Large refactoring to allow processing multimaterial files
This commit is contained in:
parent
04be94023b
commit
02356fd613
1
MANIFEST
1
MANIFEST
@ -34,6 +34,7 @@ lib/Slic3r/GUI/Plater.pm
|
||||
lib/Slic3r/GUI/SkeinPanel.pm
|
||||
lib/Slic3r/GUI/Tab.pm
|
||||
lib/Slic3r/Layer.pm
|
||||
lib/Slic3r/Layer/Material.pm
|
||||
lib/Slic3r/Line.pm
|
||||
lib/Slic3r/Model.pm
|
||||
lib/Slic3r/Point.pm
|
||||
|
@ -43,6 +43,7 @@ use Slic3r::Format::STL;
|
||||
use Slic3r::GCode;
|
||||
use Slic3r::Geometry qw(PI);
|
||||
use Slic3r::Layer;
|
||||
use Slic3r::Layer::Material;
|
||||
use Slic3r::Line;
|
||||
use Slic3r::Model;
|
||||
use Slic3r::Point;
|
||||
@ -70,8 +71,9 @@ sub parallelize {
|
||||
my %params = @_;
|
||||
|
||||
if (!$params{disable} && $Slic3r::have_threads && $Config->threads > 1) {
|
||||
my @items = (ref $params{items} eq 'CODE') ? $params{items}->() : @{$params{items}};
|
||||
my $q = Thread::Queue->new;
|
||||
$q->enqueue(@{ $params{items} }, (map undef, 1..$Config->threads));
|
||||
$q->enqueue(@items, (map undef, 1..$Config->threads));
|
||||
|
||||
my $thread_cb = sub { $params{thread_cb}->($q) };
|
||||
foreach my $th (map threads->create($thread_cb), 1..$Config->threads) {
|
||||
|
@ -35,8 +35,8 @@ sub write_file {
|
||||
for my $material_id (sort keys %{ $model->materials }) {
|
||||
my $material = $model->materials->{$material_id};
|
||||
printf $fh qq{ <material id="%d">\n}, $material_id;
|
||||
for (keys %$material) {
|
||||
printf $fh qq{ <metadata type=\"%s\">%s</metadata>\n}, $_, $material->{$_};
|
||||
for (keys %{$material->attributes}) {
|
||||
printf $fh qq{ <metadata type=\"%s\">%s</metadata>\n}, $_, $material->attributes->{$_};
|
||||
}
|
||||
printf $fh qq{ </material>\n};
|
||||
}
|
||||
|
@ -37,10 +37,10 @@ sub start_element {
|
||||
$self->{_vertex_idx} = $1-1;
|
||||
} elsif ($data->{LocalName} eq 'material') {
|
||||
my $material_id = $self->_get_attribute($data, 'id') || '_';
|
||||
$self->{_material} = $self->{_model}->materials->{ $material_id } = {};
|
||||
$self->{_material} = $self->{_model}->set_material($material_id);
|
||||
} elsif ($data->{LocalName} eq 'metadata' && $self->{_tree}[-1] eq 'material') {
|
||||
$self->{_material_metadata_type} = $self->_get_attribute($data, 'type');
|
||||
$self->{_material}{ $self->{_material_metadata_type} } = "";
|
||||
$self->{_material}->attributes->{ $self->{_material_metadata_type} } = "";
|
||||
} elsif ($data->{LocalName} eq 'constellation') {
|
||||
$self->{_constellation} = 1; # we merge all constellations as we don't support more than one
|
||||
} elsif ($data->{LocalName} eq 'instance' && $self->{_constellation}) {
|
||||
@ -63,7 +63,7 @@ sub characters {
|
||||
} elsif ($self->{_triangle} && defined $self->{_vertex_idx}) {
|
||||
$self->{_triangle}[ $self->{_vertex_idx} ] .= $data->{Data};
|
||||
} elsif ($self->{_material_metadata_type}) {
|
||||
$self->{_material}{ $self->{_material_metadata_type} } .= $data->{Data};
|
||||
$self->{_material}->attributes->{ $self->{_material_metadata_type} } .= $data->{Data};
|
||||
} elsif ($self->{_instance_property}) {
|
||||
$self->{_instance}{ $self->{_instance_property} } .= $data->{Data};
|
||||
}
|
||||
|
@ -96,7 +96,7 @@ sub do_slice {
|
||||
Slic3r::GUI->save_settings;
|
||||
|
||||
my $print = Slic3r::Print->new(config => $config);
|
||||
$print->add_objects_from_file($input_file);
|
||||
$print->add_model(Slic3r::Model->read_from_file($input_file));
|
||||
$print->validate;
|
||||
|
||||
# select output file
|
||||
|
@ -1,60 +1,25 @@
|
||||
package Slic3r::Layer;
|
||||
use Moo;
|
||||
|
||||
use Math::Clipper ':all';
|
||||
use Slic3r::ExtrusionPath ':roles';
|
||||
use Slic3r::Geometry qw(scale unscale collinear X Y A B PI rad2deg_dir bounding_box_center shortest_path);
|
||||
use Slic3r::Geometry::Clipper qw(safety_offset union_ex diff_ex intersection_ex xor_ex is_counter_clockwise);
|
||||
use Slic3r::Surface ':types';
|
||||
use Slic3r::Geometry::Clipper qw(union_ex);
|
||||
|
||||
# a sequential number of layer, starting at 0
|
||||
has 'id' => (
|
||||
is => 'rw',
|
||||
#isa => 'Int',
|
||||
required => 1,
|
||||
);
|
||||
has 'id' => (is => 'rw', required => 1); # sequential number of layer, 0-based
|
||||
has 'materials' => (is => 'ro', default => sub { [] });
|
||||
has 'slicing_errors' => (is => 'rw');
|
||||
|
||||
has 'slicing_errors' => (is => 'rw');
|
||||
has 'slice_z' => (is => 'lazy');
|
||||
has 'print_z' => (is => 'lazy');
|
||||
has 'height' => (is => 'lazy');
|
||||
has 'flow' => (is => 'lazy');
|
||||
has 'perimeter_flow' => (is => 'lazy');
|
||||
has 'infill_flow' => (is => 'lazy');
|
||||
|
||||
has 'slice_z' => (is => 'lazy');
|
||||
has 'print_z' => (is => 'lazy');
|
||||
has 'height' => (is => 'lazy');
|
||||
has 'flow' => (is => 'lazy');
|
||||
has 'perimeter_flow' => (is => 'lazy');
|
||||
has 'infill_flow' => (is => 'lazy');
|
||||
|
||||
# collection of spare segments generated by slicing the original geometry;
|
||||
# these need to be merged in continuos (closed) polylines
|
||||
has 'lines' => (is => 'rw', default => sub { [] });
|
||||
|
||||
# collection of surfaces generated by slicing the original geometry
|
||||
has 'slices' => (is => 'rw');
|
||||
|
||||
# collection of polygons or polylines representing thin walls contained
|
||||
# in the original geometry
|
||||
has 'thin_walls' => (is => 'rw');
|
||||
|
||||
# collection of polygons or polylines representing thin infill regions that
|
||||
# need to be filled with a medial axis
|
||||
has 'thin_fills' => (is => 'rw');
|
||||
|
||||
# collection of expolygons generated by offsetting the innermost perimeter(s)
|
||||
# they represent boundaries of areas to fill, typed (top/bottom/internal)
|
||||
has 'surfaces' => (is => 'rw');
|
||||
|
||||
# collection of surfaces for infill generation. the difference between surfaces
|
||||
# fill_surfaces is that this one honors fill_density == 0 and turns small internal
|
||||
# surfaces into solid ones
|
||||
has 'fill_surfaces' => (is => 'rw');
|
||||
|
||||
# ordered collection of extrusion paths/loops to build all perimeters
|
||||
has 'perimeters' => (is => 'rw');
|
||||
# collection of surfaces generated by slicing the original geometry;
|
||||
# also known as 'islands' (all materials are merged here)
|
||||
has 'slices' => (is => 'rw');
|
||||
|
||||
# ordered collection of extrusion paths to fill surfaces for support material
|
||||
has 'support_fills' => (is => 'rw');
|
||||
|
||||
# ordered collection of extrusion paths to fill surfaces
|
||||
has 'fills' => (is => 'rw');
|
||||
has 'support_fills' => (is => 'rw');
|
||||
|
||||
# Z used for slicing
|
||||
sub _build_slice_z {
|
||||
@ -99,473 +64,36 @@ sub _build_infill_flow {
|
||||
: $Slic3r::infill_flow;
|
||||
}
|
||||
|
||||
# build polylines from lines
|
||||
sub make_surfaces {
|
||||
sub material {
|
||||
my $self = shift;
|
||||
my ($loops) = @_;
|
||||
my ($material_idx) = @_;
|
||||
|
||||
{
|
||||
my $safety_offset = scale 0.1;
|
||||
# merge everything
|
||||
my $expolygons = [ map $_->offset_ex(-$safety_offset), @{union_ex(safety_offset($loops, $safety_offset))} ];
|
||||
|
||||
Slic3r::debugf " %d surface(s) having %d holes detected from %d polylines\n",
|
||||
scalar(@$expolygons), scalar(map $_->holes, @$expolygons), scalar(@$loops);
|
||||
|
||||
$self->slices([
|
||||
map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL),
|
||||
@$expolygons
|
||||
]);
|
||||
}
|
||||
|
||||
# the contours must be offsetted by half extrusion width inwards
|
||||
{
|
||||
my $distance = scale $self->perimeter_flow->width / 2;
|
||||
my @surfaces = @{$self->slices};
|
||||
@{$self->slices} = ();
|
||||
foreach my $surface (@surfaces) {
|
||||
push @{$self->slices}, map Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNAL),
|
||||
map $_->offset_ex(+$distance),
|
||||
$surface->expolygon->offset_ex(-2*$distance);
|
||||
}
|
||||
|
||||
# now detect thin walls by re-outgrowing offsetted surfaces and subtracting
|
||||
# them from the original slices
|
||||
my $outgrown = Math::Clipper::offset([ map $_->p, @{$self->slices} ], $distance);
|
||||
my $diff = diff_ex(
|
||||
[ map $_->p, @surfaces ],
|
||||
$outgrown,
|
||||
1,
|
||||
);
|
||||
|
||||
$self->thin_walls([]);
|
||||
if (@$diff) {
|
||||
my $area_threshold = scale($self->perimeter_flow->spacing) ** 2;
|
||||
@$diff = grep $_->area > ($area_threshold), @$diff;
|
||||
|
||||
@{$self->thin_walls} = map $_->medial_axis(scale $self->perimeter_flow->width), @$diff;
|
||||
|
||||
Slic3r::debugf " %d thin walls detected\n", scalar(@{$self->thin_walls}) if @{$self->thin_walls};
|
||||
}
|
||||
}
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output(undef, "surfaces.svg",
|
||||
polygons => [ map $_->contour, @{$self->slices} ],
|
||||
red_polygons => [ map $_->p, map @{$_->holes}, @{$self->slices} ],
|
||||
for my $i (grep !defined $self->materials->[$_], 0..$material_idx) {
|
||||
$self->materials->[$i] = Slic3r::Layer::Material->new(
|
||||
layer => $self,
|
||||
);
|
||||
}
|
||||
return $self->materials->[$material_idx];
|
||||
}
|
||||
|
||||
# merge all materials' slices to get islands
|
||||
sub make_slices {
|
||||
my $self = shift;
|
||||
|
||||
# optimization for single-material layers
|
||||
my @materials_with_slices = grep { @{$_->slices} } @{$self->materials};
|
||||
if (@materials_with_slices == 1) {
|
||||
$self->slices($materials_with_slices[0]->slices);
|
||||
return;
|
||||
}
|
||||
|
||||
$self->slices(union_ex([ map @{$_->slices}, @{$self->materials} ]));
|
||||
}
|
||||
|
||||
sub make_perimeters {
|
||||
my $self = shift;
|
||||
Slic3r::debugf "Making perimeters for layer %d\n", $self->id;
|
||||
|
||||
my $gap_area_threshold = scale($self->perimeter_flow->width)** 2;
|
||||
|
||||
# this array will hold one arrayref per original surface (island);
|
||||
# each item of this arrayref is an arrayref representing a depth (from outer
|
||||
# perimeters to inner); each item of this arrayref is an ExPolygon:
|
||||
# @perimeters = (
|
||||
# [ # first island
|
||||
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 0: outer loop
|
||||
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 1: inner loop
|
||||
# ],
|
||||
# [ # second island
|
||||
# ...
|
||||
# ]
|
||||
# )
|
||||
my @perimeters = (); # one item per depth; each item
|
||||
|
||||
# organize islands using a shortest path search
|
||||
my @surfaces = @{shortest_path([
|
||||
map [ $_->contour->[0], $_ ], @{$self->slices},
|
||||
])};
|
||||
|
||||
$self->perimeters([]);
|
||||
$self->surfaces([]);
|
||||
$self->thin_fills([]);
|
||||
|
||||
# for each island:
|
||||
foreach my $surface (@surfaces) {
|
||||
my @last_offsets = ($surface->expolygon);
|
||||
|
||||
# experimental hole compensation (see ArcCompensation in the RepRap wiki)
|
||||
if (0) {
|
||||
foreach my $hole ($last_offsets[0]->holes) {
|
||||
my $circumference = abs($hole->length);
|
||||
next unless $circumference <= &Slic3r::SMALL_PERIMETER_LENGTH;
|
||||
# this compensation only works for circular holes, while it would
|
||||
# overcompensate for hexagons and other shapes having straight edges.
|
||||
# so we require a minimum number of vertices.
|
||||
next unless $circumference / @$hole >= scale 3 * $Slic3r::flow->width;
|
||||
|
||||
# revert the compensation done in make_surfaces() and get the actual radius
|
||||
# of the hole
|
||||
my $radius = ($circumference / PI / 2) - scale $self->perimeter_flow->spacing/2;
|
||||
my $new_radius = (scale($self->perimeter_flow->width) + sqrt((scale($self->perimeter_flow->width)**2) + (4*($radius**2)))) / 2;
|
||||
# holes are always turned to contours, so reverse point order before and after
|
||||
$hole->reverse;
|
||||
my @offsetted = $hole->offset(+ ($new_radius - $radius));
|
||||
# skip arc compensation when hole is not round (thus leads to multiple offsets)
|
||||
@$hole = map Slic3r::Point->new($_), @{ $offsetted[0] } if @offsetted == 1;
|
||||
$hole->reverse;
|
||||
}
|
||||
}
|
||||
|
||||
my $distance = scale $self->perimeter_flow->spacing;
|
||||
my @gaps = ();
|
||||
|
||||
# generate perimeters inwards (loop 0 is the external one)
|
||||
my $loop_number = $Slic3r::Config->perimeters + ($surface->additional_inner_perimeters || 0);
|
||||
push @perimeters, [[@last_offsets]];
|
||||
for (my $loop = 1; $loop < $loop_number; $loop++) {
|
||||
# offsetting a polygon can result in one or many offset polygons
|
||||
my @new_offsets = ();
|
||||
foreach my $expolygon (@last_offsets) {
|
||||
my @offsets = map $_->offset_ex(+0.5*$distance), $expolygon->offset_ex(-1.5*$distance);
|
||||
push @new_offsets, @offsets;
|
||||
|
||||
my $diff = diff_ex(
|
||||
[ map @$_, $expolygon->offset_ex(-$distance) ],
|
||||
[ map @$_, @offsets ],
|
||||
);
|
||||
push @gaps, grep $_->area >= $gap_area_threshold, @$diff;
|
||||
}
|
||||
@last_offsets = @new_offsets;
|
||||
|
||||
last if !@last_offsets;
|
||||
push @{ $perimeters[-1] }, [@last_offsets];
|
||||
}
|
||||
|
||||
# create one more offset to be used as boundary for fill
|
||||
{
|
||||
my @fill_boundaries = map $_->offset_ex(-$distance), @last_offsets;
|
||||
$_->simplify(scale &Slic3r::RESOLUTION) for @fill_boundaries;
|
||||
push @{ $self->surfaces }, @fill_boundaries;
|
||||
|
||||
# detect the small gaps that we need to treat like thin polygons,
|
||||
# thus generating the skeleton and using it to fill them
|
||||
push @{ $self->thin_fills },
|
||||
map $_->medial_axis(scale $self->perimeter_flow->width),
|
||||
@gaps;
|
||||
Slic3r::debugf " %d gaps filled\n", scalar @{ $self->thin_fills }
|
||||
if @{ $self->thin_fills };
|
||||
}
|
||||
}
|
||||
|
||||
# process one island (original surface) at time
|
||||
foreach my $island (@perimeters) {
|
||||
# do holes starting from innermost one
|
||||
my @holes = ();
|
||||
my %is_external = ();
|
||||
my @hole_depths = map [ map $_->holes, @$_ ], @$island;
|
||||
|
||||
# organize the outermost hole loops using a shortest path search
|
||||
@{$hole_depths[0]} = @{shortest_path([
|
||||
map [ $_->[0], $_ ], @{$hole_depths[0]},
|
||||
])};
|
||||
|
||||
CYCLE: while (map @$_, @hole_depths) {
|
||||
shift @hole_depths while !@{$hole_depths[0]};
|
||||
|
||||
# take first available hole
|
||||
push @holes, shift @{$hole_depths[0]};
|
||||
$is_external{$#holes} = 1;
|
||||
|
||||
my $current_depth = 0;
|
||||
while (1) {
|
||||
$current_depth++;
|
||||
|
||||
# look for the hole containing this one if any
|
||||
next CYCLE if !$hole_depths[$current_depth];
|
||||
my $parent_hole;
|
||||
for (@{$hole_depths[$current_depth]}) {
|
||||
if ($_->encloses_point($holes[-1]->[0])) {
|
||||
$parent_hole = $_;
|
||||
last;
|
||||
}
|
||||
}
|
||||
next CYCLE if !$parent_hole;
|
||||
|
||||
# look for other holes contained in such parent
|
||||
for (@{$hole_depths[$current_depth-1]}) {
|
||||
if ($parent_hole->encloses_point($_->[0])) {
|
||||
# we have a sibling, so let's move onto next iteration
|
||||
next CYCLE;
|
||||
}
|
||||
}
|
||||
|
||||
push @holes, $parent_hole;
|
||||
@{$hole_depths[$current_depth]} = grep $_ ne $parent_hole, @{$hole_depths[$current_depth]};
|
||||
}
|
||||
}
|
||||
|
||||
# do holes, then contours starting from innermost one
|
||||
$self->_add_perimeter($holes[$_], $is_external{$_} ? EXTR_ROLE_EXTERNAL_PERIMETER : undef)
|
||||
for reverse 0 .. $#holes;
|
||||
for my $depth (reverse 0 .. $#$island) {
|
||||
my $role = $depth == $#$island ? EXTR_ROLE_CONTOUR_INTERNAL_PERIMETER
|
||||
: $depth == 0 ? EXTR_ROLE_EXTERNAL_PERIMETER
|
||||
: EXTR_ROLE_PERIMETER;
|
||||
$self->_add_perimeter($_, $role) for map $_->contour, @{$island->[$depth]};
|
||||
}
|
||||
}
|
||||
|
||||
# add thin walls as perimeters
|
||||
{
|
||||
my @thin_paths = ();
|
||||
my %properties = (
|
||||
role => EXTR_ROLE_EXTERNAL_PERIMETER,
|
||||
flow_spacing => $self->perimeter_flow->spacing,
|
||||
);
|
||||
for (@{ $self->thin_walls }) {
|
||||
push @thin_paths, $_->isa('Slic3r::Polygon')
|
||||
? Slic3r::ExtrusionLoop->pack(polygon => $_, %properties)
|
||||
: Slic3r::ExtrusionPath->pack(polyline => $_, %properties);
|
||||
}
|
||||
my $collection = Slic3r::ExtrusionPath::Collection->new(paths => \@thin_paths);
|
||||
push @{ $self->perimeters }, $collection->shortest_path;
|
||||
}
|
||||
}
|
||||
|
||||
sub _add_perimeter {
|
||||
my $self = shift;
|
||||
my ($polygon, $role) = @_;
|
||||
|
||||
return unless $polygon->is_printable($self->perimeter_flow->width);
|
||||
push @{ $self->perimeters }, Slic3r::ExtrusionLoop->pack(
|
||||
polygon => $polygon,
|
||||
role => (abs($polygon->length) <= &Slic3r::SMALL_PERIMETER_LENGTH) ? EXTR_ROLE_SMALLPERIMETER : ($role // EXTR_ROLE_PERIMETER), #/
|
||||
flow_spacing => $self->perimeter_flow->spacing,
|
||||
);
|
||||
}
|
||||
|
||||
sub prepare_fill_surfaces {
|
||||
my $self = shift;
|
||||
|
||||
my @surfaces = @{$self->surfaces};
|
||||
|
||||
# if no solid layers are requested, turn top/bottom surfaces to internal
|
||||
# note that this modifies $self->surfaces in place
|
||||
if ($Slic3r::Config->solid_layers == 0) {
|
||||
$_->surface_type(S_TYPE_INTERNAL) for grep $_->surface_type != S_TYPE_INTERNAL, @surfaces;
|
||||
}
|
||||
|
||||
# if hollow object is requested, remove internal surfaces
|
||||
if ($Slic3r::Config->fill_density == 0) {
|
||||
@surfaces = grep $_->surface_type != S_TYPE_INTERNAL, @surfaces;
|
||||
}
|
||||
|
||||
# remove unprintable regions (they would slow down the infill process and also cause
|
||||
# some weird failures during bridge neighbor detection)
|
||||
{
|
||||
my $distance = scale $self->infill_flow->spacing / 2;
|
||||
@surfaces = map {
|
||||
my $surface = $_;
|
||||
|
||||
# offset inwards
|
||||
my @offsets = $surface->expolygon->offset_ex(-$distance);
|
||||
@offsets = @{union_ex(Math::Clipper::offset([ map @$_, @offsets ], $distance, 100, JT_MITER))};
|
||||
map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => $surface->surface_type,
|
||||
), @offsets;
|
||||
} @surfaces;
|
||||
}
|
||||
|
||||
# turn too small internal regions into solid regions
|
||||
{
|
||||
my $min_area = scale scale $Slic3r::Config->solid_infill_below_area; # scaling an area requires two calls!
|
||||
my @small = grep $_->surface_type == S_TYPE_INTERNAL && $_->expolygon->contour->area <= $min_area, @surfaces;
|
||||
$_->surface_type(S_TYPE_INTERNALSOLID) for @small;
|
||||
Slic3r::debugf "identified %d small solid surfaces at layer %d\n", scalar(@small), $self->id if @small > 0;
|
||||
}
|
||||
|
||||
$self->fill_surfaces([@surfaces]);
|
||||
}
|
||||
|
||||
# make bridges printable
|
||||
sub process_bridges {
|
||||
my $self = shift;
|
||||
|
||||
# no bridges are possible if we have no internal surfaces
|
||||
return if $Slic3r::Config->fill_density == 0;
|
||||
|
||||
my @bridges = ();
|
||||
|
||||
# a bottom surface on a layer > 0 is either a bridge or a overhang
|
||||
# or a combination of both; any top surface is a candidate for
|
||||
# reverse bridge processing
|
||||
|
||||
my @solid_surfaces = grep {
|
||||
($_->surface_type == S_TYPE_BOTTOM && $self->id > 0) || $_->surface_type == S_TYPE_TOP
|
||||
} @{$self->fill_surfaces} or return;
|
||||
|
||||
my @internal_surfaces = grep { $_->surface_type == S_TYPE_INTERNAL || $_->surface_type == S_TYPE_INTERNALSOLID } @{$self->slices};
|
||||
|
||||
SURFACE: foreach my $surface (@solid_surfaces) {
|
||||
my $expolygon = $surface->expolygon->safety_offset;
|
||||
my $description = $surface->surface_type == S_TYPE_BOTTOM ? 'bridge/overhang' : 'reverse bridge';
|
||||
|
||||
# offset the contour and intersect it with the internal surfaces to discover
|
||||
# which of them has contact with our bridge
|
||||
my @supporting_surfaces = ();
|
||||
my ($contour_offset) = $expolygon->contour->offset(scale $self->flow->spacing * sqrt(2));
|
||||
foreach my $internal_surface (@internal_surfaces) {
|
||||
my $intersection = intersection_ex([$contour_offset], [$internal_surface->p]);
|
||||
if (@$intersection) {
|
||||
push @supporting_surfaces, $internal_surface;
|
||||
}
|
||||
}
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output(undef, "bridge_surfaces.svg",
|
||||
green_polygons => [ map $_->p, @supporting_surfaces ],
|
||||
red_polygons => [ @$expolygon ],
|
||||
);
|
||||
}
|
||||
|
||||
Slic3r::debugf "Found $description on layer %d with %d support(s)\n",
|
||||
$self->id, scalar(@supporting_surfaces);
|
||||
|
||||
next SURFACE unless @supporting_surfaces;
|
||||
|
||||
my $bridge_angle = undef;
|
||||
if ($surface->surface_type == S_TYPE_BOTTOM) {
|
||||
# detect optimal bridge angle
|
||||
|
||||
my $bridge_over_hole = 0;
|
||||
my @edges = (); # edges are POLYLINES
|
||||
foreach my $supporting_surface (@supporting_surfaces) {
|
||||
my @surface_edges = map $_->clip_with_polygon($contour_offset),
|
||||
($supporting_surface->contour, $supporting_surface->holes);
|
||||
|
||||
if (@supporting_surfaces == 1 && @surface_edges == 1
|
||||
&& @{$supporting_surface->contour} == @{$surface_edges[0]}) {
|
||||
$bridge_over_hole = 1;
|
||||
}
|
||||
push @edges, grep { @$_ } @surface_edges;
|
||||
}
|
||||
Slic3r::debugf " Bridge is supported on %d edge(s)\n", scalar(@edges);
|
||||
Slic3r::debugf " and covers a hole\n" if $bridge_over_hole;
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output(undef, "bridge_edges.svg",
|
||||
polylines => [ map $_->p, @edges ],
|
||||
);
|
||||
}
|
||||
|
||||
if (@edges == 2) {
|
||||
my @chords = map Slic3r::Line->new($_->[0], $_->[-1]), @edges;
|
||||
my @midpoints = map $_->midpoint, @chords;
|
||||
my $line_between_midpoints = Slic3r::Line->new(@midpoints);
|
||||
$bridge_angle = rad2deg_dir($line_between_midpoints->direction);
|
||||
} elsif (@edges == 1) {
|
||||
# TODO: this case includes both U-shaped bridges and plain overhangs;
|
||||
# we need a trapezoidation algorithm to detect the actual bridged area
|
||||
# and separate it from the overhang area.
|
||||
# in the mean time, we're treating as overhangs all cases where
|
||||
# our supporting edge is a straight line
|
||||
if (@{$edges[0]} > 2) {
|
||||
my $line = Slic3r::Line->new($edges[0]->[0], $edges[0]->[-1]);
|
||||
$bridge_angle = rad2deg_dir($line->direction);
|
||||
}
|
||||
} elsif (@edges) {
|
||||
my $center = bounding_box_center([ map @$_, @edges ]);
|
||||
my $x = my $y = 0;
|
||||
foreach my $point (map @$, @edges) {
|
||||
my $line = Slic3r::Line->new($center, $point);
|
||||
my $dir = $line->direction;
|
||||
my $len = $line->length;
|
||||
$x += cos($dir) * $len;
|
||||
$y += sin($dir) * $len;
|
||||
}
|
||||
$bridge_angle = rad2deg_dir(atan2($y, $x));
|
||||
}
|
||||
|
||||
Slic3r::debugf " Optimal infill angle of bridge on layer %d is %d degrees\n",
|
||||
$self->id, $bridge_angle if defined $bridge_angle;
|
||||
}
|
||||
|
||||
# now, extend our bridge by taking a portion of supporting surfaces
|
||||
{
|
||||
# offset the bridge by the specified amount of mm (minimum 3)
|
||||
my $bridge_overlap = scale 3;
|
||||
my ($bridge_offset) = $expolygon->contour->offset($bridge_overlap);
|
||||
|
||||
# calculate the new bridge
|
||||
my $intersection = intersection_ex(
|
||||
[ @$expolygon, map $_->p, @supporting_surfaces ],
|
||||
[ $bridge_offset ],
|
||||
);
|
||||
|
||||
push @bridges, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => $surface->surface_type,
|
||||
bridge_angle => $bridge_angle,
|
||||
), @$intersection;
|
||||
}
|
||||
}
|
||||
|
||||
# now we need to merge bridges to avoid overlapping
|
||||
{
|
||||
# build a list of unique bridge types
|
||||
my @surface_groups = Slic3r::Surface->group(@bridges);
|
||||
|
||||
# merge bridges of the same type, removing any of the bridges already merged;
|
||||
# the order of @surface_groups determines the priority between bridges having
|
||||
# different surface_type or bridge_angle
|
||||
@bridges = ();
|
||||
foreach my $surfaces (@surface_groups) {
|
||||
my $union = union_ex([ map $_->p, @$surfaces ]);
|
||||
my $diff = diff_ex(
|
||||
[ map @$_, @$union ],
|
||||
[ map $_->p, @bridges ],
|
||||
);
|
||||
|
||||
push @bridges, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => $surfaces->[0]->surface_type,
|
||||
bridge_angle => $surfaces->[0]->bridge_angle,
|
||||
), @$union;
|
||||
}
|
||||
}
|
||||
|
||||
# apply bridges to layer
|
||||
{
|
||||
my @surfaces = @{$self->fill_surfaces};
|
||||
@{$self->fill_surfaces} = ();
|
||||
|
||||
# intersect layer surfaces with bridges to get actual bridges
|
||||
foreach my $bridge (@bridges) {
|
||||
my $actual_bridge = intersection_ex(
|
||||
[ map $_->p, @surfaces ],
|
||||
[ $bridge->p ],
|
||||
);
|
||||
|
||||
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => $bridge->surface_type,
|
||||
bridge_angle => $bridge->bridge_angle,
|
||||
), @$actual_bridge;
|
||||
}
|
||||
|
||||
# difference between layer surfaces and bridges are the other surfaces
|
||||
foreach my $group (Slic3r::Surface->group(@surfaces)) {
|
||||
my $difference = diff_ex(
|
||||
[ map $_->p, @$group ],
|
||||
[ map $_->p, @bridges ],
|
||||
);
|
||||
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => $group->[0]->surface_type), @$difference;
|
||||
}
|
||||
}
|
||||
$_->make_perimeters for @{$self->materials};
|
||||
}
|
||||
|
||||
1;
|
||||
|
515
lib/Slic3r/Layer/Material.pm
Normal file
515
lib/Slic3r/Layer/Material.pm
Normal file
@ -0,0 +1,515 @@
|
||||
package Slic3r::Layer::Material;
|
||||
use Moo;
|
||||
|
||||
use Math::Clipper ':all';
|
||||
use Slic3r::ExtrusionPath ':roles';
|
||||
use Slic3r::Geometry qw(scale shortest_path);
|
||||
use Slic3r::Geometry::Clipper qw(safety_offset union_ex diff_ex intersection_ex);
|
||||
use Slic3r::Surface ':types';
|
||||
|
||||
has 'layer' => (
|
||||
is => 'ro',
|
||||
weak_ref => 1,
|
||||
required => 1,
|
||||
handles => [qw(id slice_z print_z height flow perimeter_flow infill_flow)],
|
||||
);
|
||||
|
||||
# collection of spare segments generated by slicing the original geometry;
|
||||
# these need to be merged in continuos (closed) polylines
|
||||
has 'lines' => (is => 'rw', default => sub { [] });
|
||||
|
||||
# collection of surfaces generated by slicing the original geometry
|
||||
has 'slices' => (is => 'rw');
|
||||
|
||||
# collection of polygons or polylines representing thin walls contained
|
||||
# in the original geometry
|
||||
has 'thin_walls' => (is => 'rw');
|
||||
|
||||
# collection of polygons or polylines representing thin infill regions that
|
||||
# need to be filled with a medial axis
|
||||
has 'thin_fills' => (is => 'rw');
|
||||
|
||||
# collection of expolygons generated by offsetting the innermost perimeter(s)
|
||||
# they represent boundaries of areas to fill, typed (top/bottom/internal)
|
||||
has 'surfaces' => (is => 'rw');
|
||||
|
||||
# collection of surfaces for infill generation. the difference between surfaces
|
||||
# fill_surfaces is that this one honors fill_density == 0 and turns small internal
|
||||
# surfaces into solid ones
|
||||
has 'fill_surfaces' => (is => 'rw');
|
||||
|
||||
# ordered collection of extrusion paths/loops to build all perimeters
|
||||
has 'perimeters' => (is => 'rw');
|
||||
|
||||
# ordered collection of extrusion paths to fill surfaces
|
||||
has 'fills' => (is => 'rw');
|
||||
|
||||
# build polylines from lines
|
||||
sub make_surfaces {
|
||||
my $self = shift;
|
||||
my ($loops) = @_;
|
||||
|
||||
{
|
||||
my $safety_offset = scale 0.1;
|
||||
# merge everything
|
||||
my $expolygons = [ map $_->offset_ex(-$safety_offset), @{union_ex(safety_offset($loops, $safety_offset))} ];
|
||||
|
||||
Slic3r::debugf " %d surface(s) having %d holes detected from %d polylines\n",
|
||||
scalar(@$expolygons), scalar(map $_->holes, @$expolygons), scalar(@$loops);
|
||||
|
||||
$self->slices([
|
||||
map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL),
|
||||
@$expolygons
|
||||
]);
|
||||
}
|
||||
|
||||
# the contours must be offsetted by half extrusion width inwards
|
||||
{
|
||||
my $distance = scale $self->perimeter_flow->width / 2;
|
||||
my @surfaces = @{$self->slices};
|
||||
@{$self->slices} = ();
|
||||
foreach my $surface (@surfaces) {
|
||||
push @{$self->slices}, map Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNAL),
|
||||
map $_->offset_ex(+$distance),
|
||||
$surface->expolygon->offset_ex(-2*$distance);
|
||||
}
|
||||
|
||||
# now detect thin walls by re-outgrowing offsetted surfaces and subtracting
|
||||
# them from the original slices
|
||||
my $outgrown = Math::Clipper::offset([ map $_->p, @{$self->slices} ], $distance);
|
||||
my $diff = diff_ex(
|
||||
[ map $_->p, @surfaces ],
|
||||
$outgrown,
|
||||
1,
|
||||
);
|
||||
|
||||
$self->thin_walls([]);
|
||||
if (@$diff) {
|
||||
my $area_threshold = scale($self->perimeter_flow->spacing) ** 2;
|
||||
@$diff = grep $_->area > ($area_threshold), @$diff;
|
||||
|
||||
@{$self->thin_walls} = map $_->medial_axis(scale $self->perimeter_flow->width), @$diff;
|
||||
|
||||
Slic3r::debugf " %d thin walls detected\n", scalar(@{$self->thin_walls}) if @{$self->thin_walls};
|
||||
}
|
||||
}
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output(undef, "surfaces.svg",
|
||||
polygons => [ map $_->contour, @{$self->slices} ],
|
||||
red_polygons => [ map $_->p, map @{$_->holes}, @{$self->slices} ],
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
sub make_perimeters {
|
||||
my $self = shift;
|
||||
|
||||
my $gap_area_threshold = scale($self->perimeter_flow->width)** 2;
|
||||
|
||||
# this array will hold one arrayref per original surface (island);
|
||||
# each item of this arrayref is an arrayref representing a depth (from outer
|
||||
# perimeters to inner); each item of this arrayref is an ExPolygon:
|
||||
# @perimeters = (
|
||||
# [ # first island
|
||||
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 0: outer loop
|
||||
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 1: inner loop
|
||||
# ],
|
||||
# [ # second island
|
||||
# ...
|
||||
# ]
|
||||
# )
|
||||
my @perimeters = (); # one item per depth; each item
|
||||
|
||||
# organize islands using a shortest path search
|
||||
my @surfaces = @{shortest_path([
|
||||
map [ $_->contour->[0], $_ ], @{$self->slices},
|
||||
])};
|
||||
|
||||
$self->perimeters([]);
|
||||
$self->surfaces([]);
|
||||
$self->thin_fills([]);
|
||||
|
||||
# for each island:
|
||||
foreach my $surface (@surfaces) {
|
||||
my @last_offsets = ($surface->expolygon);
|
||||
|
||||
# experimental hole compensation (see ArcCompensation in the RepRap wiki)
|
||||
if (0) {
|
||||
foreach my $hole ($last_offsets[0]->holes) {
|
||||
my $circumference = abs($hole->length);
|
||||
next unless $circumference <= &Slic3r::SMALL_PERIMETER_LENGTH;
|
||||
# this compensation only works for circular holes, while it would
|
||||
# overcompensate for hexagons and other shapes having straight edges.
|
||||
# so we require a minimum number of vertices.
|
||||
next unless $circumference / @$hole >= scale 3 * $Slic3r::flow->width;
|
||||
|
||||
# revert the compensation done in make_surfaces() and get the actual radius
|
||||
# of the hole
|
||||
my $radius = ($circumference / PI / 2) - scale $self->perimeter_flow->spacing/2;
|
||||
my $new_radius = (scale($self->perimeter_flow->width) + sqrt((scale($self->perimeter_flow->width)**2) + (4*($radius**2)))) / 2;
|
||||
# holes are always turned to contours, so reverse point order before and after
|
||||
$hole->reverse;
|
||||
my @offsetted = $hole->offset(+ ($new_radius - $radius));
|
||||
# skip arc compensation when hole is not round (thus leads to multiple offsets)
|
||||
@$hole = map Slic3r::Point->new($_), @{ $offsetted[0] } if @offsetted == 1;
|
||||
$hole->reverse;
|
||||
}
|
||||
}
|
||||
|
||||
my $distance = scale $self->perimeter_flow->spacing;
|
||||
my @gaps = ();
|
||||
|
||||
# generate perimeters inwards (loop 0 is the external one)
|
||||
my $loop_number = $Slic3r::Config->perimeters + ($surface->additional_inner_perimeters || 0);
|
||||
push @perimeters, [[@last_offsets]];
|
||||
for (my $loop = 1; $loop < $loop_number; $loop++) {
|
||||
# offsetting a polygon can result in one or many offset polygons
|
||||
my @new_offsets = ();
|
||||
foreach my $expolygon (@last_offsets) {
|
||||
my @offsets = map $_->offset_ex(+0.5*$distance), $expolygon->offset_ex(-1.5*$distance);
|
||||
push @new_offsets, @offsets;
|
||||
|
||||
my $diff = diff_ex(
|
||||
[ map @$_, $expolygon->offset_ex(-$distance) ],
|
||||
[ map @$_, @offsets ],
|
||||
);
|
||||
push @gaps, grep $_->area >= $gap_area_threshold, @$diff;
|
||||
}
|
||||
@last_offsets = @new_offsets;
|
||||
|
||||
last if !@last_offsets;
|
||||
push @{ $perimeters[-1] }, [@last_offsets];
|
||||
}
|
||||
|
||||
# create one more offset to be used as boundary for fill
|
||||
{
|
||||
my @fill_boundaries = map $_->offset_ex(-$distance), @last_offsets;
|
||||
$_->simplify(scale &Slic3r::RESOLUTION) for @fill_boundaries;
|
||||
push @{ $self->surfaces }, @fill_boundaries;
|
||||
|
||||
# detect the small gaps that we need to treat like thin polygons,
|
||||
# thus generating the skeleton and using it to fill them
|
||||
push @{ $self->thin_fills },
|
||||
map $_->medial_axis(scale $self->perimeter_flow->width),
|
||||
@gaps;
|
||||
Slic3r::debugf " %d gaps filled\n", scalar @{ $self->thin_fills }
|
||||
if @{ $self->thin_fills };
|
||||
}
|
||||
}
|
||||
|
||||
# process one island (original surface) at time
|
||||
foreach my $island (@perimeters) {
|
||||
# do holes starting from innermost one
|
||||
my @holes = ();
|
||||
my %is_external = ();
|
||||
my @hole_depths = map [ map $_->holes, @$_ ], @$island;
|
||||
|
||||
# organize the outermost hole loops using a shortest path search
|
||||
@{$hole_depths[0]} = @{shortest_path([
|
||||
map [ $_->[0], $_ ], @{$hole_depths[0]},
|
||||
])};
|
||||
|
||||
CYCLE: while (map @$_, @hole_depths) {
|
||||
shift @hole_depths while !@{$hole_depths[0]};
|
||||
|
||||
# take first available hole
|
||||
push @holes, shift @{$hole_depths[0]};
|
||||
$is_external{$#holes} = 1;
|
||||
|
||||
my $current_depth = 0;
|
||||
while (1) {
|
||||
$current_depth++;
|
||||
|
||||
# look for the hole containing this one if any
|
||||
next CYCLE if !$hole_depths[$current_depth];
|
||||
my $parent_hole;
|
||||
for (@{$hole_depths[$current_depth]}) {
|
||||
if ($_->encloses_point($holes[-1]->[0])) {
|
||||
$parent_hole = $_;
|
||||
last;
|
||||
}
|
||||
}
|
||||
next CYCLE if !$parent_hole;
|
||||
|
||||
# look for other holes contained in such parent
|
||||
for (@{$hole_depths[$current_depth-1]}) {
|
||||
if ($parent_hole->encloses_point($_->[0])) {
|
||||
# we have a sibling, so let's move onto next iteration
|
||||
next CYCLE;
|
||||
}
|
||||
}
|
||||
|
||||
push @holes, $parent_hole;
|
||||
@{$hole_depths[$current_depth]} = grep $_ ne $parent_hole, @{$hole_depths[$current_depth]};
|
||||
}
|
||||
}
|
||||
|
||||
# do holes, then contours starting from innermost one
|
||||
$self->_add_perimeter($holes[$_], $is_external{$_} ? EXTR_ROLE_EXTERNAL_PERIMETER : undef)
|
||||
for reverse 0 .. $#holes;
|
||||
for my $depth (reverse 0 .. $#$island) {
|
||||
my $role = $depth == $#$island ? EXTR_ROLE_CONTOUR_INTERNAL_PERIMETER
|
||||
: $depth == 0 ? EXTR_ROLE_EXTERNAL_PERIMETER
|
||||
: EXTR_ROLE_PERIMETER;
|
||||
$self->_add_perimeter($_, $role) for map $_->contour, @{$island->[$depth]};
|
||||
}
|
||||
}
|
||||
|
||||
# add thin walls as perimeters
|
||||
{
|
||||
my @thin_paths = ();
|
||||
my %properties = (
|
||||
role => EXTR_ROLE_EXTERNAL_PERIMETER,
|
||||
flow_spacing => $self->perimeter_flow->spacing,
|
||||
);
|
||||
for (@{ $self->thin_walls }) {
|
||||
push @thin_paths, $_->isa('Slic3r::Polygon')
|
||||
? Slic3r::ExtrusionLoop->pack(polygon => $_, %properties)
|
||||
: Slic3r::ExtrusionPath->pack(polyline => $_, %properties);
|
||||
}
|
||||
my $collection = Slic3r::ExtrusionPath::Collection->new(paths => \@thin_paths);
|
||||
push @{ $self->perimeters }, $collection->shortest_path;
|
||||
}
|
||||
}
|
||||
|
||||
sub _add_perimeter {
|
||||
my $self = shift;
|
||||
my ($polygon, $role) = @_;
|
||||
|
||||
return unless $polygon->is_printable($self->perimeter_flow->width);
|
||||
push @{ $self->perimeters }, Slic3r::ExtrusionLoop->pack(
|
||||
polygon => $polygon,
|
||||
role => (abs($polygon->length) <= &Slic3r::SMALL_PERIMETER_LENGTH) ? EXTR_ROLE_SMALLPERIMETER : ($role // EXTR_ROLE_PERIMETER), #/
|
||||
flow_spacing => $self->perimeter_flow->spacing,
|
||||
);
|
||||
}
|
||||
|
||||
sub prepare_fill_surfaces {
|
||||
my $self = shift;
|
||||
|
||||
my @surfaces = @{$self->surfaces};
|
||||
|
||||
# if no solid layers are requested, turn top/bottom surfaces to internal
|
||||
# note that this modifies $self->surfaces in place
|
||||
if ($Slic3r::Config->solid_layers == 0) {
|
||||
$_->surface_type(S_TYPE_INTERNAL) for grep $_->surface_type != S_TYPE_INTERNAL, @surfaces;
|
||||
}
|
||||
|
||||
# if hollow object is requested, remove internal surfaces
|
||||
if ($Slic3r::Config->fill_density == 0) {
|
||||
@surfaces = grep $_->surface_type != S_TYPE_INTERNAL, @surfaces;
|
||||
}
|
||||
|
||||
# remove unprintable regions (they would slow down the infill process and also cause
|
||||
# some weird failures during bridge neighbor detection)
|
||||
{
|
||||
my $distance = scale $self->infill_flow->spacing / 2;
|
||||
@surfaces = map {
|
||||
my $surface = $_;
|
||||
|
||||
# offset inwards
|
||||
my @offsets = $surface->expolygon->offset_ex(-$distance);
|
||||
@offsets = @{union_ex(Math::Clipper::offset([ map @$_, @offsets ], $distance, 100, JT_MITER))};
|
||||
map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => $surface->surface_type,
|
||||
), @offsets;
|
||||
} @surfaces;
|
||||
}
|
||||
|
||||
# turn too small internal regions into solid regions
|
||||
{
|
||||
my $min_area = scale scale $Slic3r::Config->solid_infill_below_area; # scaling an area requires two calls!
|
||||
my @small = grep $_->surface_type == S_TYPE_INTERNAL && $_->expolygon->contour->area <= $min_area, @surfaces;
|
||||
$_->surface_type(S_TYPE_INTERNALSOLID) for @small;
|
||||
Slic3r::debugf "identified %d small solid surfaces at layer %d\n", scalar(@small), $self->id if @small > 0;
|
||||
}
|
||||
|
||||
$self->fill_surfaces([@surfaces]);
|
||||
}
|
||||
|
||||
# make bridges printable
|
||||
sub process_bridges {
|
||||
my $self = shift;
|
||||
|
||||
# no bridges are possible if we have no internal surfaces
|
||||
return if $Slic3r::Config->fill_density == 0;
|
||||
|
||||
my @bridges = ();
|
||||
|
||||
# a bottom surface on a layer > 0 is either a bridge or a overhang
|
||||
# or a combination of both; any top surface is a candidate for
|
||||
# reverse bridge processing
|
||||
|
||||
my @solid_surfaces = grep {
|
||||
($_->surface_type == S_TYPE_BOTTOM && $self->id > 0) || $_->surface_type == S_TYPE_TOP
|
||||
} @{$self->fill_surfaces} or return;
|
||||
|
||||
my @internal_surfaces = grep { $_->surface_type == S_TYPE_INTERNAL || $_->surface_type == S_TYPE_INTERNALSOLID } @{$self->slices};
|
||||
|
||||
SURFACE: foreach my $surface (@solid_surfaces) {
|
||||
my $expolygon = $surface->expolygon->safety_offset;
|
||||
my $description = $surface->surface_type == S_TYPE_BOTTOM ? 'bridge/overhang' : 'reverse bridge';
|
||||
|
||||
# offset the contour and intersect it with the internal surfaces to discover
|
||||
# which of them has contact with our bridge
|
||||
my @supporting_surfaces = ();
|
||||
my ($contour_offset) = $expolygon->contour->offset(scale $self->flow->spacing * sqrt(2));
|
||||
foreach my $internal_surface (@internal_surfaces) {
|
||||
my $intersection = intersection_ex([$contour_offset], [$internal_surface->p]);
|
||||
if (@$intersection) {
|
||||
push @supporting_surfaces, $internal_surface;
|
||||
}
|
||||
}
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output(undef, "bridge_surfaces.svg",
|
||||
green_polygons => [ map $_->p, @supporting_surfaces ],
|
||||
red_polygons => [ @$expolygon ],
|
||||
);
|
||||
}
|
||||
|
||||
Slic3r::debugf "Found $description on layer %d with %d support(s)\n",
|
||||
$self->id, scalar(@supporting_surfaces);
|
||||
|
||||
next SURFACE unless @supporting_surfaces;
|
||||
|
||||
my $bridge_angle = undef;
|
||||
if ($surface->surface_type == S_TYPE_BOTTOM) {
|
||||
# detect optimal bridge angle
|
||||
|
||||
my $bridge_over_hole = 0;
|
||||
my @edges = (); # edges are POLYLINES
|
||||
foreach my $supporting_surface (@supporting_surfaces) {
|
||||
my @surface_edges = map $_->clip_with_polygon($contour_offset),
|
||||
($supporting_surface->contour, $supporting_surface->holes);
|
||||
|
||||
if (@supporting_surfaces == 1 && @surface_edges == 1
|
||||
&& @{$supporting_surface->contour} == @{$surface_edges[0]}) {
|
||||
$bridge_over_hole = 1;
|
||||
}
|
||||
push @edges, grep { @$_ } @surface_edges;
|
||||
}
|
||||
Slic3r::debugf " Bridge is supported on %d edge(s)\n", scalar(@edges);
|
||||
Slic3r::debugf " and covers a hole\n" if $bridge_over_hole;
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output(undef, "bridge_edges.svg",
|
||||
polylines => [ map $_->p, @edges ],
|
||||
);
|
||||
}
|
||||
|
||||
if (@edges == 2) {
|
||||
my @chords = map Slic3r::Line->new($_->[0], $_->[-1]), @edges;
|
||||
my @midpoints = map $_->midpoint, @chords;
|
||||
my $line_between_midpoints = Slic3r::Line->new(@midpoints);
|
||||
$bridge_angle = rad2deg_dir($line_between_midpoints->direction);
|
||||
} elsif (@edges == 1) {
|
||||
# TODO: this case includes both U-shaped bridges and plain overhangs;
|
||||
# we need a trapezoidation algorithm to detect the actual bridged area
|
||||
# and separate it from the overhang area.
|
||||
# in the mean time, we're treating as overhangs all cases where
|
||||
# our supporting edge is a straight line
|
||||
if (@{$edges[0]} > 2) {
|
||||
my $line = Slic3r::Line->new($edges[0]->[0], $edges[0]->[-1]);
|
||||
$bridge_angle = rad2deg_dir($line->direction);
|
||||
}
|
||||
} elsif (@edges) {
|
||||
my $center = bounding_box_center([ map @$_, @edges ]);
|
||||
my $x = my $y = 0;
|
||||
foreach my $point (map @$, @edges) {
|
||||
my $line = Slic3r::Line->new($center, $point);
|
||||
my $dir = $line->direction;
|
||||
my $len = $line->length;
|
||||
$x += cos($dir) * $len;
|
||||
$y += sin($dir) * $len;
|
||||
}
|
||||
$bridge_angle = rad2deg_dir(atan2($y, $x));
|
||||
}
|
||||
|
||||
Slic3r::debugf " Optimal infill angle of bridge on layer %d is %d degrees\n",
|
||||
$self->id, $bridge_angle if defined $bridge_angle;
|
||||
}
|
||||
|
||||
# now, extend our bridge by taking a portion of supporting surfaces
|
||||
{
|
||||
# offset the bridge by the specified amount of mm (minimum 3)
|
||||
my $bridge_overlap = scale 3;
|
||||
my ($bridge_offset) = $expolygon->contour->offset($bridge_overlap);
|
||||
|
||||
# calculate the new bridge
|
||||
my $intersection = intersection_ex(
|
||||
[ @$expolygon, map $_->p, @supporting_surfaces ],
|
||||
[ $bridge_offset ],
|
||||
);
|
||||
|
||||
push @bridges, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => $surface->surface_type,
|
||||
bridge_angle => $bridge_angle,
|
||||
), @$intersection;
|
||||
}
|
||||
}
|
||||
|
||||
# now we need to merge bridges to avoid overlapping
|
||||
{
|
||||
# build a list of unique bridge types
|
||||
my @surface_groups = Slic3r::Surface->group(@bridges);
|
||||
|
||||
# merge bridges of the same type, removing any of the bridges already merged;
|
||||
# the order of @surface_groups determines the priority between bridges having
|
||||
# different surface_type or bridge_angle
|
||||
@bridges = ();
|
||||
foreach my $surfaces (@surface_groups) {
|
||||
my $union = union_ex([ map $_->p, @$surfaces ]);
|
||||
my $diff = diff_ex(
|
||||
[ map @$_, @$union ],
|
||||
[ map $_->p, @bridges ],
|
||||
);
|
||||
|
||||
push @bridges, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => $surfaces->[0]->surface_type,
|
||||
bridge_angle => $surfaces->[0]->bridge_angle,
|
||||
), @$union;
|
||||
}
|
||||
}
|
||||
|
||||
# apply bridges to layer
|
||||
{
|
||||
my @surfaces = @{$self->fill_surfaces};
|
||||
@{$self->fill_surfaces} = ();
|
||||
|
||||
# intersect layer surfaces with bridges to get actual bridges
|
||||
foreach my $bridge (@bridges) {
|
||||
my $actual_bridge = intersection_ex(
|
||||
[ map $_->p, @surfaces ],
|
||||
[ $bridge->p ],
|
||||
);
|
||||
|
||||
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => $bridge->surface_type,
|
||||
bridge_angle => $bridge->bridge_angle,
|
||||
), @$actual_bridge;
|
||||
}
|
||||
|
||||
# difference between layer surfaces and bridges are the other surfaces
|
||||
foreach my $group (Slic3r::Surface->group(@surfaces)) {
|
||||
my $difference = diff_ex(
|
||||
[ map $_->p, @$group ],
|
||||
[ map $_->p, @bridges ],
|
||||
);
|
||||
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => $group->[0]->surface_type), @$difference;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
1;
|
@ -15,6 +15,7 @@ sub read_from_file {
|
||||
: $input_file =~ /\.amf(\.xml)?$/i ? Slic3r::Format::AMF->read_file($input_file)
|
||||
: die "Input file must have .stl, .obj or .amf(.xml) extension\n";
|
||||
|
||||
$_->input_file($input_file) for @{$model->objects};
|
||||
return $model;
|
||||
}
|
||||
|
||||
@ -26,6 +27,16 @@ sub add_object {
|
||||
return $object;
|
||||
}
|
||||
|
||||
sub set_material {
|
||||
my $self = shift;
|
||||
my ($material_id, $attributes) = @_;
|
||||
|
||||
return $self->materials->{$material_id} = Slic3r::Model::Material->new(
|
||||
model => $self,
|
||||
attributes => $attributes || {},
|
||||
);
|
||||
}
|
||||
|
||||
# flattens everything to a single mesh
|
||||
sub mesh {
|
||||
my $self = shift;
|
||||
|
@ -16,6 +16,8 @@ has 'objects' => (is => 'rw', default => sub {[]});
|
||||
has 'total_extrusion_length' => (is => 'rw');
|
||||
has 'processing_time' => (is => 'rw', required => 0);
|
||||
|
||||
has 'materials_count' => (is => 'rw', default => sub {1});
|
||||
|
||||
# ordered collection of extrusion paths to build skirt loops
|
||||
has 'skirt' => (
|
||||
is => 'rw',
|
||||
@ -82,59 +84,52 @@ sub _trigger_config {
|
||||
$self->config->set('extrusion_axis', '') if $self->config->gcode_flavor eq 'no-extrusion';
|
||||
}
|
||||
|
||||
sub add_objects_from_file {
|
||||
my $self = shift;
|
||||
my ($input_file) = @_;
|
||||
|
||||
my $model = Slic3r::Model->read_from_file($input_file);
|
||||
|
||||
my @print_objects = $self->add_model($model);
|
||||
$_->input_file($input_file) for @print_objects;
|
||||
}
|
||||
|
||||
sub add_model {
|
||||
my $self = shift;
|
||||
my ($model) = @_;
|
||||
|
||||
my @print_objects = ();
|
||||
# update materials count
|
||||
$self->materials_count(max($self->materials_count, scalar keys %{$model->materials}));
|
||||
|
||||
foreach my $object (@{ $model->objects }) {
|
||||
my $mesh = $object->volumes->[0]->mesh;
|
||||
$mesh->check_manifoldness;
|
||||
my @meshes = (); # by material_id
|
||||
|
||||
if ($object->instances) {
|
||||
# we ignore the per-instance rotation currently and only
|
||||
# consider the first one
|
||||
$mesh->rotate($object->instances->[0]->rotation);
|
||||
foreach my $volume (@{$object->volumes}) {
|
||||
# should the object contain multiple volumes of the same material, merge them
|
||||
my $material_id = $volume->material_id // 0; #/
|
||||
$meshes[$material_id] = $meshes[$material_id]
|
||||
? Slic3r::TriangleMesh->merge($meshes[$material_id], $volume->mesh)
|
||||
: $volume->mesh;
|
||||
}
|
||||
|
||||
push @print_objects, $self->add_object_from_mesh($mesh, input_file => $object->input_file);
|
||||
foreach my $mesh (@meshes) {
|
||||
next unless $mesh;
|
||||
$mesh->check_manifoldness;
|
||||
|
||||
if ($object->instances) {
|
||||
# we ignore the per-instance rotation currently and only
|
||||
# consider the first one
|
||||
$mesh->rotate($object->instances->[0]->rotation);
|
||||
}
|
||||
|
||||
$mesh->rotate($Slic3r::Config->rotate);
|
||||
$mesh->scale($Slic3r::Config->scale / &Slic3r::SCALING_FACTOR);
|
||||
$mesh->align_to_origin;
|
||||
}
|
||||
|
||||
# initialize print object
|
||||
push @{$self->objects}, Slic3r::Print::Object->new(
|
||||
print => $self,
|
||||
meshes => [ @meshes ],
|
||||
size => [ $object->mesh->size ],
|
||||
input_file => $object->input_file
|
||||
);
|
||||
|
||||
if ($object->instances) {
|
||||
# replace the default [0,0] instance with the custom ones
|
||||
@{$self->objects->[-1]->copies} = map [ scale $_->offset->[X], scale $_->offset->[Y] ], @{$object->instances};
|
||||
}
|
||||
}
|
||||
|
||||
return @print_objects;
|
||||
}
|
||||
|
||||
sub add_object_from_mesh {
|
||||
my $self = shift;
|
||||
my ($mesh, %attributes) = @_;
|
||||
|
||||
$mesh->rotate($Slic3r::Config->rotate);
|
||||
$mesh->scale($Slic3r::Config->scale / &Slic3r::SCALING_FACTOR);
|
||||
$mesh->align_to_origin;
|
||||
|
||||
# initialize print object
|
||||
my $object = Slic3r::Print::Object->new(
|
||||
mesh => $mesh,
|
||||
size => [ $mesh->size ],
|
||||
%attributes,
|
||||
);
|
||||
|
||||
push @{$self->objects}, $object;
|
||||
return $object;
|
||||
}
|
||||
|
||||
sub validate {
|
||||
@ -147,7 +142,7 @@ sub validate {
|
||||
for my $obj_idx (0 .. $#{$self->objects}) {
|
||||
my $clearance;
|
||||
{
|
||||
my @points = map [ @$_[X,Y] ], @{$self->objects->[$obj_idx]->mesh->vertices};
|
||||
my @points = map [ @$_[X,Y] ], map @{$_->vertices}, @{$self->objects->[$obj_idx]->meshes};
|
||||
my $convex_hull = Slic3r::Polygon->new(convex_hull(\@points));
|
||||
$clearance = +($convex_hull->offset(scale $Slic3r::Config->extruder_clearance_radius / 2, 1, JT_ROUND))[0];
|
||||
}
|
||||
@ -166,7 +161,8 @@ sub validate {
|
||||
{
|
||||
my @obj_copies = $self->object_copies;
|
||||
pop @obj_copies; # ignore the last copy: its height doesn't matter
|
||||
if (grep { +($self->objects->[$_->[0]]->mesh->size)[Z] > scale $Slic3r::Config->extruder_clearance_height } @obj_copies) {
|
||||
my $scaled_clearance = scale $Slic3r::Config->extruder_clearance_height;
|
||||
if (grep { +($_->size)[Z] > $scaled_clearance } map @{$self->objects->[$_->[0]]->meshes}, @obj_copies) {
|
||||
die "Some objects are too tall and cannot be printed without extruder collisions.\n";
|
||||
}
|
||||
}
|
||||
@ -283,9 +279,12 @@ sub export_gcode {
|
||||
$status_cb->(20, "Generating perimeters");
|
||||
$_->make_perimeters for @{$self->objects};
|
||||
|
||||
# simplify slices, we only need the max resolution for perimeters
|
||||
# simplify slices (both layer and material slices),
|
||||
# we only need the max resolution for perimeters
|
||||
$_->simplify(scale &Slic3r::RESOLUTION)
|
||||
for map @{$_->expolygon}, map @{$_->slices}, map @{$_->layers}, @{$self->objects};
|
||||
for map @{$_->expolygon},
|
||||
map { my $layer = $_; ((map @{$_->slices}, @{$layer->materials}), @{$layer->slices}) }
|
||||
map @{$_->layers}, @{$self->objects};
|
||||
|
||||
# this will clip $layer->surfaces to the infill boundaries
|
||||
# and split them in top/bottom/internal surfaces;
|
||||
@ -294,12 +293,12 @@ sub export_gcode {
|
||||
|
||||
# decide what surfaces are to be filled
|
||||
$status_cb->(35, "Preparing infill surfaces");
|
||||
$_->prepare_fill_surfaces for map @{$_->layers}, @{$self->objects};
|
||||
$_->prepare_fill_surfaces for map @{$_->materials}, map @{$_->layers}, @{$self->objects};
|
||||
|
||||
# this will detect bridges and reverse bridges
|
||||
# and rearrange top/bottom/internal surfaces
|
||||
$status_cb->(45, "Detect bridges");
|
||||
$_->process_bridges for map @{$_->layers}, @{$self->objects};
|
||||
$_->process_bridges for map @{$_->materials}, map @{$_->layers}, @{$self->objects};
|
||||
|
||||
# detect which fill surfaces are near external layers
|
||||
# they will be split in internal and internal-solid surfaces
|
||||
@ -307,7 +306,7 @@ sub export_gcode {
|
||||
$_->discover_horizontal_shells for @{$self->objects};
|
||||
|
||||
# free memory
|
||||
$_->surfaces(undef) for map @{$_->layers}, @{$self->objects};
|
||||
$_->surfaces(undef) for map @{$_->materials}, map @{$_->layers}, @{$self->objects};
|
||||
|
||||
# combine fill surfaces to honor the "infill every N layers" option
|
||||
$status_cb->(70, "Combining infill");
|
||||
@ -317,35 +316,45 @@ sub export_gcode {
|
||||
$status_cb->(80, "Infilling layers");
|
||||
{
|
||||
my $fill_maker = Slic3r::Fill->new('print' => $self);
|
||||
|
||||
my @items = (); # [obj_idx, layer_id]
|
||||
foreach my $obj_idx (0 .. $#{$self->objects}) {
|
||||
push @items, map [$obj_idx, $_], 0..$#{$self->objects->[$obj_idx]->layers};
|
||||
}
|
||||
Slic3r::parallelize(
|
||||
items => [@items],
|
||||
items => sub {
|
||||
my @items = (); # [obj_idx, layer_id]
|
||||
for my $obj_idx (0 .. $#{$self->objects}) {
|
||||
for my $material_id (0 .. ($self->materials_count-1)) {
|
||||
push @items, map [$obj_idx, $_, $material_id], 0..($self->objects->[$obj_idx]->layer_count-1);
|
||||
}
|
||||
}
|
||||
@items;
|
||||
},
|
||||
thread_cb => sub {
|
||||
my $q = shift;
|
||||
$Slic3r::Geometry::Clipper::clipper = Math::Clipper->new;
|
||||
my $fills = {};
|
||||
while (defined (my $obj_layer = $q->dequeue)) {
|
||||
my ($obj_idx, $layer_id) = @$obj_layer;
|
||||
my ($obj_idx, $layer_id, $material_id) = @$obj_layer;
|
||||
$fills->{$obj_idx} ||= {};
|
||||
$fills->{$obj_idx}{$layer_id} = [ $fill_maker->make_fill($self->objects->[$obj_idx]->layers->[$layer_id]) ];
|
||||
$fills->{$obj_idx}{$layer_id} ||= {};
|
||||
$fills->{$obj_idx}{$layer_id}{$material_id} = [
|
||||
$fill_maker->make_fill($self->objects->[$obj_idx]->layers->[$layer_id]->materials->[$material_id]),
|
||||
];
|
||||
}
|
||||
return $fills;
|
||||
},
|
||||
collect_cb => sub {
|
||||
my $fills = shift;
|
||||
foreach my $obj_idx (keys %$fills) {
|
||||
my $object = $self->objects->[$obj_idx];
|
||||
foreach my $layer_id (keys %{$fills->{$obj_idx}}) {
|
||||
$self->objects->[$obj_idx]->layers->[$layer_id]->fills($fills->{$obj_idx}{$layer_id});
|
||||
my $layer = $object->layers->[$layer_id];
|
||||
foreach my $material_id (keys %{$fills->{$obj_idx}{$layer_id}}) {
|
||||
$layer->materials->[$material_id]->fills($fills->{$obj_idx}{$layer_id}{$material_id});
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
no_threads_cb => sub {
|
||||
foreach my $layer (map @{$_->layers}, @{$self->objects}) {
|
||||
$layer->fills([ $fill_maker->make_fill($layer) ]);
|
||||
foreach my $layerm (map @{$_->materials}, map @{$_->layers}, @{$self->objects}) {
|
||||
$layerm->fills([ $fill_maker->make_fill($layerm) ]);
|
||||
}
|
||||
},
|
||||
);
|
||||
@ -354,11 +363,11 @@ sub export_gcode {
|
||||
# generate support material
|
||||
if ($Slic3r::Config->support_material) {
|
||||
$status_cb->(85, "Generating support material");
|
||||
$_->generate_support_material(print => $self) for @{$self->objects};
|
||||
$_->generate_support_material for @{$self->objects};
|
||||
}
|
||||
|
||||
# free memory (note that support material needs fill_surfaces)
|
||||
$_->fill_surfaces(undef) for map @{$_->layers}, @{$self->objects};
|
||||
$_->fill_surfaces(undef) for map @{$_->materials}, map @{$_->layers}, @{$self->objects};
|
||||
|
||||
# make skirt
|
||||
$status_cb->(88, "Generating skirt");
|
||||
@ -486,7 +495,7 @@ sub make_skirt {
|
||||
my @layers = map $self->objects->[$obj_idx]->layer($_), 0..($skirt_height-1);
|
||||
my @layer_points = (
|
||||
(map @$_, map @{$_->expolygon}, map @{$_->slices}, @layers),
|
||||
(map @$_, map @{$_->thin_walls}, @layers),
|
||||
(map @$_, map @{$_->thin_walls}, map @{$_->materials}, @layers),
|
||||
(map @{$_->unpack->polyline}, map @{$_->support_fills->paths}, grep $_->support_fills, @layers),
|
||||
);
|
||||
push @points, map move_points($_, @layer_points), @{$self->objects->[$obj_idx]->copies};
|
||||
@ -521,7 +530,7 @@ sub make_brim {
|
||||
my $layer0 = $self->objects->[$obj_idx]->layers->[0];
|
||||
my @object_islands = (
|
||||
(map $_->contour, @{$layer0->slices}),
|
||||
(map { $_->isa('Slic3r::Polygon') ? $_ : $_->grow($grow_distance) } @{$layer0->thin_walls}),
|
||||
(map { $_->isa('Slic3r::Polygon') ? $_ : $_->grow($grow_distance) } map @{$_->thin_walls}, @{$layer0->materials}),
|
||||
(map $_->unpack->polyline->grow($grow_distance), map @{$_->support_fills->paths}, grep $_->support_fills, $layer0),
|
||||
);
|
||||
foreach my $copy (@{$self->objects->[$obj_idx]->copies}) {
|
||||
@ -660,22 +669,26 @@ sub write_gcode {
|
||||
$gcodegen->shift_x($shift[X] + unscale $copy->[X]);
|
||||
$gcodegen->shift_y($shift[Y] + unscale $copy->[Y]);
|
||||
|
||||
# extrude perimeters
|
||||
$gcode .= $gcodegen->set_tool($Slic3r::Config->perimeter_extruder-1);
|
||||
$gcode .= $gcodegen->extrude($_, 'perimeter') for @{ $layer->perimeters };
|
||||
|
||||
# extrude fills
|
||||
$gcode .= $gcodegen->set_tool($Slic3r::Config->infill_extruder-1);
|
||||
$gcode .= $gcodegen->set_acceleration($Slic3r::Config->infill_acceleration);
|
||||
for my $fill (@{ $layer->fills }) {
|
||||
if ($fill->isa('Slic3r::ExtrusionPath::Collection')) {
|
||||
$gcode .= $gcodegen->extrude($_, 'fill')
|
||||
for $fill->shortest_path($gcodegen->last_pos);
|
||||
} else {
|
||||
$gcode .= $gcodegen->extrude($fill, 'fill') ;
|
||||
foreach my $material_id (0 .. ($self->materials_count-1)) {
|
||||
my $layerm = $layer->materials->[$material_id];
|
||||
|
||||
# extrude perimeters
|
||||
$gcode .= $gcodegen->set_tool($Slic3r::Config->perimeter_extruder-1);
|
||||
$gcode .= $gcodegen->extrude($_, 'perimeter') for @{ $layerm->perimeters };
|
||||
|
||||
# extrude fills
|
||||
$gcode .= $gcodegen->set_tool($Slic3r::Config->infill_extruder-1);
|
||||
$gcode .= $gcodegen->set_acceleration($Slic3r::Config->infill_acceleration);
|
||||
for my $fill (@{ $layerm->fills }) {
|
||||
if ($fill->isa('Slic3r::ExtrusionPath::Collection')) {
|
||||
$gcode .= $gcodegen->extrude($_, 'fill')
|
||||
for $fill->shortest_path($gcodegen->last_pos);
|
||||
} else {
|
||||
$gcode .= $gcodegen->extrude($fill, 'fill') ;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
# extrude support material
|
||||
if ($layer->support_fills) {
|
||||
$gcode .= $gcodegen->set_tool($Slic3r::Config->support_material_extruder-1);
|
||||
|
@ -6,17 +6,12 @@ use Slic3r::Geometry qw(scale unscale deg2rad);
|
||||
use Slic3r::Geometry::Clipper qw(diff_ex intersection_ex union_ex);
|
||||
use Slic3r::Surface ':types';
|
||||
|
||||
has 'print' => (is => 'ro', weak_ref => 1, required => 1);
|
||||
has 'input_file' => (is => 'rw', required => 0);
|
||||
has 'mesh' => (is => 'rw', required => 0);
|
||||
has 'meshes' => (is => 'rw', default => sub { [] }); # by material_id
|
||||
has 'size' => (is => 'rw', required => 1);
|
||||
has 'copies' => (is => 'rw', default => sub {[ [0,0] ]});
|
||||
|
||||
has 'layers' => (
|
||||
traits => ['Array'],
|
||||
is => 'rw',
|
||||
#isa => 'ArrayRef[Slic3r::Layer]',
|
||||
default => sub { [] },
|
||||
);
|
||||
has 'layers' => (is => 'rw', default => sub { [] });
|
||||
|
||||
sub layer_count {
|
||||
my $self = shift;
|
||||
@ -43,22 +38,24 @@ sub slice {
|
||||
my %params = @_;
|
||||
|
||||
# process facets
|
||||
{
|
||||
for my $material_id (0 .. $#{$self->meshes}) {
|
||||
my $mesh = $self->meshes->[$material_id]; # ignore undef meshes
|
||||
|
||||
my $apply_lines = sub {
|
||||
my $lines = shift;
|
||||
foreach my $layer_id (keys %$lines) {
|
||||
my $layer = $self->layer($layer_id);
|
||||
push @{$layer->lines}, @{$lines->{$layer_id}};
|
||||
my $layerm = $self->layer($layer_id)->material($material_id);
|
||||
push @{$layerm->lines}, @{$lines->{$layer_id}};
|
||||
}
|
||||
};
|
||||
Slic3r::parallelize(
|
||||
disable => ($#{$self->mesh->facets} < 500), # don't parallelize when too few facets
|
||||
items => [ 0..$#{$self->mesh->facets} ],
|
||||
disable => ($#{$mesh->facets} < 500), # don't parallelize when too few facets
|
||||
items => [ 0..$#{$mesh->facets} ],
|
||||
thread_cb => sub {
|
||||
my $q = shift;
|
||||
my $result_lines = {};
|
||||
while (defined (my $facet_id = $q->dequeue)) {
|
||||
my $lines = $self->mesh->slice_facet($self, $facet_id);
|
||||
my $lines = $mesh->slice_facet($self, $facet_id);
|
||||
foreach my $layer_id (keys %$lines) {
|
||||
$result_lines->{$layer_id} ||= [];
|
||||
push @{ $result_lines->{$layer_id} }, @{ $lines->{$layer_id} };
|
||||
@ -70,8 +67,8 @@ sub slice {
|
||||
$apply_lines->($_[0]);
|
||||
},
|
||||
no_threads_cb => sub {
|
||||
for (0..$#{$self->mesh->facets}) {
|
||||
my $lines = $self->mesh->slice_facet($self, $_);
|
||||
for (0..$#{$mesh->facets}) {
|
||||
my $lines = $mesh->slice_facet($self, $_);
|
||||
$apply_lines->($lines);
|
||||
}
|
||||
},
|
||||
@ -80,11 +77,11 @@ sub slice {
|
||||
die "Invalid input file\n" if !@{$self->layers};
|
||||
|
||||
# free memory
|
||||
$self->mesh(undef) unless $params{keep_meshes};
|
||||
$self->meshes(undef) unless $params{keep_meshes};
|
||||
|
||||
# remove last layer if empty
|
||||
# (we might have created it because of the $max_layer = ... + 1 code below)
|
||||
pop @{$self->layers} if !@{$self->layers->[-1]->lines};
|
||||
# (we might have created it because of the $max_layer = ... + 1 code in TriangleMesh)
|
||||
pop @{$self->layers} if !map @{$_->lines}, @{$self->layers->[-1]->materials};
|
||||
|
||||
foreach my $layer (@{ $self->layers }) {
|
||||
Slic3r::debugf "Making surfaces for layer %d (slice z = %f):\n",
|
||||
@ -98,10 +95,17 @@ sub slice {
|
||||
# inside a closed polyline)
|
||||
|
||||
# build surfaces from sparse lines
|
||||
$layer->make_surfaces(Slic3r::TriangleMesh::make_loops($layer));
|
||||
foreach my $layerm (@{$layer->materials}) {
|
||||
my ($slicing_errors, $loops) = Slic3r::TriangleMesh::make_loops($layerm->lines);
|
||||
$layer->slicing_errors(1) if $slicing_errors;
|
||||
$layerm->make_surfaces($loops);
|
||||
|
||||
# free memory
|
||||
$layerm->lines(undef);
|
||||
}
|
||||
|
||||
# free memory
|
||||
$layer->lines(undef);
|
||||
# merge all materials' slices to get islands
|
||||
$layer->make_slices;
|
||||
}
|
||||
|
||||
# detect slicing errors
|
||||
@ -119,31 +123,38 @@ sub slice {
|
||||
# neighbor layers
|
||||
Slic3r::debugf "Attempting to repair layer %d\n", $i;
|
||||
|
||||
my (@upper_surfaces, @lower_surfaces);
|
||||
for (my $j = $i+1; $j <= $#{$self->layers}; $j++) {
|
||||
if (!$self->layers->[$j]->slicing_errors) {
|
||||
@upper_surfaces = @{$self->layers->[$j]->slices};
|
||||
last;
|
||||
foreach my $material_id (0 .. $#{$layer->materials}) {
|
||||
my $layerm = $layer->material($material_id);
|
||||
|
||||
my (@upper_surfaces, @lower_surfaces);
|
||||
for (my $j = $i+1; $j <= $#{$self->layers}; $j++) {
|
||||
if (!$self->layers->[$j]->slicing_errors) {
|
||||
@upper_surfaces = @{$self->layers->[$j]->material($material_id)->slices};
|
||||
last;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (my $j = $i-1; $j >= 0; $j--) {
|
||||
if (!$self->layers->[$j]->slicing_errors) {
|
||||
@lower_surfaces = @{$self->layers->[$j]->slices};
|
||||
last;
|
||||
for (my $j = $i-1; $j >= 0; $j--) {
|
||||
if (!$self->layers->[$j]->slicing_errors) {
|
||||
@lower_surfaces = @{$self->layers->[$j]->material($material_id)->slices};
|
||||
last;
|
||||
}
|
||||
}
|
||||
|
||||
my $union = union_ex([
|
||||
map $_->expolygon->contour, @upper_surfaces, @lower_surfaces,
|
||||
]);
|
||||
my $diff = diff_ex(
|
||||
[ map @$_, @$union ],
|
||||
[ map $_->expolygon->holes, @upper_surfaces, @lower_surfaces, ],
|
||||
);
|
||||
|
||||
@{$layerm->slices} = map Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNAL),
|
||||
@$diff;
|
||||
}
|
||||
|
||||
my $union = union_ex([
|
||||
map $_->expolygon->contour, @upper_surfaces, @lower_surfaces,
|
||||
]);
|
||||
my $diff = diff_ex(
|
||||
[ map @$_, @$union ],
|
||||
[ map $_->expolygon->holes, @upper_surfaces, @lower_surfaces, ],
|
||||
);
|
||||
|
||||
@{$layer->slices} = map Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNAL),
|
||||
@$diff;
|
||||
|
||||
# update layer slices after repairing the single materials
|
||||
$layer->make_slices;
|
||||
}
|
||||
|
||||
# remove empty layers from bottom
|
||||
@ -171,53 +182,57 @@ sub make_perimeters {
|
||||
|
||||
# this algorithm makes sure that almost one perimeter is overlapping
|
||||
if ($Slic3r::Config->extra_perimeters && $Slic3r::Config->perimeters > 0) {
|
||||
for my $layer_id (0 .. $self->layer_count-2) {
|
||||
my $layer = $self->layers->[$layer_id];
|
||||
my $upper_layer = $self->layers->[$layer_id+1];
|
||||
|
||||
my $overlap = $layer->perimeter_flow->spacing; # one perimeter
|
||||
|
||||
# compute polygons representing the thickness of the first external perimeter of
|
||||
# the upper layer slices
|
||||
my $upper = diff_ex(
|
||||
[ map @$_, map $_->expolygon->offset_ex(+ 0.5 * scale $layer->perimeter_flow->spacing), @{$upper_layer->slices} ],
|
||||
[ map @$_, map $_->expolygon->offset_ex(- scale($overlap) + (0.5 * scale $layer->perimeter_flow->spacing)), @{$upper_layer->slices} ],
|
||||
);
|
||||
next if !@$upper;
|
||||
|
||||
# we need to limit our detection to the areas which would actually benefit from
|
||||
# more perimeters. so, let's compute the area we want to ignore
|
||||
my $ignore = [];
|
||||
{
|
||||
my $diff = diff_ex(
|
||||
[ map @$_, map $_->expolygon->offset_ex(- ($Slic3r::Config->perimeters-0.5) * scale $layer->perimeter_flow->spacing), @{$layer->slices} ],
|
||||
[ map @{$_->expolygon}, @{$upper_layer->slices} ],
|
||||
for my $material_id (0 .. ($self->print->materials_count-1)) {
|
||||
for my $layer_id (0 .. $self->layer_count-2) {
|
||||
my $layerm = $self->layers->[$layer_id]->materials->[$material_id];
|
||||
my $upper_layerm = $self->layers->[$layer_id+1]->materials->[$material_id];
|
||||
my $perimeter_flow_spacing = $layerm->perimeter_flow->spacing;
|
||||
my $scaled_perimeter_flow_spacing = scale $perimeter_flow_spacing;
|
||||
|
||||
my $overlap = $perimeter_flow_spacing; # one perimeter
|
||||
|
||||
# compute polygons representing the thickness of the first external perimeter of
|
||||
# the upper layer slices
|
||||
my $upper = diff_ex(
|
||||
[ map @$_, map $_->expolygon->offset_ex(+ 0.5 * $scaled_perimeter_flow_spacing), @{$upper_layerm->slices} ],
|
||||
[ map @$_, map $_->expolygon->offset_ex(- scale($overlap) + (0.5 * $scaled_perimeter_flow_spacing)), @{$upper_layerm->slices} ],
|
||||
);
|
||||
$ignore = [ map @$_, map $_->offset_ex(scale $layer->perimeter_flow->spacing), @$diff ];
|
||||
}
|
||||
|
||||
foreach my $slice (@{$layer->slices}) {
|
||||
my $hypothetical_perimeter_num = $Slic3r::Config->perimeters + 1;
|
||||
CYCLE: while (1) {
|
||||
# compute polygons representing the thickness of the hypotetical new internal perimeter
|
||||
# of our slice
|
||||
my $hypothetical_perimeter;
|
||||
{
|
||||
my $outer = [ map @$_, $slice->expolygon->offset_ex(- ($hypothetical_perimeter_num-1.5) * scale $layer->perimeter_flow->spacing) ];
|
||||
last CYCLE if !@$outer;
|
||||
my $inner = [ map @$_, $slice->expolygon->offset_ex(- ($hypothetical_perimeter_num-0.5) * scale $layer->perimeter_flow->spacing) ];
|
||||
last CYCLE if !@$inner;
|
||||
$hypothetical_perimeter = diff_ex($outer, $inner);
|
||||
next if !@$upper;
|
||||
|
||||
# we need to limit our detection to the areas which would actually benefit from
|
||||
# more perimeters. so, let's compute the area we want to ignore
|
||||
my $ignore = [];
|
||||
{
|
||||
my $diff = diff_ex(
|
||||
[ map @$_, map $_->expolygon->offset_ex(- ($Slic3r::Config->perimeters-0.5) * $scaled_perimeter_flow_spacing), @{$layerm->slices} ],
|
||||
[ map @{$_->expolygon}, @{$upper_layerm->slices} ],
|
||||
);
|
||||
$ignore = [ map @$_, map $_->offset_ex($scaled_perimeter_flow_spacing), @$diff ];
|
||||
}
|
||||
|
||||
foreach my $slice (@{$layerm->slices}) {
|
||||
my $hypothetical_perimeter_num = $Slic3r::Config->perimeters + 1;
|
||||
CYCLE: while (1) {
|
||||
# compute polygons representing the thickness of the hypotetical new internal perimeter
|
||||
# of our slice
|
||||
my $hypothetical_perimeter;
|
||||
{
|
||||
my $outer = [ map @$_, $slice->expolygon->offset_ex(- ($hypothetical_perimeter_num-1.5) * $scaled_perimeter_flow_spacing) ];
|
||||
last CYCLE if !@$outer;
|
||||
my $inner = [ map @$_, $slice->expolygon->offset_ex(- ($hypothetical_perimeter_num-0.5) * $scaled_perimeter_flow_spacing) ];
|
||||
last CYCLE if !@$inner;
|
||||
$hypothetical_perimeter = diff_ex($outer, $inner);
|
||||
}
|
||||
last CYCLE if !@$hypothetical_perimeter;
|
||||
|
||||
|
||||
my $intersection = intersection_ex([ map @$_, @$upper ], [ map @$_, @$hypothetical_perimeter ]);
|
||||
$intersection = diff_ex([ map @$_, @$intersection ], $ignore) if @$ignore;
|
||||
last CYCLE if !@{ $intersection };
|
||||
Slic3r::debugf " adding one more perimeter at layer %d\n", $layer_id;
|
||||
$slice->additional_inner_perimeters(($slice->additional_inner_perimeters || 0) + 1);
|
||||
$hypothetical_perimeter_num++;
|
||||
}
|
||||
last CYCLE if !@$hypothetical_perimeter;
|
||||
|
||||
|
||||
my $intersection = intersection_ex([ map @$_, @$upper ], [ map @$_, @$hypothetical_perimeter ]);
|
||||
$intersection = diff_ex([ map @$_, @$intersection ], $ignore) if @$ignore;
|
||||
last CYCLE if !@{ $intersection };
|
||||
Slic3r::debugf " adding one more perimeter at layer %d\n", $layer_id;
|
||||
$slice->additional_inner_perimeters(($slice->additional_inner_perimeters || 0) + 1);
|
||||
$hypothetical_perimeter_num++;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -232,75 +247,80 @@ sub detect_surfaces_type {
|
||||
|
||||
# prepare a reusable subroutine to make surface differences
|
||||
my $surface_difference = sub {
|
||||
my ($subject_surfaces, $clip_surfaces, $result_type, $layer) = @_;
|
||||
my ($subject_surfaces, $clip_surfaces, $result_type, $layerm) = @_;
|
||||
my $expolygons = diff_ex(
|
||||
[ map { ref $_ eq 'ARRAY' ? $_ : ref $_ eq 'Slic3r::ExPolygon' ? @$_ : $_->p } @$subject_surfaces ],
|
||||
[ map { ref $_ eq 'ARRAY' ? $_ : ref $_ eq 'Slic3r::ExPolygon' ? @$_ : $_->p } @$clip_surfaces ],
|
||||
1,
|
||||
);
|
||||
return grep $_->contour->is_printable($layer->flow->width),
|
||||
return grep $_->contour->is_printable($layerm->flow->width),
|
||||
map Slic3r::Surface->new(expolygon => $_, surface_type => $result_type),
|
||||
@$expolygons;
|
||||
};
|
||||
|
||||
for (my $i = 0; $i < $self->layer_count; $i++) {
|
||||
my $layer = $self->layers->[$i];
|
||||
my $upper_layer = $self->layers->[$i+1];
|
||||
my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef;
|
||||
|
||||
my (@bottom, @top, @internal) = ();
|
||||
|
||||
# find top surfaces (difference between current surfaces
|
||||
# of current layer and upper one)
|
||||
if ($upper_layer) {
|
||||
@top = $surface_difference->($layer->slices, $upper_layer->slices, S_TYPE_TOP, $layer);
|
||||
} else {
|
||||
# if no upper layer, all surfaces of this one are solid
|
||||
@top = @{$layer->slices};
|
||||
$_->surface_type(S_TYPE_TOP) for @top;
|
||||
for my $material_id (0 .. ($self->print->materials_count-1)) {
|
||||
for (my $i = 0; $i < $self->layer_count; $i++) {
|
||||
my $layerm = $self->layers->[$i]->materials->[$material_id];
|
||||
|
||||
# comparison happens against the *full* slices (considering all materials)
|
||||
my $upper_layer = $self->layers->[$i+1];
|
||||
my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef;
|
||||
|
||||
my (@bottom, @top, @internal) = ();
|
||||
|
||||
# find top surfaces (difference between current surfaces
|
||||
# of current layer and upper one)
|
||||
if ($upper_layer) {
|
||||
@top = $surface_difference->($layerm->slices, $upper_layer->slices, S_TYPE_TOP, $layerm);
|
||||
} else {
|
||||
# if no upper layer, all surfaces of this one are solid
|
||||
@top = @{$layerm->slices};
|
||||
$_->surface_type(S_TYPE_TOP) for @top;
|
||||
}
|
||||
|
||||
# find bottom surfaces (difference between current surfaces
|
||||
# of current layer and lower one)
|
||||
if ($lower_layer) {
|
||||
@bottom = $surface_difference->($layerm->slices, $lower_layer->slices, S_TYPE_BOTTOM, $layerm);
|
||||
} else {
|
||||
# if no lower layer, all surfaces of this one are solid
|
||||
@bottom = @{$layerm->slices};
|
||||
$_->surface_type(S_TYPE_BOTTOM) for @bottom;
|
||||
}
|
||||
|
||||
# now, if the object contained a thin membrane, we could have overlapping bottom
|
||||
# and top surfaces; let's do an intersection to discover them and consider them
|
||||
# as bottom surfaces (to allow for bridge detection)
|
||||
if (@top && @bottom) {
|
||||
my $overlapping = intersection_ex([ map $_->p, @top ], [ map $_->p, @bottom ]);
|
||||
Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->id, scalar(@$overlapping);
|
||||
@top = $surface_difference->([@top], $overlapping, S_TYPE_TOP, $layerm);
|
||||
}
|
||||
|
||||
# find internal surfaces (difference between top/bottom surfaces and others)
|
||||
@internal = $surface_difference->($layerm->slices, [@top, @bottom], S_TYPE_INTERNAL, $layerm);
|
||||
|
||||
# save surfaces to layer
|
||||
@{$layerm->slices} = (@bottom, @top, @internal);
|
||||
|
||||
Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
|
||||
$layerm->id, scalar(@bottom), scalar(@top), scalar(@internal);
|
||||
}
|
||||
|
||||
# find bottom surfaces (difference between current surfaces
|
||||
# of current layer and lower one)
|
||||
if ($lower_layer) {
|
||||
@bottom = $surface_difference->($layer->slices, $lower_layer->slices, S_TYPE_BOTTOM, $layer);
|
||||
} else {
|
||||
# if no lower layer, all surfaces of this one are solid
|
||||
@bottom = @{$layer->slices};
|
||||
$_->surface_type(S_TYPE_BOTTOM) for @bottom;
|
||||
}
|
||||
|
||||
# now, if the object contained a thin membrane, we could have overlapping bottom
|
||||
# and top surfaces; let's do an intersection to discover them and consider them
|
||||
# as bottom surfaces (to allow for bridge detection)
|
||||
if (@top && @bottom) {
|
||||
my $overlapping = intersection_ex([ map $_->p, @top ], [ map $_->p, @bottom ]);
|
||||
Slic3r::debugf " layer %d contains %d membrane(s)\n", $layer->id, scalar(@$overlapping);
|
||||
@top = $surface_difference->([@top], $overlapping, S_TYPE_TOP, $layer);
|
||||
}
|
||||
|
||||
# find internal surfaces (difference between top/bottom surfaces and others)
|
||||
@internal = $surface_difference->($layer->slices, [@top, @bottom], S_TYPE_INTERNAL, $layer);
|
||||
|
||||
# save surfaces to layer
|
||||
@{$layer->slices} = (@bottom, @top, @internal);
|
||||
|
||||
Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
|
||||
$layer->id, scalar(@bottom), scalar(@top), scalar(@internal);
|
||||
}
|
||||
|
||||
# clip surfaces to the fill boundaries
|
||||
foreach my $layer (@{$self->layers}) {
|
||||
my $fill_boundaries = [ map @$_, @{$layer->surfaces} ];
|
||||
@{$layer->surfaces} = ();
|
||||
foreach my $surface (@{$layer->slices}) {
|
||||
my $intersection = intersection_ex(
|
||||
[ $surface->p ],
|
||||
$fill_boundaries,
|
||||
);
|
||||
push @{$layer->surfaces}, map Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => $surface->surface_type),
|
||||
@$intersection;
|
||||
# clip surfaces to the fill boundaries
|
||||
foreach my $layer (@{$self->layers}) {
|
||||
my $layerm = $layer->materials->[$material_id];
|
||||
my $fill_boundaries = [ map @$_, @{$layerm->surfaces} ];
|
||||
@{$layerm->surfaces} = ();
|
||||
foreach my $surface (@{$layerm->slices}) {
|
||||
my $intersection = intersection_ex(
|
||||
[ $surface->p ],
|
||||
$fill_boundaries,
|
||||
);
|
||||
push @{$layerm->surfaces}, map Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => $surface->surface_type),
|
||||
@$intersection;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -312,82 +332,84 @@ sub discover_horizontal_shells {
|
||||
|
||||
my $area_threshold = scale($Slic3r::flow->spacing) ** 2;
|
||||
|
||||
for (my $i = 0; $i < $self->layer_count; $i++) {
|
||||
my $layer = $self->layers->[$i];
|
||||
foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM) {
|
||||
# find surfaces of current type for current layer
|
||||
# and offset them to take perimeters into account
|
||||
my @surfaces = map $_->offset($Slic3r::Config->perimeters * scale $layer->perimeter_flow->width),
|
||||
grep $_->surface_type == $type, @{$layer->fill_surfaces} or next;
|
||||
my $surfaces_p = [ map $_->p, @surfaces ];
|
||||
Slic3r::debugf "Layer %d has %d surfaces of type '%s'\n",
|
||||
$i, scalar(@surfaces), ($type == S_TYPE_TOP ? 'top' : 'bottom');
|
||||
|
||||
for (my $n = $type == S_TYPE_TOP ? $i-1 : $i+1;
|
||||
abs($n - $i) <= $Slic3r::Config->solid_layers-1;
|
||||
$type == S_TYPE_TOP ? $n-- : $n++) {
|
||||
for my $material_id (0 .. ($self->print->materials_count-1)) {
|
||||
for (my $i = 0; $i < $self->layer_count; $i++) {
|
||||
my $layerm = $self->layers->[$i]->materials->[$material_id];
|
||||
foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM) {
|
||||
# find surfaces of current type for current layer
|
||||
# and offset them to take perimeters into account
|
||||
my @surfaces = map $_->offset($Slic3r::Config->perimeters * scale $layerm->perimeter_flow->width),
|
||||
grep $_->surface_type == $type, @{$layerm->fill_surfaces} or next;
|
||||
my $surfaces_p = [ map $_->p, @surfaces ];
|
||||
Slic3r::debugf "Layer %d has %d surfaces of type '%s'\n",
|
||||
$i, scalar(@surfaces), ($type == S_TYPE_TOP ? 'top' : 'bottom');
|
||||
|
||||
next if $n < 0 || $n >= $self->layer_count;
|
||||
Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
|
||||
|
||||
my @neighbor_surfaces = @{$self->layers->[$n]->surfaces};
|
||||
my @neighbor_fill_surfaces = @{$self->layers->[$n]->fill_surfaces};
|
||||
|
||||
# find intersection between neighbor and current layer's surfaces
|
||||
# intersections have contours and holes
|
||||
my $new_internal_solid = intersection_ex(
|
||||
$surfaces_p,
|
||||
[ map $_->p, grep { $_->surface_type == S_TYPE_INTERNAL || $_->surface_type == S_TYPE_INTERNALSOLID } @neighbor_surfaces ],
|
||||
undef, 1,
|
||||
);
|
||||
next if !@$new_internal_solid;
|
||||
|
||||
# internal-solid are the union of the existing internal-solid surfaces
|
||||
# and new ones
|
||||
my $internal_solid = union_ex([
|
||||
( map $_->p, grep $_->surface_type == S_TYPE_INTERNALSOLID, @neighbor_fill_surfaces ),
|
||||
( map @$_, @$new_internal_solid ),
|
||||
]);
|
||||
|
||||
# subtract intersections from layer surfaces to get resulting inner surfaces
|
||||
my $internal = diff_ex(
|
||||
[ map $_->p, grep $_->surface_type == S_TYPE_INTERNAL, @neighbor_fill_surfaces ],
|
||||
[ map @$_, @$internal_solid ],
|
||||
1,
|
||||
);
|
||||
Slic3r::debugf " %d internal-solid and %d internal surfaces found\n",
|
||||
scalar(@$internal_solid), scalar(@$internal);
|
||||
|
||||
# Note: due to floating point math we're going to get some very small
|
||||
# polygons as $internal; they will be removed by removed_small_features()
|
||||
|
||||
# assign resulting inner surfaces to layer
|
||||
my $neighbor_fill_surfaces = $self->layers->[$n]->fill_surfaces;
|
||||
@$neighbor_fill_surfaces = ();
|
||||
push @$neighbor_fill_surfaces, Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNAL)
|
||||
for @$internal;
|
||||
|
||||
# assign new internal-solid surfaces to layer
|
||||
push @$neighbor_fill_surfaces, Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNALSOLID)
|
||||
for @$internal_solid;
|
||||
|
||||
# assign top and bottom surfaces to layer
|
||||
foreach my $s (Slic3r::Surface->group(grep { $_->surface_type == S_TYPE_TOP || $_->surface_type == S_TYPE_BOTTOM } @neighbor_fill_surfaces)) {
|
||||
my $solid_surfaces = diff_ex(
|
||||
[ map $_->p, @$s ],
|
||||
[ map @$_, @$internal_solid, @$internal ],
|
||||
for (my $n = $type == S_TYPE_TOP ? $i-1 : $i+1;
|
||||
abs($n - $i) <= $Slic3r::Config->solid_layers-1;
|
||||
$type == S_TYPE_TOP ? $n-- : $n++) {
|
||||
|
||||
next if $n < 0 || $n >= $self->layer_count;
|
||||
Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
|
||||
|
||||
my @neighbor_surfaces = @{$self->layers->[$n]->materials->[$material_id]->surfaces};
|
||||
my @neighbor_fill_surfaces = @{$self->layers->[$n]->materials->[$material_id]->fill_surfaces};
|
||||
|
||||
# find intersection between neighbor and current layer's surfaces
|
||||
# intersections have contours and holes
|
||||
my $new_internal_solid = intersection_ex(
|
||||
$surfaces_p,
|
||||
[ map $_->p, grep { $_->surface_type == S_TYPE_INTERNAL || $_->surface_type == S_TYPE_INTERNALSOLID } @neighbor_surfaces ],
|
||||
undef, 1,
|
||||
);
|
||||
next if !@$new_internal_solid;
|
||||
|
||||
# internal-solid are the union of the existing internal-solid surfaces
|
||||
# and new ones
|
||||
my $internal_solid = union_ex([
|
||||
( map $_->p, grep $_->surface_type == S_TYPE_INTERNALSOLID, @neighbor_fill_surfaces ),
|
||||
( map @$_, @$new_internal_solid ),
|
||||
]);
|
||||
|
||||
# subtract intersections from layer surfaces to get resulting inner surfaces
|
||||
my $internal = diff_ex(
|
||||
[ map $_->p, grep $_->surface_type == S_TYPE_INTERNAL, @neighbor_fill_surfaces ],
|
||||
[ map @$_, @$internal_solid ],
|
||||
1,
|
||||
);
|
||||
Slic3r::debugf " %d internal-solid and %d internal surfaces found\n",
|
||||
scalar(@$internal_solid), scalar(@$internal);
|
||||
|
||||
# Note: due to floating point math we're going to get some very small
|
||||
# polygons as $internal; they will be removed by removed_small_features()
|
||||
|
||||
# assign resulting inner surfaces to layer
|
||||
my $neighbor_fill_surfaces = $self->layers->[$n]->materials->[$material_id]->fill_surfaces;
|
||||
@$neighbor_fill_surfaces = ();
|
||||
push @$neighbor_fill_surfaces, Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => $s->[0]->surface_type, bridge_angle => $s->[0]->bridge_angle)
|
||||
for @$solid_surfaces;
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNAL)
|
||||
for @$internal;
|
||||
|
||||
# assign new internal-solid surfaces to layer
|
||||
push @$neighbor_fill_surfaces, Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNALSOLID)
|
||||
for @$internal_solid;
|
||||
|
||||
# assign top and bottom surfaces to layer
|
||||
foreach my $s (Slic3r::Surface->group(grep { $_->surface_type == S_TYPE_TOP || $_->surface_type == S_TYPE_BOTTOM } @neighbor_fill_surfaces)) {
|
||||
my $solid_surfaces = diff_ex(
|
||||
[ map $_->p, @$s ],
|
||||
[ map @$_, @$internal_solid, @$internal ],
|
||||
1,
|
||||
);
|
||||
push @$neighbor_fill_surfaces, Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => $s->[0]->surface_type, bridge_angle => $s->[0]->bridge_angle)
|
||||
for @$solid_surfaces;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@{$layerm->fill_surfaces} = grep $_->expolygon->area > $area_threshold, @{$layerm->fill_surfaces};
|
||||
}
|
||||
|
||||
@{$layer->fill_surfaces} = grep $_->expolygon->area > $area_threshold, @{$layer->fill_surfaces};
|
||||
}
|
||||
}
|
||||
|
||||
@ -398,93 +420,92 @@ sub combine_infill {
|
||||
|
||||
my $area_threshold = scale($Slic3r::flow->spacing) ** 2;
|
||||
|
||||
# start from bottom, skip first layer
|
||||
for (my $i = 1; $i < $self->layer_count; $i++) {
|
||||
my $layer = $self->layer($i);
|
||||
|
||||
# skip layer if no internal fill surfaces
|
||||
next if !grep $_->surface_type == S_TYPE_INTERNAL, @{$layer->fill_surfaces};
|
||||
|
||||
# for each possible depth, look for intersections with the lower layer
|
||||
# we do this from the greater depth to the smaller
|
||||
for (my $d = $Slic3r::Config->infill_every_layers - 1; $d >= 1; $d--) {
|
||||
next if ($i - $d) < 0;
|
||||
my $lower_layer = $self->layer($i - 1);
|
||||
for my $material_id (0 .. ($self->print->materials_count-1)) {
|
||||
# start from bottom, skip first layer
|
||||
for (my $i = 1; $i < $self->layer_count; $i++) {
|
||||
my $layerm = $self->layers->[$i]->materials->[$material_id];
|
||||
|
||||
# select surfaces of the lower layer having the depth we're looking for
|
||||
my @lower_surfaces = grep $_->depth_layers == $d && $_->surface_type == S_TYPE_INTERNAL,
|
||||
@{$lower_layer->fill_surfaces};
|
||||
next if !@lower_surfaces;
|
||||
# skip layer if no internal fill surfaces
|
||||
next if !grep $_->surface_type == S_TYPE_INTERNAL, @{$layerm->fill_surfaces};
|
||||
|
||||
# calculate intersection between our surfaces and theirs
|
||||
my $intersection = intersection_ex(
|
||||
[ map $_->p, grep $_->depth_layers <= $d, @lower_surfaces ],
|
||||
[ map $_->p, grep $_->surface_type == S_TYPE_INTERNAL, @{$layer->fill_surfaces} ],
|
||||
undef, 1,
|
||||
);
|
||||
|
||||
# purge intersections, skip tiny regions
|
||||
@$intersection = grep $_->area > $area_threshold, @$intersection;
|
||||
next if !@$intersection;
|
||||
|
||||
# new fill surfaces of the current layer are:
|
||||
# - any non-internal surface
|
||||
# - intersections found (with a $d + 1 depth)
|
||||
# - any internal surface not belonging to the intersection (with its original depth)
|
||||
{
|
||||
my @new_surfaces = ();
|
||||
push @new_surfaces, grep $_->surface_type != S_TYPE_INTERNAL, @{$layer->fill_surfaces};
|
||||
push @new_surfaces, map Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNAL, depth_layers => $d + 1), @$intersection;
|
||||
# for each possible depth, look for intersections with the lower layer
|
||||
# we do this from the greater depth to the smaller
|
||||
for (my $d = $Slic3r::Config->infill_every_layers - 1; $d >= 1; $d--) {
|
||||
next if ($i - $d) < 0;
|
||||
my $lower_layerm = $self->layer($i - 1)->materials->[$material_id];
|
||||
|
||||
foreach my $depth (reverse $d..$Slic3r::Config->infill_every_layers) {
|
||||
# select surfaces of the lower layer having the depth we're looking for
|
||||
my @lower_surfaces = grep $_->depth_layers == $d && $_->surface_type == S_TYPE_INTERNAL,
|
||||
@{$lower_layerm->fill_surfaces};
|
||||
next if !@lower_surfaces;
|
||||
|
||||
# calculate intersection between our surfaces and theirs
|
||||
my $intersection = intersection_ex(
|
||||
[ map $_->p, grep $_->depth_layers <= $d, @lower_surfaces ],
|
||||
[ map $_->p, grep $_->surface_type == S_TYPE_INTERNAL, @{$layerm->fill_surfaces} ],
|
||||
undef, 1,
|
||||
);
|
||||
|
||||
# purge intersections, skip tiny regions
|
||||
@$intersection = grep $_->area > $area_threshold, @$intersection;
|
||||
next if !@$intersection;
|
||||
|
||||
# new fill surfaces of the current layer are:
|
||||
# - any non-internal surface
|
||||
# - intersections found (with a $d + 1 depth)
|
||||
# - any internal surface not belonging to the intersection (with its original depth)
|
||||
{
|
||||
my @new_surfaces = ();
|
||||
push @new_surfaces, grep $_->surface_type != S_TYPE_INTERNAL, @{$layerm->fill_surfaces};
|
||||
push @new_surfaces, map Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNAL, depth_layers => $depth),
|
||||
|
||||
# difference between our internal layers with depth == $depth
|
||||
# and the intersection found
|
||||
@{diff_ex(
|
||||
[
|
||||
map $_->p, grep $_->surface_type == S_TYPE_INTERNAL && $_->depth_layers == $depth,
|
||||
@{$layer->fill_surfaces},
|
||||
],
|
||||
[ map @$_, @$intersection ],
|
||||
1,
|
||||
)};
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNAL, depth_layers => $d + 1), @$intersection;
|
||||
|
||||
foreach my $depth (reverse $d..$Slic3r::Config->infill_every_layers) {
|
||||
push @new_surfaces, map Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNAL, depth_layers => $depth),
|
||||
|
||||
# difference between our internal layers with depth == $depth
|
||||
# and the intersection found
|
||||
@{diff_ex(
|
||||
[
|
||||
map $_->p, grep $_->surface_type == S_TYPE_INTERNAL && $_->depth_layers == $depth,
|
||||
@{$layerm->fill_surfaces},
|
||||
],
|
||||
[ map @$_, @$intersection ],
|
||||
1,
|
||||
)};
|
||||
}
|
||||
@{$layerm->fill_surfaces} = @new_surfaces;
|
||||
}
|
||||
@{$layer->fill_surfaces} = @new_surfaces;
|
||||
}
|
||||
|
||||
# now we remove the intersections from lower layer
|
||||
{
|
||||
my @new_surfaces = ();
|
||||
push @new_surfaces, grep $_->surface_type != S_TYPE_INTERNAL, @{$lower_layer->fill_surfaces};
|
||||
foreach my $depth (1..$Slic3r::Config->infill_every_layers) {
|
||||
push @new_surfaces, map Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNAL, depth_layers => $depth),
|
||||
|
||||
# difference between internal layers with depth == $depth
|
||||
# and the intersection found
|
||||
@{diff_ex(
|
||||
[
|
||||
map $_->p, grep $_->surface_type == S_TYPE_INTERNAL && $_->depth_layers == $depth,
|
||||
@{$lower_layer->fill_surfaces},
|
||||
],
|
||||
[ map @$_, @$intersection ],
|
||||
1,
|
||||
)};
|
||||
|
||||
# now we remove the intersections from lower layer
|
||||
{
|
||||
my @new_surfaces = ();
|
||||
push @new_surfaces, grep $_->surface_type != S_TYPE_INTERNAL, @{$lower_layerm->fill_surfaces};
|
||||
foreach my $depth (1..$Slic3r::Config->infill_every_layers) {
|
||||
push @new_surfaces, map Slic3r::Surface->new
|
||||
(expolygon => $_, surface_type => S_TYPE_INTERNAL, depth_layers => $depth),
|
||||
|
||||
# difference between internal layers with depth == $depth
|
||||
# and the intersection found
|
||||
@{diff_ex(
|
||||
[
|
||||
map $_->p, grep $_->surface_type == S_TYPE_INTERNAL && $_->depth_layers == $depth,
|
||||
@{$lower_layerm->fill_surfaces},
|
||||
],
|
||||
[ map @$_, @$intersection ],
|
||||
1,
|
||||
)};
|
||||
}
|
||||
@{$lower_layerm->fill_surfaces} = @new_surfaces;
|
||||
}
|
||||
@{$lower_layer->fill_surfaces} = @new_surfaces;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sub generate_support_material {
|
||||
my $self = shift;
|
||||
my %params = @_;
|
||||
|
||||
my $threshold_rad = deg2rad($Slic3r::Config->support_material_threshold + 1); # +1 makes the threshold inclusive
|
||||
my $overhang_width = $threshold_rad == 0 ? undef : scale $Slic3r::Config->layer_height * ((cos $threshold_rad) / (sin $threshold_rad));
|
||||
@ -537,7 +558,7 @@ sub generate_support_material {
|
||||
my @support_material_areas = map $_->offset_ex(- 0.5 * scale $Slic3r::support_material_flow->width),
|
||||
@{union_ex([ map $_->contour, map @$_, values %layers ])};
|
||||
|
||||
my $fill = Slic3r::Fill->new(print => $params{print});
|
||||
my $fill = Slic3r::Fill->new(print => $self->print);
|
||||
my $filler = $fill->filler($Slic3r::Config->support_material_pattern);
|
||||
$filler->angle($Slic3r::Config->support_material_angle);
|
||||
{
|
||||
|
@ -167,9 +167,8 @@ sub unpack_line {
|
||||
}
|
||||
|
||||
sub make_loops {
|
||||
my ($layer) = @_;
|
||||
|
||||
my @lines = map unpack_line($_), @{$layer->lines};
|
||||
my ($lines) = @_;
|
||||
my @lines = map unpack_line($_), @$lines;
|
||||
|
||||
# remove tangent edges
|
||||
{
|
||||
@ -258,6 +257,7 @@ sub make_loops {
|
||||
(0..$#lines);
|
||||
|
||||
my (@polygons, @failed_loops, %visited_lines) = ();
|
||||
my $slicing_errors = 0;
|
||||
CYCLE: for (my $i = 0; $i <= $#lines; $i++) {
|
||||
my $line = $lines[$i];
|
||||
next if $visited_lines{$line};
|
||||
@ -272,24 +272,24 @@ sub make_loops {
|
||||
$next_line = $lines[$by_a_id{$line->[I_B_ID]}];
|
||||
} else {
|
||||
Slic3r::debugf " line has no next_facet_index or b_id\n";
|
||||
$layer->slicing_errors(1);
|
||||
$slicing_errors = 1;
|
||||
push @failed_loops, [@points] if @points;
|
||||
next CYCLE;
|
||||
}
|
||||
|
||||
if (!$next_line || $visited_lines{$next_line}) {
|
||||
Slic3r::debugf " failed to close this loop\n";
|
||||
$layer->slicing_errors(1);
|
||||
$slicing_errors = 1;
|
||||
push @failed_loops, [@points] if @points;
|
||||
next CYCLE;
|
||||
} elsif (defined $next_line->[I_PREV_FACET_INDEX] && $next_line->[I_PREV_FACET_INDEX] != $line->[I_FACET_INDEX]) {
|
||||
Slic3r::debugf " wrong prev_facet_index\n";
|
||||
$layer->slicing_errors(1);
|
||||
$slicing_errors = 1;
|
||||
push @failed_loops, [@points] if @points;
|
||||
next CYCLE;
|
||||
} elsif (defined $next_line->[I_A_ID] && $next_line->[I_A_ID] != $line->[I_B_ID]) {
|
||||
Slic3r::debugf " wrong a_id\n";
|
||||
$layer->slicing_errors(1);
|
||||
$slicing_errors = 1;
|
||||
push @failed_loops, [@points] if @points;
|
||||
next CYCLE;
|
||||
}
|
||||
@ -313,7 +313,7 @@ sub make_loops {
|
||||
if $Slic3r::debug;
|
||||
}
|
||||
|
||||
return [@polygons];
|
||||
return ($slicing_errors, [@polygons]);
|
||||
}
|
||||
|
||||
sub rotate {
|
||||
|
@ -88,9 +88,9 @@ if (@ARGV) { # slicing from command line
|
||||
|
||||
while (my $input_file = shift @ARGV) {
|
||||
my $print = Slic3r::Print->new(config => $config);
|
||||
$print->add_objects_from_file($input_file);
|
||||
$print->add_model(Slic3r::Model->read_from_file($input_file));
|
||||
if ($opt{merge}) {
|
||||
$print->add_objects_from_file($_) for splice @ARGV, 0;
|
||||
$print->add_model(Slic3r::Model->read_from_file($_)) for splice @ARGV, 0;
|
||||
}
|
||||
$print->duplicate;
|
||||
$print->arrange_objects if @{$print->objects} > 1;
|
||||
|
@ -44,7 +44,7 @@ my %opt = ();
|
||||
} @{ $model->objects->[0]->volumes->[0]->facets };
|
||||
|
||||
my $material_id = scalar keys %{$new_model->materials};
|
||||
$new_model->materials->{$material_id} = { Name => basename($ARGV[$m]) };
|
||||
$new_model->set_material($material_id, { Name => basename($ARGV[$m]) });
|
||||
$new_object->add_volume(
|
||||
material_id => $material_id,
|
||||
facets => [@new_facets],
|
||||
|
Loading…
Reference in New Issue
Block a user