||||
// Are these facets adjacent? (sharing a common edge on this layer)
|
||||
if (line->a_id == line2->a_id && line->b_id == line2->b_id) {
|
||||
line2->skip = true;
|
||||
/* if they are both oriented upwards or downwards (like a 'V')
|
||||
then we can remove both edges from this layer since it won't
|
||||
affect the sliced shape */
|
||||
/* if one of them is oriented upwards and the other is oriented
|
||||
downwards, let's only keep one of them (it doesn't matter which
|
||||
one since all 'top' lines were reversed at slicing) */
|
||||
if (line->edge_type == line2->edge_type) {
|
||||
line->skip = true;
|
||||
break;
|
||||
}
|
||||
} else if (line->a_id == line2->b_id && line->b_id == line2->a_id) {
|
||||
/* if this edge joins two horizontal facets, remove both of them */
|
||||
if (line->edge_type == feHorizontal && line2->edge_type == feHorizontal) {
|
||||
line->skip = true;
|
||||
line2->skip = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
remove_tangent_edges(lines);
|
||||
|
||||
struct OpenPolyline {
|
||||
OpenPolyline() {};
|
||||
|
@ -1013,7 +1097,7 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
|
|||
by_edge_a_id.reserve(lines.size());
|
||||
by_a_id.reserve(lines.size());
|
||||
for (IntersectionLine &line : lines) {
|
||||
if (! line.skip) {
|
||||
if (! line.skip()) {
|
||||
if (line.edge_a_id != -1)
|
||||
by_edge_a_id.emplace_back(&line);
|
||||
if (line.a_id != -1)
|
||||
|
@ -1030,13 +1114,13 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
|
|||
// take first spare line and start a new loop
|
||||
IntersectionLine *first_line = nullptr;
|
||||
for (; it_line_seed != lines.end(); ++ it_line_seed)
|
||||
if (! it_line_seed->skip) {
|
||||
if (! it_line_seed->skip()) {
|
||||
first_line = &(*it_line_seed ++);
|
||||
break;
|
||||
}
|
||||
if (first_line == nullptr)
|
||||
break;
|
||||
first_line->skip = true;
|
||||
first_line->set_skip();
|
||||
Points loop_pts;
|
||||
loop_pts.emplace_back(first_line->a);
|
||||
IntersectionLine *last_line = first_line;
|
||||
|
@ -1057,7 +1141,7 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
|
|||
if (it_begin != by_edge_a_id.end()) {
|
||||
auto it_end = std::upper_bound(it_begin, by_edge_a_id.end(), &key, by_edge_lower);
|
||||
for (auto it_line = it_begin; it_line != it_end; ++ it_line)
|
||||
if (! (*it_line)->skip) {
|
||||
if (! (*it_line)->skip()) {
|
||||
next_line = *it_line;
|
||||
break;
|
||||
}
|
||||
|
@ -1069,7 +1153,7 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
|
|||
if (it_begin != by_a_id.end()) {
|
||||
auto it_end = std::upper_bound(it_begin, by_a_id.end(), &key, by_vertex_lower);
|
||||
for (auto it_line = it_begin; it_line != it_end; ++ it_line)
|
||||
if (! (*it_line)->skip) {
|
||||
if (! (*it_line)->skip()) {
|
||||
next_line = *it_line;
|
||||
break;
|
||||
}
|
||||
|
@ -1100,7 +1184,7 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
|
|||
*/
|
||||
loop_pts.emplace_back(next_line->a);
|
||||
last_line = next_line;
|
||||
next_line->skip = true;
|
||||
next_line->set_skip();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1192,8 +1276,8 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
|
|||
if ((ip1.edge_id != -1 && ip1.edge_id == ip2.edge_id) ||
|
||||
(ip1.point_id != -1 && ip1.point_id == ip2.point_id)) {
|
||||
// The current loop is complete. Add it to the output.
|
||||
assert(opl.points.front().point_id == opl.points.back().point_id);
|
||||
assert(opl.points.front().edge_id == opl.points.back().edge_id);
|
||||
//assert(opl.points.front().point_id == opl.points.back().point_id);
|
||||
//assert(opl.points.front().edge_id == opl.points.back().edge_id);
|
||||
// Remove the duplicate last point.
|
||||
opl.points.pop_back();
|
||||
if (opl.points.size() >= 3) {
|
||||
|
@ -1393,7 +1477,7 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
|||
|
||||
// intersect facet with cutting plane
|
||||
IntersectionLine line;
|
||||
if (this->slice_facet(scaled_z, *facet, facet_idx, min_z, max_z, &line)) {
|
||||
if (this->slice_facet(scaled_z, *facet, facet_idx, min_z, max_z, &line) != TriangleMeshSlicer::NoSlice) {
|
||||
// Save intersection lines for generating correct triangulations.
|
||||
if (line.edge_type == feTop) {
|
||||
lower_lines.push_back(line);
|
||||
|
|
|
@ -76,7 +76,7 @@ private:
|
|||
|
||||
enum FacetEdgeType {
|
||||
// A general case, the cutting plane intersect a face at two different edges.
|
||||
feNone,
|
||||
feGeneral,
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is below the cutting plane.
|
||||
feTop,
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane.
|
||||
|
@ -110,6 +110,11 @@ public:
|
|||
class IntersectionLine : public Line
|
||||
{
|
||||
public:
|
||||
IntersectionLine() : a_id(-1), b_id(-1), edge_a_id(-1), edge_b_id(-1), edge_type(feGeneral), flags(0) {}
|
||||
|
||||
bool skip() const { return (this->flags & SKIP) != 0; }
|
||||
void set_skip() { this->flags |= SKIP; }
|
||||
|
||||
// Inherits Point a, b
|
||||
// For each line end point, either {a,b}_id or {a,b}edge_a_id is set, the other is left to -1.
|
||||
// Vertex indices of the line end points.
|
||||
|
@ -118,11 +123,16 @@ public:
|
|||
// Source mesh edges of the line end points.
|
||||
int edge_a_id;
|
||||
int edge_b_id;
|
||||
// feNone, feTop, feBottom, feHorizontal
|
||||
// feGeneral, feTop, feBottom, feHorizontal
|
||||
FacetEdgeType edge_type;
|
||||
// Used by TriangleMeshSlicer::make_loops() to skip duplicate edges.
|
||||
bool skip;
|
||||
IntersectionLine() : a_id(-1), b_id(-1), edge_a_id(-1), edge_b_id(-1), edge_type(feNone), skip(false) {};
|
||||
// Used by TriangleMeshSlicer::slice() to skip duplicate edges.
|
||||
enum {
|
||||
EDGE0 = 1,
|
||||
EDGE1 = 2,
|
||||
EDGE2 = 4,
|
||||
SKIP = 8,
|
||||
};
|
||||
uint32_t flags;
|
||||
};
|
||||
typedef std::vector<IntersectionLine> IntersectionLines;
|
||||
typedef std::vector<IntersectionLine*> IntersectionLinePtrs;
|
||||
|
@ -133,7 +143,12 @@ public:
|
|||
TriangleMeshSlicer(TriangleMesh* _mesh);
|
||||
void slice(const std::vector<float> &z, std::vector<Polygons>* layers) const;
|
||||
void slice(const std::vector<float> &z, std::vector<ExPolygons>* layers) const;
|
||||
bool slice_facet(float slice_z, const stl_facet &facet, const int facet_idx,
|
||||
enum FacetSliceType {
|
||||
NoSlice = 0,
|
||||
Slicing = 1,
|
||||
Cutting = 2
|
||||
};
|
||||
FacetSliceType slice_facet(float slice_z, const stl_facet &facet, const int facet_idx,
|
||||
const float min_z, const float max_z, IntersectionLine *line_out) const;
|
||||
void cut(float z, TriangleMesh* upper, TriangleMesh* lower) const;
|
||||
|
||||
|
|
Loading…
Reference in a new issue