Merge remote-tracking branch 'remotes/origin/feature_arrange_with_libnest2d'
This commit is contained in:
commit
02d6d04185
@ -136,6 +136,7 @@ add_library(libslic3r STATIC
|
|||||||
${LIBDIR}/libslic3r/Line.hpp
|
${LIBDIR}/libslic3r/Line.hpp
|
||||||
${LIBDIR}/libslic3r/Model.cpp
|
${LIBDIR}/libslic3r/Model.cpp
|
||||||
${LIBDIR}/libslic3r/Model.hpp
|
${LIBDIR}/libslic3r/Model.hpp
|
||||||
|
${LIBDIR}/libslic3r/ModelArrange.hpp
|
||||||
${LIBDIR}/libslic3r/MotionPlanner.cpp
|
${LIBDIR}/libslic3r/MotionPlanner.cpp
|
||||||
${LIBDIR}/libslic3r/MotionPlanner.hpp
|
${LIBDIR}/libslic3r/MotionPlanner.hpp
|
||||||
${LIBDIR}/libslic3r/MultiPoint.cpp
|
${LIBDIR}/libslic3r/MultiPoint.cpp
|
||||||
@ -729,6 +730,7 @@ set(LIBNEST2D_UNITTESTS ON CACHE BOOL "Force generating unittests for libnest2d"
|
|||||||
|
|
||||||
add_subdirectory(${LIBDIR}/libnest2d)
|
add_subdirectory(${LIBDIR}/libnest2d)
|
||||||
target_include_directories(libslic3r PUBLIC BEFORE ${LIBNEST2D_INCLUDES})
|
target_include_directories(libslic3r PUBLIC BEFORE ${LIBNEST2D_INCLUDES})
|
||||||
|
target_include_directories(libslic3r_gui PUBLIC BEFORE ${LIBNEST2D_INCLUDES})
|
||||||
|
|
||||||
message(STATUS "Libnest2D Libraries: ${LIBNEST2D_LIBRARIES}")
|
message(STATUS "Libnest2D Libraries: ${LIBNEST2D_LIBRARIES}")
|
||||||
target_link_libraries(libslic3r ${LIBNEST2D_LIBRARIES})
|
target_link_libraries(libslic3r ${LIBNEST2D_LIBRARIES})
|
||||||
|
@ -27,5 +27,6 @@ set(NLOPT_LINK_PYTHON OFF CACHE BOOL "" FORCE)
|
|||||||
add_subdirectory(${nlopt_SOURCE_DIR} ${nlopt_BINARY_DIR})
|
add_subdirectory(${nlopt_SOURCE_DIR} ${nlopt_BINARY_DIR})
|
||||||
|
|
||||||
set(NLopt_LIBS nlopt)
|
set(NLopt_LIBS nlopt)
|
||||||
set(NLopt_INCLUDE_DIR ${nlopt_BINARY_DIR})
|
set(NLopt_INCLUDE_DIR ${nlopt_BINARY_DIR}
|
||||||
|
${nlopt_BINARY_DIR}/src/api)
|
||||||
set(SHARED_LIBS_STATE ${SHARED_STATE})
|
set(SHARED_LIBS_STATE ${SHARED_STATE})
|
@ -545,59 +545,128 @@ void arrangeRectangles() {
|
|||||||
// input.insert(input.end(), crasher.begin(), crasher.end());
|
// input.insert(input.end(), crasher.begin(), crasher.end());
|
||||||
|
|
||||||
Box bin(250*SCALE, 210*SCALE);
|
Box bin(250*SCALE, 210*SCALE);
|
||||||
|
// PolygonImpl bin = {
|
||||||
|
// {
|
||||||
|
// {25*SCALE, 0},
|
||||||
|
// {0, 25*SCALE},
|
||||||
|
// {0, 225*SCALE},
|
||||||
|
// {25*SCALE, 250*SCALE},
|
||||||
|
// {225*SCALE, 250*SCALE},
|
||||||
|
// {250*SCALE, 225*SCALE},
|
||||||
|
// {250*SCALE, 25*SCALE},
|
||||||
|
// {225*SCALE, 0},
|
||||||
|
// {25*SCALE, 0}
|
||||||
|
// },
|
||||||
|
// {}
|
||||||
|
// };
|
||||||
|
|
||||||
auto min_obj_distance = static_cast<Coord>(0*SCALE);
|
auto min_obj_distance = static_cast<Coord>(0*SCALE);
|
||||||
|
|
||||||
using Placer = NfpPlacer;
|
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, Box>;
|
||||||
using Packer = Arranger<Placer, FirstFitSelection>;
|
using Packer = Arranger<Placer, FirstFitSelection>;
|
||||||
|
|
||||||
Packer arrange(bin, min_obj_distance);
|
Packer arrange(bin, min_obj_distance);
|
||||||
|
|
||||||
Packer::PlacementConfig pconf;
|
Packer::PlacementConfig pconf;
|
||||||
pconf.alignment = Placer::Config::Alignment::CENTER;
|
pconf.alignment = Placer::Config::Alignment::CENTER;
|
||||||
pconf.starting_point = Placer::Config::Alignment::BOTTOM_LEFT;
|
pconf.starting_point = Placer::Config::Alignment::CENTER;
|
||||||
pconf.rotations = {0.0/*, Pi/2.0, Pi, 3*Pi/2*/};
|
pconf.rotations = {0.0/*, Pi/2.0, Pi, 3*Pi/2*/};
|
||||||
|
pconf.accuracy = 0.5f;
|
||||||
|
|
||||||
double norm_2 = std::nan("");
|
// auto bincenter = ShapeLike::boundingBox(bin).center();
|
||||||
pconf.object_function = [&bin, &norm_2](Placer::Pile pile, const Item& item,
|
// pconf.object_function = [&bin, bincenter](
|
||||||
double /*area*/, double norm, double penality) {
|
// Placer::Pile pile, const Item& item,
|
||||||
|
// double /*area*/, double norm, double penality) {
|
||||||
|
|
||||||
using pl = PointLike;
|
// using pl = PointLike;
|
||||||
|
|
||||||
auto bb = ShapeLike::boundingBox(pile);
|
// static const double BIG_ITEM_TRESHOLD = 0.2;
|
||||||
auto ibb = item.boundingBox();
|
// static const double GRAVITY_RATIO = 0.5;
|
||||||
auto minc = ibb.minCorner();
|
// static const double DENSITY_RATIO = 1.0 - GRAVITY_RATIO;
|
||||||
auto maxc = ibb.maxCorner();
|
|
||||||
|
|
||||||
if(std::isnan(norm_2)) norm_2 = pow(norm, 2);
|
// // We will treat big items (compared to the print bed) differently
|
||||||
|
// NfpPlacer::Pile bigs;
|
||||||
|
// bigs.reserve(pile.size());
|
||||||
|
// for(auto& p : pile) {
|
||||||
|
// auto pbb = ShapeLike::boundingBox(p);
|
||||||
|
// auto na = std::sqrt(pbb.width()*pbb.height())/norm;
|
||||||
|
// if(na > BIG_ITEM_TRESHOLD) bigs.emplace_back(p);
|
||||||
|
// }
|
||||||
|
|
||||||
// We get the distance of the reference point from the center of the
|
// // Candidate item bounding box
|
||||||
// heat bed
|
// auto ibb = item.boundingBox();
|
||||||
auto cc = bb.center();
|
|
||||||
auto top_left = PointImpl{getX(minc), getY(maxc)};
|
|
||||||
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
|
||||||
|
|
||||||
auto a = pl::distance(ibb.maxCorner(), cc);
|
// // Calculate the full bounding box of the pile with the candidate item
|
||||||
auto b = pl::distance(ibb.minCorner(), cc);
|
// pile.emplace_back(item.transformedShape());
|
||||||
auto c = pl::distance(ibb.center(), cc);
|
// auto fullbb = ShapeLike::boundingBox(pile);
|
||||||
auto d = pl::distance(top_left, cc);
|
// pile.pop_back();
|
||||||
auto e = pl::distance(bottom_right, cc);
|
|
||||||
|
|
||||||
auto area = bb.width() * bb.height() / norm_2;
|
// // The bounding box of the big items (they will accumulate in the center
|
||||||
|
// // of the pile
|
||||||
|
// auto bigbb = bigs.empty()? fullbb : ShapeLike::boundingBox(bigs);
|
||||||
|
|
||||||
auto min_dist = std::min({a, b, c, d, e}) / norm;
|
// // The size indicator of the candidate item. This is not the area,
|
||||||
|
// // but almost...
|
||||||
|
// auto itemnormarea = std::sqrt(ibb.width()*ibb.height())/norm;
|
||||||
|
|
||||||
// The score will be the normalized distance which will be minimized,
|
// // Will hold the resulting score
|
||||||
// effectively creating a circle shaped pile of items
|
// double score = 0;
|
||||||
double score = 0.8*min_dist + 0.2*area;
|
|
||||||
|
|
||||||
// If it does not fit into the print bed we will beat it
|
// if(itemnormarea > BIG_ITEM_TRESHOLD) {
|
||||||
// with a large penality. If we would not do this, there would be only
|
// // This branch is for the bigger items..
|
||||||
// one big pile that doesn't care whether it fits onto the print bed.
|
// // Here we will use the closest point of the item bounding box to
|
||||||
if(!NfpPlacer::wouldFit(bb, bin)) score = 2*penality - score;
|
// // the already arranged pile. So not the bb center nor the a choosen
|
||||||
|
// // corner but whichever is the closest to the center. This will
|
||||||
|
// // prevent unwanted strange arrangements.
|
||||||
|
|
||||||
return score;
|
// auto minc = ibb.minCorner(); // bottom left corner
|
||||||
};
|
// auto maxc = ibb.maxCorner(); // top right corner
|
||||||
|
|
||||||
|
// // top left and bottom right corners
|
||||||
|
// auto top_left = PointImpl{getX(minc), getY(maxc)};
|
||||||
|
// auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
||||||
|
|
||||||
|
// auto cc = fullbb.center(); // The gravity center
|
||||||
|
|
||||||
|
// // Now the distnce of the gravity center will be calculated to the
|
||||||
|
// // five anchor points and the smallest will be chosen.
|
||||||
|
// std::array<double, 5> dists;
|
||||||
|
// dists[0] = pl::distance(minc, cc);
|
||||||
|
// dists[1] = pl::distance(maxc, cc);
|
||||||
|
// dists[2] = pl::distance(ibb.center(), cc);
|
||||||
|
// dists[3] = pl::distance(top_left, cc);
|
||||||
|
// dists[4] = pl::distance(bottom_right, cc);
|
||||||
|
|
||||||
|
// auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
||||||
|
|
||||||
|
// // Density is the pack density: how big is the arranged pile
|
||||||
|
// auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||||
|
|
||||||
|
// // The score is a weighted sum of the distance from pile center
|
||||||
|
// // and the pile size
|
||||||
|
// score = GRAVITY_RATIO * dist + DENSITY_RATIO * density;
|
||||||
|
|
||||||
|
// } else if(itemnormarea < BIG_ITEM_TRESHOLD && bigs.empty()) {
|
||||||
|
// // If there are no big items, only small, we should consider the
|
||||||
|
// // density here as well to not get silly results
|
||||||
|
// auto bindist = pl::distance(ibb.center(), bincenter) / norm;
|
||||||
|
// auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||||
|
// score = GRAVITY_RATIO * bindist + DENSITY_RATIO * density;
|
||||||
|
// } else {
|
||||||
|
// // Here there are the small items that should be placed around the
|
||||||
|
// // already processed bigger items.
|
||||||
|
// // No need to play around with the anchor points, the center will be
|
||||||
|
// // just fine for small items
|
||||||
|
// score = pl::distance(ibb.center(), bigbb.center()) / norm;
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // If it does not fit into the print bed we will beat it
|
||||||
|
// // with a large penality. If we would not do this, there would be only
|
||||||
|
// // one big pile that doesn't care whether it fits onto the print bed.
|
||||||
|
// if(!NfpPlacer::wouldFit(fullbb, bin)) score = 2*penality - score;
|
||||||
|
|
||||||
|
// return score;
|
||||||
|
// };
|
||||||
|
|
||||||
Packer::SelectionConfig sconf;
|
Packer::SelectionConfig sconf;
|
||||||
// sconf.allow_parallel = false;
|
// sconf.allow_parallel = false;
|
||||||
@ -638,7 +707,7 @@ void arrangeRectangles() {
|
|||||||
std::vector<double> eff;
|
std::vector<double> eff;
|
||||||
eff.reserve(result.size());
|
eff.reserve(result.size());
|
||||||
|
|
||||||
auto bin_area = double(bin.height()*bin.width());
|
auto bin_area = ShapeLike::area<PolygonImpl>(bin);
|
||||||
for(auto& r : result) {
|
for(auto& r : result) {
|
||||||
double a = 0;
|
double a = 0;
|
||||||
std::for_each(r.begin(), r.end(), [&a] (Item& e ){ a += e.area(); });
|
std::for_each(r.begin(), r.end(), [&a] (Item& e ){ a += e.area(); });
|
||||||
@ -673,7 +742,7 @@ void arrangeRectangles() {
|
|||||||
SVGWriter::Config conf;
|
SVGWriter::Config conf;
|
||||||
conf.mm_in_coord_units = SCALE;
|
conf.mm_in_coord_units = SCALE;
|
||||||
SVGWriter svgw(conf);
|
SVGWriter svgw(conf);
|
||||||
svgw.setSize(bin);
|
svgw.setSize(Box(250*SCALE, 210*SCALE));
|
||||||
svgw.writePackGroup(result);
|
svgw.writePackGroup(result);
|
||||||
// std::for_each(input.begin(), input.end(), [&svgw](Item& item){ svgw.writeItem(item);});
|
// std::for_each(input.begin(), input.end(), [&svgw](Item& item){ svgw.writeItem(item);});
|
||||||
svgw.save("out");
|
svgw.save("out");
|
||||||
|
@ -6,7 +6,7 @@
|
|||||||
#include <libnest2d/clipper_backend/clipper_backend.hpp>
|
#include <libnest2d/clipper_backend/clipper_backend.hpp>
|
||||||
|
|
||||||
// We include the stock optimizers for local and global optimization
|
// We include the stock optimizers for local and global optimization
|
||||||
#include <libnest2d/optimizers/simplex.hpp> // Local simplex for NfpPlacer
|
#include <libnest2d/optimizers/subplex.hpp> // Local subplex for NfpPlacer
|
||||||
#include <libnest2d/optimizers/genetic.hpp> // Genetic for min. bounding box
|
#include <libnest2d/optimizers/genetic.hpp> // Genetic for min. bounding box
|
||||||
|
|
||||||
#include <libnest2d/libnest2d.hpp>
|
#include <libnest2d/libnest2d.hpp>
|
||||||
|
@ -358,7 +358,7 @@ inline double ShapeLike::area(const PolygonImpl& shape)
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
template<>
|
template<>
|
||||||
inline bool ShapeLike::isInside(const PointImpl& point,
|
inline bool ShapeLike::isInside<PolygonImpl>(const PointImpl& point,
|
||||||
const PolygonImpl& shape)
|
const PolygonImpl& shape)
|
||||||
{
|
{
|
||||||
return boost::geometry::within(point, shape);
|
return boost::geometry::within(point, shape);
|
||||||
|
@ -3,6 +3,7 @@
|
|||||||
|
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <type_traits>
|
#include <type_traits>
|
||||||
|
#include <algorithm>
|
||||||
#include <array>
|
#include <array>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <numeric>
|
#include <numeric>
|
||||||
@ -85,6 +86,31 @@ public:
|
|||||||
inline TCoord<RawPoint> height() const BP2D_NOEXCEPT;
|
inline TCoord<RawPoint> height() const BP2D_NOEXCEPT;
|
||||||
|
|
||||||
inline RawPoint center() const BP2D_NOEXCEPT;
|
inline RawPoint center() const BP2D_NOEXCEPT;
|
||||||
|
|
||||||
|
inline double area() const BP2D_NOEXCEPT {
|
||||||
|
return double(width()*height());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<class RawPoint>
|
||||||
|
class _Circle {
|
||||||
|
RawPoint center_;
|
||||||
|
double radius_ = 0;
|
||||||
|
public:
|
||||||
|
|
||||||
|
_Circle() = default;
|
||||||
|
|
||||||
|
_Circle(const RawPoint& center, double r): center_(center), radius_(r) {}
|
||||||
|
|
||||||
|
inline const RawPoint& center() const BP2D_NOEXCEPT { return center_; }
|
||||||
|
inline const void center(const RawPoint& c) { center_ = c; }
|
||||||
|
|
||||||
|
inline double radius() const BP2D_NOEXCEPT { return radius_; }
|
||||||
|
inline void radius(double r) { radius_ = r; }
|
||||||
|
|
||||||
|
inline double area() const BP2D_NOEXCEPT {
|
||||||
|
return 2.0*Pi*radius_;
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -614,12 +640,34 @@ struct ShapeLike {
|
|||||||
return box;
|
return box;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<class RawShape>
|
||||||
|
static inline _Box<TPoint<RawShape>> boundingBox(
|
||||||
|
const _Circle<TPoint<RawShape>>& circ)
|
||||||
|
{
|
||||||
|
using Coord = TCoord<TPoint<RawShape>>;
|
||||||
|
TPoint<RawShape> pmin = {
|
||||||
|
static_cast<Coord>(getX(circ.center()) - circ.radius()),
|
||||||
|
static_cast<Coord>(getY(circ.center()) - circ.radius()) };
|
||||||
|
|
||||||
|
TPoint<RawShape> pmax = {
|
||||||
|
static_cast<Coord>(getX(circ.center()) + circ.radius()),
|
||||||
|
static_cast<Coord>(getY(circ.center()) + circ.radius()) };
|
||||||
|
|
||||||
|
return {pmin, pmax};
|
||||||
|
}
|
||||||
|
|
||||||
template<class RawShape>
|
template<class RawShape>
|
||||||
static inline double area(const _Box<TPoint<RawShape>>& box)
|
static inline double area(const _Box<TPoint<RawShape>>& box)
|
||||||
{
|
{
|
||||||
return static_cast<double>(box.width() * box.height());
|
return static_cast<double>(box.width() * box.height());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<class RawShape>
|
||||||
|
static inline double area(const _Circle<TPoint<RawShape>>& circ)
|
||||||
|
{
|
||||||
|
return circ.area();
|
||||||
|
}
|
||||||
|
|
||||||
template<class RawShape>
|
template<class RawShape>
|
||||||
static inline double area(const Shapes<RawShape>& shapes)
|
static inline double area(const Shapes<RawShape>& shapes)
|
||||||
{
|
{
|
||||||
@ -629,6 +677,62 @@ struct ShapeLike {
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<class RawShape>
|
||||||
|
static bool isInside(const TPoint<RawShape>& point,
|
||||||
|
const _Circle<TPoint<RawShape>>& circ)
|
||||||
|
{
|
||||||
|
return PointLike::distance(point, circ.center()) < circ.radius();
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class RawShape>
|
||||||
|
static bool isInside(const TPoint<RawShape>& point,
|
||||||
|
const _Box<TPoint<RawShape>>& box)
|
||||||
|
{
|
||||||
|
auto px = getX(point);
|
||||||
|
auto py = getY(point);
|
||||||
|
auto minx = getX(box.minCorner());
|
||||||
|
auto miny = getY(box.minCorner());
|
||||||
|
auto maxx = getX(box.maxCorner());
|
||||||
|
auto maxy = getY(box.maxCorner());
|
||||||
|
|
||||||
|
return px > minx && px < maxx && py > miny && py < maxy;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class RawShape>
|
||||||
|
static bool isInside(const RawShape& sh,
|
||||||
|
const _Circle<TPoint<RawShape>>& circ)
|
||||||
|
{
|
||||||
|
return std::all_of(cbegin(sh), cend(sh),
|
||||||
|
[&circ](const TPoint<RawShape>& p){
|
||||||
|
return isInside<RawShape>(p, circ);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class RawShape>
|
||||||
|
static bool isInside(const _Box<TPoint<RawShape>>& box,
|
||||||
|
const _Circle<TPoint<RawShape>>& circ)
|
||||||
|
{
|
||||||
|
return isInside<RawShape>(box.minCorner(), circ) &&
|
||||||
|
isInside<RawShape>(box.maxCorner(), circ);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class RawShape>
|
||||||
|
static bool isInside(const _Box<TPoint<RawShape>>& ibb,
|
||||||
|
const _Box<TPoint<RawShape>>& box)
|
||||||
|
{
|
||||||
|
auto iminX = getX(ibb.minCorner());
|
||||||
|
auto imaxX = getX(ibb.maxCorner());
|
||||||
|
auto iminY = getY(ibb.minCorner());
|
||||||
|
auto imaxY = getY(ibb.maxCorner());
|
||||||
|
|
||||||
|
auto minX = getX(box.minCorner());
|
||||||
|
auto maxX = getX(box.maxCorner());
|
||||||
|
auto minY = getY(box.minCorner());
|
||||||
|
auto maxY = getY(box.maxCorner());
|
||||||
|
|
||||||
|
return iminX > minX && imaxX < maxX && iminY > minY && imaxY < maxY;
|
||||||
|
}
|
||||||
|
|
||||||
template<class RawShape> // Potential O(1) implementation may exist
|
template<class RawShape> // Potential O(1) implementation may exist
|
||||||
static inline TPoint<RawShape>& vertex(RawShape& sh, unsigned long idx)
|
static inline TPoint<RawShape>& vertex(RawShape& sh, unsigned long idx)
|
||||||
{
|
{
|
||||||
|
@ -53,8 +53,8 @@ class _Item {
|
|||||||
|
|
||||||
enum class Convexity: char {
|
enum class Convexity: char {
|
||||||
UNCHECKED,
|
UNCHECKED,
|
||||||
TRUE,
|
C_TRUE,
|
||||||
FALSE
|
C_FALSE
|
||||||
};
|
};
|
||||||
|
|
||||||
mutable Convexity convexity_ = Convexity::UNCHECKED;
|
mutable Convexity convexity_ = Convexity::UNCHECKED;
|
||||||
@ -213,10 +213,10 @@ public:
|
|||||||
switch(convexity_) {
|
switch(convexity_) {
|
||||||
case Convexity::UNCHECKED:
|
case Convexity::UNCHECKED:
|
||||||
ret = sl::isConvex<RawShape>(sl::getContour(transformedShape()));
|
ret = sl::isConvex<RawShape>(sl::getContour(transformedShape()));
|
||||||
convexity_ = ret? Convexity::TRUE : Convexity::FALSE;
|
convexity_ = ret? Convexity::C_TRUE : Convexity::C_FALSE;
|
||||||
break;
|
break;
|
||||||
case Convexity::TRUE: ret = true; break;
|
case Convexity::C_TRUE: ret = true; break;
|
||||||
case Convexity::FALSE:;
|
case Convexity::C_FALSE:;
|
||||||
}
|
}
|
||||||
|
|
||||||
return ret;
|
return ret;
|
||||||
@ -254,7 +254,13 @@ public:
|
|||||||
return sl::isInside(transformedShape(), sh.transformedShape());
|
return sl::isInside(transformedShape(), sh.transformedShape());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline bool isInside(const RawShape& sh) const
|
||||||
|
{
|
||||||
|
return sl::isInside(transformedShape(), sh);
|
||||||
|
}
|
||||||
|
|
||||||
inline bool isInside(const _Box<TPoint<RawShape>>& box) const;
|
inline bool isInside(const _Box<TPoint<RawShape>>& box) const;
|
||||||
|
inline bool isInside(const _Circle<TPoint<RawShape>>& box) const;
|
||||||
|
|
||||||
inline void translate(const Vertex& d) BP2D_NOEXCEPT
|
inline void translate(const Vertex& d) BP2D_NOEXCEPT
|
||||||
{
|
{
|
||||||
@ -467,8 +473,12 @@ public:
|
|||||||
|
|
||||||
template<class RawShape>
|
template<class RawShape>
|
||||||
inline bool _Item<RawShape>::isInside(const _Box<TPoint<RawShape>>& box) const {
|
inline bool _Item<RawShape>::isInside(const _Box<TPoint<RawShape>>& box) const {
|
||||||
_Rectangle<RawShape> rect(box.width(), box.height());
|
return ShapeLike::isInside<RawShape>(boundingBox(), box);
|
||||||
return _Item<RawShape>::isInside(rect);
|
}
|
||||||
|
|
||||||
|
template<class RawShape> inline bool
|
||||||
|
_Item<RawShape>::isInside(const _Circle<TPoint<RawShape>>& circ) const {
|
||||||
|
return ShapeLike::isInside<RawShape>(transformedShape(), circ);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -46,14 +46,12 @@ struct NfpPConfig {
|
|||||||
* function you can e.g. influence the shape of the arranged pile.
|
* function you can e.g. influence the shape of the arranged pile.
|
||||||
*
|
*
|
||||||
* \param shapes The first parameter is a container with all the placed
|
* \param shapes The first parameter is a container with all the placed
|
||||||
* polygons including the current candidate. You can calculate a bounding
|
* polygons excluding the current candidate. You can calculate a bounding
|
||||||
* box or convex hull on this pile of polygons.
|
* box or convex hull on this pile of polygons without the candidate item
|
||||||
|
* or push back the candidate item into the container and then calculate
|
||||||
|
* some features.
|
||||||
*
|
*
|
||||||
* \param item The second parameter is the candidate item. Note that
|
* \param item The second parameter is the candidate item.
|
||||||
* calling transformedShape() on this second argument returns an identical
|
|
||||||
* shape as calling shapes.back(). These would not be the same objects only
|
|
||||||
* identical shapes! Using the second parameter is a lot faster due to
|
|
||||||
* caching some properties of the polygon (area, etc...)
|
|
||||||
*
|
*
|
||||||
* \param occupied_area The third parameter is the sum of areas of the
|
* \param occupied_area The third parameter is the sum of areas of the
|
||||||
* items in the first parameter so you don't have to iterate through them
|
* items in the first parameter so you don't have to iterate through them
|
||||||
@ -127,6 +125,8 @@ template<class RawShape> class EdgeCache {
|
|||||||
|
|
||||||
std::vector<ContourCache> holes_;
|
std::vector<ContourCache> holes_;
|
||||||
|
|
||||||
|
double accuracy_ = 1.0;
|
||||||
|
|
||||||
void createCache(const RawShape& sh) {
|
void createCache(const RawShape& sh) {
|
||||||
{ // For the contour
|
{ // For the contour
|
||||||
auto first = ShapeLike::cbegin(sh);
|
auto first = ShapeLike::cbegin(sh);
|
||||||
@ -160,11 +160,26 @@ template<class RawShape> class EdgeCache {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
size_t stride(const size_t N) const {
|
||||||
|
using std::ceil;
|
||||||
|
using std::round;
|
||||||
|
using std::pow;
|
||||||
|
|
||||||
|
return static_cast<Coord>(
|
||||||
|
std::round(N/std::pow(N, std::pow(accuracy_, 1.0/3.0)))
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
void fetchCorners() const {
|
void fetchCorners() const {
|
||||||
if(!contour_.corners.empty()) return;
|
if(!contour_.corners.empty()) return;
|
||||||
|
|
||||||
contour_.corners.reserve(contour_.distances.size() / 3 + 1);
|
const auto N = contour_.distances.size();
|
||||||
for(size_t i = 0; i < contour_.distances.size() - 1; i += 3) {
|
const auto S = stride(N);
|
||||||
|
|
||||||
|
contour_.corners.reserve(N / S + 1);
|
||||||
|
auto N_1 = N-1;
|
||||||
|
contour_.corners.emplace_back(0.0);
|
||||||
|
for(size_t i = 0; i < N_1; i += S) {
|
||||||
contour_.corners.emplace_back(
|
contour_.corners.emplace_back(
|
||||||
contour_.distances.at(i) / contour_.full_distance);
|
contour_.distances.at(i) / contour_.full_distance);
|
||||||
}
|
}
|
||||||
@ -174,8 +189,12 @@ template<class RawShape> class EdgeCache {
|
|||||||
auto& hc = holes_[hidx];
|
auto& hc = holes_[hidx];
|
||||||
if(!hc.corners.empty()) return;
|
if(!hc.corners.empty()) return;
|
||||||
|
|
||||||
hc.corners.reserve(hc.distances.size() / 3 + 1);
|
const auto N = hc.distances.size();
|
||||||
for(size_t i = 0; i < hc.distances.size() - 1; i += 3) {
|
const auto S = stride(N);
|
||||||
|
auto N_1 = N-1;
|
||||||
|
hc.corners.reserve(N / S + 1);
|
||||||
|
hc.corners.emplace_back(0.0);
|
||||||
|
for(size_t i = 0; i < N_1; i += S) {
|
||||||
hc.corners.emplace_back(
|
hc.corners.emplace_back(
|
||||||
hc.distances.at(i) / hc.full_distance);
|
hc.distances.at(i) / hc.full_distance);
|
||||||
}
|
}
|
||||||
@ -224,6 +243,9 @@ public:
|
|||||||
createCache(sh);
|
createCache(sh);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Resolution of returned corners. The stride is derived from this value.
|
||||||
|
void accuracy(double a /* within <0.0, 1.0>*/) { accuracy_ = a; }
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Get a point on the circumference of a polygon.
|
* @brief Get a point on the circumference of a polygon.
|
||||||
* @param distance A relative distance from the starting point to the end.
|
* @param distance A relative distance from the starting point to the end.
|
||||||
@ -419,12 +441,12 @@ Nfp::Shapes<RawShape> nfp( const Container& polygons,
|
|||||||
// return nfps;
|
// return nfps;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class RawShape>
|
template<class RawShape, class TBin = _Box<TPoint<RawShape>>>
|
||||||
class _NofitPolyPlacer: public PlacerBoilerplate<_NofitPolyPlacer<RawShape>,
|
class _NofitPolyPlacer: public PlacerBoilerplate<_NofitPolyPlacer<RawShape, TBin>,
|
||||||
RawShape, _Box<TPoint<RawShape>>, NfpPConfig<RawShape>> {
|
RawShape, TBin, NfpPConfig<RawShape>> {
|
||||||
|
|
||||||
using Base = PlacerBoilerplate<_NofitPolyPlacer<RawShape>,
|
using Base = PlacerBoilerplate<_NofitPolyPlacer<RawShape, TBin>,
|
||||||
RawShape, _Box<TPoint<RawShape>>, NfpPConfig<RawShape>>;
|
RawShape, TBin, NfpPConfig<RawShape>>;
|
||||||
|
|
||||||
DECLARE_PLACER(Base)
|
DECLARE_PLACER(Base)
|
||||||
|
|
||||||
@ -434,6 +456,7 @@ class _NofitPolyPlacer: public PlacerBoilerplate<_NofitPolyPlacer<RawShape>,
|
|||||||
const double penality_;
|
const double penality_;
|
||||||
|
|
||||||
using MaxNfpLevel = Nfp::MaxNfpLevel<RawShape>;
|
using MaxNfpLevel = Nfp::MaxNfpLevel<RawShape>;
|
||||||
|
using sl = ShapeLike;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
@ -441,7 +464,7 @@ public:
|
|||||||
|
|
||||||
inline explicit _NofitPolyPlacer(const BinType& bin):
|
inline explicit _NofitPolyPlacer(const BinType& bin):
|
||||||
Base(bin),
|
Base(bin),
|
||||||
norm_(std::sqrt(ShapeLike::area<RawShape>(bin))),
|
norm_(std::sqrt(sl::area<RawShape>(bin))),
|
||||||
penality_(1e6*norm_) {}
|
penality_(1e6*norm_) {}
|
||||||
|
|
||||||
_NofitPolyPlacer(const _NofitPolyPlacer&) = default;
|
_NofitPolyPlacer(const _NofitPolyPlacer&) = default;
|
||||||
@ -452,18 +475,26 @@ public:
|
|||||||
_NofitPolyPlacer& operator=(_NofitPolyPlacer&&) BP2D_NOEXCEPT = default;
|
_NofitPolyPlacer& operator=(_NofitPolyPlacer&&) BP2D_NOEXCEPT = default;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
bool static inline wouldFit(const Box& bb, const RawShape& bin) {
|
||||||
|
auto bbin = sl::boundingBox<RawShape>(bin);
|
||||||
|
auto d = bbin.center() - bb.center();
|
||||||
|
_Rectangle<RawShape> rect(bb.width(), bb.height());
|
||||||
|
rect.translate(bb.minCorner() + d);
|
||||||
|
return sl::isInside<RawShape>(rect.transformedShape(), bin);
|
||||||
|
}
|
||||||
|
|
||||||
bool static inline wouldFit(const RawShape& chull, const RawShape& bin) {
|
bool static inline wouldFit(const RawShape& chull, const RawShape& bin) {
|
||||||
auto bbch = ShapeLike::boundingBox<RawShape>(chull);
|
auto bbch = sl::boundingBox<RawShape>(chull);
|
||||||
auto bbin = ShapeLike::boundingBox<RawShape>(bin);
|
auto bbin = sl::boundingBox<RawShape>(bin);
|
||||||
auto d = bbin.minCorner() - bbch.minCorner();
|
auto d = bbch.center() - bbin.center();
|
||||||
auto chullcpy = chull;
|
auto chullcpy = chull;
|
||||||
ShapeLike::translate(chullcpy, d);
|
sl::translate(chullcpy, d);
|
||||||
return ShapeLike::isInside<RawShape>(chullcpy, bbin);
|
return sl::isInside<RawShape>(chullcpy, bin);
|
||||||
}
|
}
|
||||||
|
|
||||||
bool static inline wouldFit(const RawShape& chull, const Box& bin)
|
bool static inline wouldFit(const RawShape& chull, const Box& bin)
|
||||||
{
|
{
|
||||||
auto bbch = ShapeLike::boundingBox<RawShape>(chull);
|
auto bbch = sl::boundingBox<RawShape>(chull);
|
||||||
return wouldFit(bbch, bin);
|
return wouldFit(bbch, bin);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -472,6 +503,17 @@ public:
|
|||||||
return bb.width() <= bin.width() && bb.height() <= bin.height();
|
return bb.width() <= bin.width() && bb.height() <= bin.height();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool static inline wouldFit(const Box& bb, const _Circle<Vertex>& bin)
|
||||||
|
{
|
||||||
|
return sl::isInside<RawShape>(bb, bin);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool static inline wouldFit(const RawShape& chull,
|
||||||
|
const _Circle<Vertex>& bin)
|
||||||
|
{
|
||||||
|
return sl::isInside<RawShape>(chull, bin);
|
||||||
|
}
|
||||||
|
|
||||||
PackResult trypack(Item& item) {
|
PackResult trypack(Item& item) {
|
||||||
|
|
||||||
PackResult ret;
|
PackResult ret;
|
||||||
@ -510,7 +552,10 @@ public:
|
|||||||
std::vector<EdgeCache<RawShape>> ecache;
|
std::vector<EdgeCache<RawShape>> ecache;
|
||||||
ecache.reserve(nfps.size());
|
ecache.reserve(nfps.size());
|
||||||
|
|
||||||
for(auto& nfp : nfps ) ecache.emplace_back(nfp);
|
for(auto& nfp : nfps ) {
|
||||||
|
ecache.emplace_back(nfp);
|
||||||
|
ecache.back().accuracy(config_.accuracy);
|
||||||
|
}
|
||||||
|
|
||||||
struct Optimum {
|
struct Optimum {
|
||||||
double relpos;
|
double relpos;
|
||||||
@ -536,18 +581,25 @@ public:
|
|||||||
pile_area += mitem.area();
|
pile_area += mitem.area();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
auto merged_pile = Nfp::merge(pile);
|
||||||
|
|
||||||
// This is the kernel part of the object function that is
|
// This is the kernel part of the object function that is
|
||||||
// customizable by the library client
|
// customizable by the library client
|
||||||
auto _objfunc = config_.object_function?
|
auto _objfunc = config_.object_function?
|
||||||
config_.object_function :
|
config_.object_function :
|
||||||
[this](Nfp::Shapes<RawShape>& pile, Item,
|
[this, &merged_pile](
|
||||||
double occupied_area, double /*norm*/,
|
Nfp::Shapes<RawShape>& /*pile*/,
|
||||||
double penality)
|
const Item& item,
|
||||||
|
double occupied_area,
|
||||||
|
double norm,
|
||||||
|
double /*penality*/)
|
||||||
{
|
{
|
||||||
auto ch = ShapeLike::convexHull(pile);
|
merged_pile.emplace_back(item.transformedShape());
|
||||||
|
auto ch = sl::convexHull(merged_pile);
|
||||||
|
merged_pile.pop_back();
|
||||||
|
|
||||||
// The pack ratio -- how much is the convex hull occupied
|
// The pack ratio -- how much is the convex hull occupied
|
||||||
double pack_rate = occupied_area/ShapeLike::area(ch);
|
double pack_rate = occupied_area/sl::area(ch);
|
||||||
|
|
||||||
// ratio of waste
|
// ratio of waste
|
||||||
double waste = 1.0 - pack_rate;
|
double waste = 1.0 - pack_rate;
|
||||||
@ -557,7 +609,7 @@ public:
|
|||||||
// (larger) values.
|
// (larger) values.
|
||||||
auto score = std::sqrt(waste);
|
auto score = std::sqrt(waste);
|
||||||
|
|
||||||
if(!wouldFit(ch, bin_)) score = 2*penality - score;
|
if(!wouldFit(ch, bin_)) score += norm;
|
||||||
|
|
||||||
return score;
|
return score;
|
||||||
};
|
};
|
||||||
@ -569,23 +621,31 @@ public:
|
|||||||
d += startpos;
|
d += startpos;
|
||||||
item.translation(d);
|
item.translation(d);
|
||||||
|
|
||||||
// pile.emplace_back(item.transformedShape());
|
|
||||||
|
|
||||||
double occupied_area = pile_area + item.area();
|
double occupied_area = pile_area + item.area();
|
||||||
|
|
||||||
double score = _objfunc(pile, item, occupied_area,
|
double score = _objfunc(pile, item, occupied_area,
|
||||||
norm_, penality_);
|
norm_, penality_);
|
||||||
|
|
||||||
// pile.pop_back();
|
|
||||||
|
|
||||||
return score;
|
return score;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
auto boundaryCheck = [&](const Optimum& o) {
|
||||||
|
auto v = getNfpPoint(o);
|
||||||
|
auto d = v - iv;
|
||||||
|
d += startpos;
|
||||||
|
item.translation(d);
|
||||||
|
|
||||||
|
merged_pile.emplace_back(item.transformedShape());
|
||||||
|
auto chull = sl::convexHull(merged_pile);
|
||||||
|
merged_pile.pop_back();
|
||||||
|
|
||||||
|
return wouldFit(chull, bin_);
|
||||||
|
};
|
||||||
|
|
||||||
opt::StopCriteria stopcr;
|
opt::StopCriteria stopcr;
|
||||||
stopcr.max_iterations = 1000;
|
stopcr.max_iterations = 100;
|
||||||
stopcr.absolute_score_difference = 1e-20*norm_;
|
stopcr.relative_score_difference = 1e-6;
|
||||||
// stopcr.relative_score_difference = 1e-20;
|
opt::TOptimizer<opt::Method::L_SUBPLEX> solver(stopcr);
|
||||||
opt::TOptimizer<opt::Method::L_SIMPLEX> solver(stopcr);
|
|
||||||
|
|
||||||
Optimum optimum(0, 0);
|
Optimum optimum(0, 0);
|
||||||
double best_score = penality_;
|
double best_score = penality_;
|
||||||
@ -604,7 +664,7 @@ public:
|
|||||||
std::for_each(cache.corners().begin(),
|
std::for_each(cache.corners().begin(),
|
||||||
cache.corners().end(),
|
cache.corners().end(),
|
||||||
[ch, &contour_ofn, &solver, &best_score,
|
[ch, &contour_ofn, &solver, &best_score,
|
||||||
&optimum] (double pos)
|
&optimum, &boundaryCheck] (double pos)
|
||||||
{
|
{
|
||||||
try {
|
try {
|
||||||
auto result = solver.optimize_min(contour_ofn,
|
auto result = solver.optimize_min(contour_ofn,
|
||||||
@ -613,22 +673,15 @@ public:
|
|||||||
);
|
);
|
||||||
|
|
||||||
if(result.score < best_score) {
|
if(result.score < best_score) {
|
||||||
|
Optimum o(std::get<0>(result.optimum), ch, -1);
|
||||||
|
if(boundaryCheck(o)) {
|
||||||
best_score = result.score;
|
best_score = result.score;
|
||||||
optimum.relpos = std::get<0>(result.optimum);
|
optimum = o;
|
||||||
optimum.nfpidx = ch;
|
}
|
||||||
optimum.hidx = -1;
|
|
||||||
}
|
}
|
||||||
} catch(std::exception& e) {
|
} catch(std::exception& e) {
|
||||||
derr() << "ERROR: " << e.what() << "\n";
|
derr() << "ERROR: " << e.what() << "\n";
|
||||||
}
|
}
|
||||||
|
|
||||||
// auto sc = contour_ofn(pos);
|
|
||||||
// if(sc < best_score) {
|
|
||||||
// best_score = sc;
|
|
||||||
// optimum.relpos = pos;
|
|
||||||
// optimum.nfpidx = ch;
|
|
||||||
// optimum.hidx = -1;
|
|
||||||
// }
|
|
||||||
});
|
});
|
||||||
|
|
||||||
for(unsigned hidx = 0; hidx < cache.holeCount(); ++hidx) {
|
for(unsigned hidx = 0; hidx < cache.holeCount(); ++hidx) {
|
||||||
@ -643,7 +696,7 @@ public:
|
|||||||
std::for_each(cache.corners(hidx).begin(),
|
std::for_each(cache.corners(hidx).begin(),
|
||||||
cache.corners(hidx).end(),
|
cache.corners(hidx).end(),
|
||||||
[&hole_ofn, &solver, &best_score,
|
[&hole_ofn, &solver, &best_score,
|
||||||
&optimum, ch, hidx]
|
&optimum, ch, hidx, &boundaryCheck]
|
||||||
(double pos)
|
(double pos)
|
||||||
{
|
{
|
||||||
try {
|
try {
|
||||||
@ -653,21 +706,16 @@ public:
|
|||||||
);
|
);
|
||||||
|
|
||||||
if(result.score < best_score) {
|
if(result.score < best_score) {
|
||||||
best_score = result.score;
|
|
||||||
Optimum o(std::get<0>(result.optimum),
|
Optimum o(std::get<0>(result.optimum),
|
||||||
ch, hidx);
|
ch, hidx);
|
||||||
|
if(boundaryCheck(o)) {
|
||||||
|
best_score = result.score;
|
||||||
optimum = o;
|
optimum = o;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
} catch(std::exception& e) {
|
} catch(std::exception& e) {
|
||||||
derr() << "ERROR: " << e.what() << "\n";
|
derr() << "ERROR: " << e.what() << "\n";
|
||||||
}
|
}
|
||||||
// auto sc = hole_ofn(pos);
|
|
||||||
// if(sc < best_score) {
|
|
||||||
// best_score = sc;
|
|
||||||
// optimum.relpos = pos;
|
|
||||||
// optimum.nfpidx = ch;
|
|
||||||
// optimum.hidx = hidx;
|
|
||||||
// }
|
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -702,34 +750,35 @@ public:
|
|||||||
m.reserve(items_.size());
|
m.reserve(items_.size());
|
||||||
|
|
||||||
for(Item& item : items_) m.emplace_back(item.transformedShape());
|
for(Item& item : items_) m.emplace_back(item.transformedShape());
|
||||||
auto&& bb = ShapeLike::boundingBox<RawShape>(m);
|
auto&& bb = sl::boundingBox<RawShape>(m);
|
||||||
|
|
||||||
Vertex ci, cb;
|
Vertex ci, cb;
|
||||||
|
auto bbin = sl::boundingBox<RawShape>(bin_);
|
||||||
|
|
||||||
switch(config_.alignment) {
|
switch(config_.alignment) {
|
||||||
case Config::Alignment::CENTER: {
|
case Config::Alignment::CENTER: {
|
||||||
ci = bb.center();
|
ci = bb.center();
|
||||||
cb = bin_.center();
|
cb = bbin.center();
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
case Config::Alignment::BOTTOM_LEFT: {
|
case Config::Alignment::BOTTOM_LEFT: {
|
||||||
ci = bb.minCorner();
|
ci = bb.minCorner();
|
||||||
cb = bin_.minCorner();
|
cb = bbin.minCorner();
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
case Config::Alignment::BOTTOM_RIGHT: {
|
case Config::Alignment::BOTTOM_RIGHT: {
|
||||||
ci = {getX(bb.maxCorner()), getY(bb.minCorner())};
|
ci = {getX(bb.maxCorner()), getY(bb.minCorner())};
|
||||||
cb = {getX(bin_.maxCorner()), getY(bin_.minCorner())};
|
cb = {getX(bbin.maxCorner()), getY(bbin.minCorner())};
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
case Config::Alignment::TOP_LEFT: {
|
case Config::Alignment::TOP_LEFT: {
|
||||||
ci = {getX(bb.minCorner()), getY(bb.maxCorner())};
|
ci = {getX(bb.minCorner()), getY(bb.maxCorner())};
|
||||||
cb = {getX(bin_.minCorner()), getY(bin_.maxCorner())};
|
cb = {getX(bbin.minCorner()), getY(bbin.maxCorner())};
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
case Config::Alignment::TOP_RIGHT: {
|
case Config::Alignment::TOP_RIGHT: {
|
||||||
ci = bb.maxCorner();
|
ci = bb.maxCorner();
|
||||||
cb = bin_.maxCorner();
|
cb = bbin.maxCorner();
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -745,31 +794,32 @@ private:
|
|||||||
void setInitialPosition(Item& item) {
|
void setInitialPosition(Item& item) {
|
||||||
Box&& bb = item.boundingBox();
|
Box&& bb = item.boundingBox();
|
||||||
Vertex ci, cb;
|
Vertex ci, cb;
|
||||||
|
auto bbin = sl::boundingBox<RawShape>(bin_);
|
||||||
|
|
||||||
switch(config_.starting_point) {
|
switch(config_.starting_point) {
|
||||||
case Config::Alignment::CENTER: {
|
case Config::Alignment::CENTER: {
|
||||||
ci = bb.center();
|
ci = bb.center();
|
||||||
cb = bin_.center();
|
cb = bbin.center();
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
case Config::Alignment::BOTTOM_LEFT: {
|
case Config::Alignment::BOTTOM_LEFT: {
|
||||||
ci = bb.minCorner();
|
ci = bb.minCorner();
|
||||||
cb = bin_.minCorner();
|
cb = bbin.minCorner();
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
case Config::Alignment::BOTTOM_RIGHT: {
|
case Config::Alignment::BOTTOM_RIGHT: {
|
||||||
ci = {getX(bb.maxCorner()), getY(bb.minCorner())};
|
ci = {getX(bb.maxCorner()), getY(bb.minCorner())};
|
||||||
cb = {getX(bin_.maxCorner()), getY(bin_.minCorner())};
|
cb = {getX(bbin.maxCorner()), getY(bbin.minCorner())};
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
case Config::Alignment::TOP_LEFT: {
|
case Config::Alignment::TOP_LEFT: {
|
||||||
ci = {getX(bb.minCorner()), getY(bb.maxCorner())};
|
ci = {getX(bb.minCorner()), getY(bb.maxCorner())};
|
||||||
cb = {getX(bin_.minCorner()), getY(bin_.maxCorner())};
|
cb = {getX(bbin.minCorner()), getY(bbin.maxCorner())};
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
case Config::Alignment::TOP_RIGHT: {
|
case Config::Alignment::TOP_RIGHT: {
|
||||||
ci = bb.maxCorner();
|
ci = bb.maxCorner();
|
||||||
cb = bin_.maxCorner();
|
cb = bbin.maxCorner();
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -780,7 +830,7 @@ private:
|
|||||||
|
|
||||||
void placeOutsideOfBin(Item& item) {
|
void placeOutsideOfBin(Item& item) {
|
||||||
auto&& bb = item.boundingBox();
|
auto&& bb = item.boundingBox();
|
||||||
Box binbb = ShapeLike::boundingBox<RawShape>(bin_);
|
Box binbb = sl::boundingBox<RawShape>(bin_);
|
||||||
|
|
||||||
Vertex v = { getX(bb.maxCorner()), getY(bb.minCorner()) };
|
Vertex v = { getX(bb.maxCorner()), getY(bb.minCorner()) };
|
||||||
|
|
||||||
|
@ -535,7 +535,7 @@ public:
|
|||||||
// then it should be removed from the not_packed list
|
// then it should be removed from the not_packed list
|
||||||
{ auto it = store_.begin();
|
{ auto it = store_.begin();
|
||||||
while (it != store_.end()) {
|
while (it != store_.end()) {
|
||||||
Placer p(bin);
|
Placer p(bin); p.configure(pconfig);
|
||||||
if(!p.pack(*it)) {
|
if(!p.pack(*it)) {
|
||||||
it = store_.erase(it);
|
it = store_.erase(it);
|
||||||
} else it++;
|
} else it++;
|
||||||
|
@ -59,7 +59,7 @@ public:
|
|||||||
// then it should be removed from the list
|
// then it should be removed from the list
|
||||||
{ auto it = store_.begin();
|
{ auto it = store_.begin();
|
||||||
while (it != store_.end()) {
|
while (it != store_.end()) {
|
||||||
Placer p(bin);
|
Placer p(bin); p.configure(pconfig);
|
||||||
if(!p.pack(*it)) {
|
if(!p.pack(*it)) {
|
||||||
it = store_.erase(it);
|
it = store_.erase(it);
|
||||||
} else it++;
|
} else it++;
|
||||||
|
@ -7,11 +7,6 @@
|
|||||||
#include "Format/STL.hpp"
|
#include "Format/STL.hpp"
|
||||||
#include "Format/3mf.hpp"
|
#include "Format/3mf.hpp"
|
||||||
|
|
||||||
#include <numeric>
|
|
||||||
#include <libnest2d.h>
|
|
||||||
#include <ClipperUtils.hpp>
|
|
||||||
#include "slic3r/GUI/GUI.hpp"
|
|
||||||
|
|
||||||
#include <float.h>
|
#include <float.h>
|
||||||
|
|
||||||
#include <boost/algorithm/string/predicate.hpp>
|
#include <boost/algorithm/string/predicate.hpp>
|
||||||
@ -304,408 +299,10 @@ static bool _arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf* bb
|
|||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
namespace arr {
|
|
||||||
|
|
||||||
using namespace libnest2d;
|
|
||||||
|
|
||||||
std::string toString(const Model& model, bool holes = true) {
|
|
||||||
std::stringstream ss;
|
|
||||||
|
|
||||||
ss << "{\n";
|
|
||||||
|
|
||||||
for(auto objptr : model.objects) {
|
|
||||||
if(!objptr) continue;
|
|
||||||
|
|
||||||
auto rmesh = objptr->raw_mesh();
|
|
||||||
|
|
||||||
for(auto objinst : objptr->instances) {
|
|
||||||
if(!objinst) continue;
|
|
||||||
|
|
||||||
Slic3r::TriangleMesh tmpmesh = rmesh;
|
|
||||||
tmpmesh.scale(objinst->scaling_factor);
|
|
||||||
objinst->transform_mesh(&tmpmesh);
|
|
||||||
ExPolygons expolys = tmpmesh.horizontal_projection();
|
|
||||||
for(auto& expoly_complex : expolys) {
|
|
||||||
|
|
||||||
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
|
|
||||||
if(tmp.empty()) continue;
|
|
||||||
auto expoly = tmp.front();
|
|
||||||
expoly.contour.make_clockwise();
|
|
||||||
for(auto& h : expoly.holes) h.make_counter_clockwise();
|
|
||||||
|
|
||||||
ss << "\t{\n";
|
|
||||||
ss << "\t\t{\n";
|
|
||||||
|
|
||||||
for(auto v : expoly.contour.points) ss << "\t\t\t{"
|
|
||||||
<< v.x << ", "
|
|
||||||
<< v.y << "},\n";
|
|
||||||
{
|
|
||||||
auto v = expoly.contour.points.front();
|
|
||||||
ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
|
|
||||||
}
|
|
||||||
ss << "\t\t},\n";
|
|
||||||
|
|
||||||
// Holes:
|
|
||||||
ss << "\t\t{\n";
|
|
||||||
if(holes) for(auto h : expoly.holes) {
|
|
||||||
ss << "\t\t\t{\n";
|
|
||||||
for(auto v : h.points) ss << "\t\t\t\t{"
|
|
||||||
<< v.x << ", "
|
|
||||||
<< v.y << "},\n";
|
|
||||||
{
|
|
||||||
auto v = h.points.front();
|
|
||||||
ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
|
|
||||||
}
|
|
||||||
ss << "\t\t\t},\n";
|
|
||||||
}
|
|
||||||
ss << "\t\t},\n";
|
|
||||||
|
|
||||||
ss << "\t},\n";
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
ss << "}\n";
|
|
||||||
|
|
||||||
return ss.str();
|
|
||||||
}
|
|
||||||
|
|
||||||
void toSVG(SVG& svg, const Model& model) {
|
|
||||||
for(auto objptr : model.objects) {
|
|
||||||
if(!objptr) continue;
|
|
||||||
|
|
||||||
auto rmesh = objptr->raw_mesh();
|
|
||||||
|
|
||||||
for(auto objinst : objptr->instances) {
|
|
||||||
if(!objinst) continue;
|
|
||||||
|
|
||||||
Slic3r::TriangleMesh tmpmesh = rmesh;
|
|
||||||
tmpmesh.scale(objinst->scaling_factor);
|
|
||||||
objinst->transform_mesh(&tmpmesh);
|
|
||||||
ExPolygons expolys = tmpmesh.horizontal_projection();
|
|
||||||
svg.draw(expolys);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// A container which stores a pointer to the 3D object and its projected
|
|
||||||
// 2D shape from top view.
|
|
||||||
using ShapeData2D =
|
|
||||||
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
|
|
||||||
|
|
||||||
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
|
|
||||||
ShapeData2D ret;
|
|
||||||
|
|
||||||
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
|
|
||||||
[](size_t s, ModelObject* o){
|
|
||||||
return s + o->instances.size();
|
|
||||||
});
|
|
||||||
|
|
||||||
ret.reserve(s);
|
|
||||||
|
|
||||||
for(auto objptr : model.objects) {
|
|
||||||
if(objptr) {
|
|
||||||
|
|
||||||
auto rmesh = objptr->raw_mesh();
|
|
||||||
|
|
||||||
for(auto objinst : objptr->instances) {
|
|
||||||
if(objinst) {
|
|
||||||
Slic3r::TriangleMesh tmpmesh = rmesh;
|
|
||||||
ClipperLib::PolygonImpl pn;
|
|
||||||
|
|
||||||
tmpmesh.scale(objinst->scaling_factor);
|
|
||||||
|
|
||||||
// TODO export the exact 2D projection
|
|
||||||
auto p = tmpmesh.convex_hull();
|
|
||||||
|
|
||||||
p.make_clockwise();
|
|
||||||
p.append(p.first_point());
|
|
||||||
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
|
|
||||||
|
|
||||||
// Efficient conversion to item.
|
|
||||||
Item item(std::move(pn));
|
|
||||||
|
|
||||||
// Invalid geometries would throw exceptions when arranging
|
|
||||||
if(item.vertexCount() > 3) {
|
|
||||||
item.rotation(objinst->rotation);
|
|
||||||
item.translation( {
|
|
||||||
ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
|
|
||||||
ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
|
|
||||||
});
|
|
||||||
ret.emplace_back(objinst, item);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* \brief Arranges the model objects on the screen.
|
|
||||||
*
|
|
||||||
* The arrangement considers multiple bins (aka. print beds) for placing all
|
|
||||||
* the items provided in the model argument. If the items don't fit on one
|
|
||||||
* print bed, the remaining will be placed onto newly created print beds.
|
|
||||||
* The first_bin_only parameter, if set to true, disables this behaviour and
|
|
||||||
* makes sure that only one print bed is filled and the remaining items will be
|
|
||||||
* untouched. When set to false, the items which could not fit onto the
|
|
||||||
* print bed will be placed next to the print bed so the user should see a
|
|
||||||
* pile of items on the print bed and some other piles outside the print
|
|
||||||
* area that can be dragged later onto the print bed as a group.
|
|
||||||
*
|
|
||||||
* \param model The model object with the 3D content.
|
|
||||||
* \param dist The minimum distance which is allowed for any pair of items
|
|
||||||
* on the print bed in any direction.
|
|
||||||
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
|
|
||||||
* for bin packing.
|
|
||||||
* \param first_bin_only This parameter controls whether to place the
|
|
||||||
* remaining items which do not fit onto the print area next to the print
|
|
||||||
* bed or leave them untouched (let the user arrange them by hand or remove
|
|
||||||
* them).
|
|
||||||
*/
|
|
||||||
bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
|
|
||||||
bool first_bin_only,
|
|
||||||
std::function<void(unsigned)> progressind)
|
|
||||||
{
|
|
||||||
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
|
|
||||||
|
|
||||||
bool ret = true;
|
|
||||||
|
|
||||||
// Create the arranger config
|
|
||||||
auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);
|
|
||||||
|
|
||||||
// Get the 2D projected shapes with their 3D model instance pointers
|
|
||||||
auto shapemap = arr::projectModelFromTop(model);
|
|
||||||
|
|
||||||
bool hasbin = bb != nullptr && bb->defined;
|
|
||||||
double area_max = 0;
|
|
||||||
|
|
||||||
// Copy the references for the shapes only as the arranger expects a
|
|
||||||
// sequence of objects convertible to Item or ClipperPolygon
|
|
||||||
std::vector<std::reference_wrapper<Item>> shapes;
|
|
||||||
shapes.reserve(shapemap.size());
|
|
||||||
std::for_each(shapemap.begin(), shapemap.end(),
|
|
||||||
[&shapes, min_obj_distance, &area_max, hasbin]
|
|
||||||
(ShapeData2D::value_type& it)
|
|
||||||
{
|
|
||||||
shapes.push_back(std::ref(it.second));
|
|
||||||
});
|
|
||||||
|
|
||||||
Box bin;
|
|
||||||
|
|
||||||
if(hasbin) {
|
|
||||||
// Scale up the bounding box to clipper scale.
|
|
||||||
BoundingBoxf bbb = *bb;
|
|
||||||
bbb.scale(1.0/SCALING_FACTOR);
|
|
||||||
|
|
||||||
bin = Box({
|
|
||||||
static_cast<libnest2d::Coord>(bbb.min.x),
|
|
||||||
static_cast<libnest2d::Coord>(bbb.min.y)
|
|
||||||
},
|
|
||||||
{
|
|
||||||
static_cast<libnest2d::Coord>(bbb.max.x),
|
|
||||||
static_cast<libnest2d::Coord>(bbb.max.y)
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
// Will use the DJD selection heuristic with the BottomLeft placement
|
|
||||||
// strategy
|
|
||||||
using Arranger = Arranger<NfpPlacer, FirstFitSelection>;
|
|
||||||
using PConf = Arranger::PlacementConfig;
|
|
||||||
using SConf = Arranger::SelectionConfig;
|
|
||||||
|
|
||||||
PConf pcfg; // Placement configuration
|
|
||||||
SConf scfg; // Selection configuration
|
|
||||||
|
|
||||||
// Align the arranged pile into the center of the bin
|
|
||||||
pcfg.alignment = PConf::Alignment::CENTER;
|
|
||||||
|
|
||||||
// Start placing the items from the center of the print bed
|
|
||||||
pcfg.starting_point = PConf::Alignment::CENTER;
|
|
||||||
|
|
||||||
// TODO cannot use rotations until multiple objects of same geometry can
|
|
||||||
// handle different rotations
|
|
||||||
// arranger.useMinimumBoundigBoxRotation();
|
|
||||||
pcfg.rotations = { 0.0 };
|
|
||||||
|
|
||||||
// Magic: we will specify what is the goal of arrangement... In this case
|
|
||||||
// we override the default object function to make the larger items go into
|
|
||||||
// the center of the pile and smaller items orbit it so the resulting pile
|
|
||||||
// has a circle-like shape. This is good for the print bed's heat profile.
|
|
||||||
// We alse sacrafice a bit of pack efficiency for this to work. As a side
|
|
||||||
// effect, the arrange procedure is a lot faster (we do not need to
|
|
||||||
// calculate the convex hulls)
|
|
||||||
pcfg.object_function = [bin, hasbin](
|
|
||||||
NfpPlacer::Pile& pile, // The currently arranged pile
|
|
||||||
Item item,
|
|
||||||
double /*area*/, // Sum area of items (not needed)
|
|
||||||
double norm, // A norming factor for physical dimensions
|
|
||||||
double penality) // Min penality in case of bad arrangement
|
|
||||||
{
|
|
||||||
using pl = PointLike;
|
|
||||||
|
|
||||||
static const double BIG_ITEM_TRESHOLD = 0.2;
|
|
||||||
static const double GRAVITY_RATIO = 0.5;
|
|
||||||
static const double DENSITY_RATIO = 1.0 - GRAVITY_RATIO;
|
|
||||||
|
|
||||||
// We will treat big items (compared to the print bed) differently
|
|
||||||
NfpPlacer::Pile bigs;
|
|
||||||
bigs.reserve(pile.size());
|
|
||||||
for(auto& p : pile) {
|
|
||||||
auto pbb = ShapeLike::boundingBox(p);
|
|
||||||
auto na = std::sqrt(pbb.width()*pbb.height())/norm;
|
|
||||||
if(na > BIG_ITEM_TRESHOLD) bigs.emplace_back(p);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Candidate item bounding box
|
|
||||||
auto ibb = item.boundingBox();
|
|
||||||
|
|
||||||
// Calculate the full bounding box of the pile with the candidate item
|
|
||||||
pile.emplace_back(item.transformedShape());
|
|
||||||
auto fullbb = ShapeLike::boundingBox(pile);
|
|
||||||
pile.pop_back();
|
|
||||||
|
|
||||||
// The bounding box of the big items (they will accumulate in the center
|
|
||||||
// of the pile
|
|
||||||
auto bigbb = bigs.empty()? fullbb : ShapeLike::boundingBox(bigs);
|
|
||||||
|
|
||||||
// The size indicator of the candidate item. This is not the area,
|
|
||||||
// but almost...
|
|
||||||
auto itemnormarea = std::sqrt(ibb.width()*ibb.height())/norm;
|
|
||||||
|
|
||||||
// Will hold the resulting score
|
|
||||||
double score = 0;
|
|
||||||
|
|
||||||
if(itemnormarea > BIG_ITEM_TRESHOLD) {
|
|
||||||
// This branch is for the bigger items..
|
|
||||||
// Here we will use the closest point of the item bounding box to
|
|
||||||
// the already arranged pile. So not the bb center nor the a choosen
|
|
||||||
// corner but whichever is the closest to the center. This will
|
|
||||||
// prevent unwanted strange arrangements.
|
|
||||||
|
|
||||||
auto minc = ibb.minCorner(); // bottom left corner
|
|
||||||
auto maxc = ibb.maxCorner(); // top right corner
|
|
||||||
|
|
||||||
// top left and bottom right corners
|
|
||||||
auto top_left = PointImpl{getX(minc), getY(maxc)};
|
|
||||||
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
|
||||||
|
|
||||||
auto cc = fullbb.center(); // The gravity center
|
|
||||||
|
|
||||||
// Now the distnce of the gravity center will be calculated to the
|
|
||||||
// five anchor points and the smallest will be chosen.
|
|
||||||
std::array<double, 5> dists;
|
|
||||||
dists[0] = pl::distance(minc, cc);
|
|
||||||
dists[1] = pl::distance(maxc, cc);
|
|
||||||
dists[2] = pl::distance(ibb.center(), cc);
|
|
||||||
dists[3] = pl::distance(top_left, cc);
|
|
||||||
dists[4] = pl::distance(bottom_right, cc);
|
|
||||||
|
|
||||||
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
|
||||||
|
|
||||||
// Density is the pack density: how big is the arranged pile
|
|
||||||
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
|
||||||
|
|
||||||
// The score is a weighted sum of the distance from pile center
|
|
||||||
// and the pile size
|
|
||||||
score = GRAVITY_RATIO * dist + DENSITY_RATIO * density;
|
|
||||||
|
|
||||||
} else if(itemnormarea < BIG_ITEM_TRESHOLD && bigs.empty()) {
|
|
||||||
// If there are no big items, only small, we should consider the
|
|
||||||
// density here as well to not get silly results
|
|
||||||
auto bindist = pl::distance(ibb.center(), bin.center()) / norm;
|
|
||||||
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
|
||||||
score = GRAVITY_RATIO * bindist + DENSITY_RATIO * density;
|
|
||||||
} else {
|
|
||||||
// Here there are the small items that should be placed around the
|
|
||||||
// already processed bigger items.
|
|
||||||
// No need to play around with the anchor points, the center will be
|
|
||||||
// just fine for small items
|
|
||||||
score = pl::distance(ibb.center(), bigbb.center()) / norm;
|
|
||||||
}
|
|
||||||
|
|
||||||
// If it does not fit into the print bed we will beat it
|
|
||||||
// with a large penality. If we would not do this, there would be only
|
|
||||||
// one big pile that doesn't care whether it fits onto the print bed.
|
|
||||||
if(!NfpPlacer::wouldFit(fullbb, bin)) score = 2*penality - score;
|
|
||||||
|
|
||||||
return score;
|
|
||||||
};
|
|
||||||
|
|
||||||
// Create the arranger object
|
|
||||||
Arranger arranger(bin, min_obj_distance, pcfg, scfg);
|
|
||||||
|
|
||||||
// Set the progress indicator for the arranger.
|
|
||||||
arranger.progressIndicator(progressind);
|
|
||||||
|
|
||||||
// Arrange and return the items with their respective indices within the
|
|
||||||
// input sequence.
|
|
||||||
auto result = arranger.arrangeIndexed(shapes.begin(), shapes.end());
|
|
||||||
|
|
||||||
auto applyResult = [&shapemap](ArrangeResult::value_type& group,
|
|
||||||
Coord batch_offset)
|
|
||||||
{
|
|
||||||
for(auto& r : group) {
|
|
||||||
auto idx = r.first; // get the original item index
|
|
||||||
Item& item = r.second; // get the item itself
|
|
||||||
|
|
||||||
// Get the model instance from the shapemap using the index
|
|
||||||
ModelInstance *inst_ptr = shapemap[idx].first;
|
|
||||||
|
|
||||||
// Get the tranformation data from the item object and scale it
|
|
||||||
// appropriately
|
|
||||||
auto off = item.translation();
|
|
||||||
Radians rot = item.rotation();
|
|
||||||
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
|
|
||||||
off.Y*SCALING_FACTOR);
|
|
||||||
|
|
||||||
// write the tranformation data into the model instance
|
|
||||||
inst_ptr->rotation = rot;
|
|
||||||
inst_ptr->offset = foff;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
if(first_bin_only) {
|
|
||||||
applyResult(result.front(), 0);
|
|
||||||
} else {
|
|
||||||
|
|
||||||
const auto STRIDE_PADDING = 1.2;
|
|
||||||
|
|
||||||
Coord stride = static_cast<Coord>(STRIDE_PADDING*
|
|
||||||
bin.width()*SCALING_FACTOR);
|
|
||||||
Coord batch_offset = 0;
|
|
||||||
|
|
||||||
for(auto& group : result) {
|
|
||||||
applyResult(group, batch_offset);
|
|
||||||
|
|
||||||
// Only the first pack group can be placed onto the print bed. The
|
|
||||||
// other objects which could not fit will be placed next to the
|
|
||||||
// print bed
|
|
||||||
batch_offset += stride;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
|
|
||||||
|
|
||||||
return ret && result.size() == 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* arrange objects preserving their instance count
|
/* arrange objects preserving their instance count
|
||||||
but altering their instance positions */
|
but altering their instance positions */
|
||||||
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb,
|
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
|
||||||
std::function<void(unsigned)> progressind)
|
|
||||||
{
|
{
|
||||||
bool ret = false;
|
|
||||||
if(bb != nullptr && bb->defined) {
|
|
||||||
// Despite the new arrange is able to run without a specified bin,
|
|
||||||
// the perl testsuit still fails for this case. For now the safest
|
|
||||||
// thing to do is to use the new arrange only when a proper bin is
|
|
||||||
// specified.
|
|
||||||
ret = arr::arrange(*this, dist, bb, false, progressind);
|
|
||||||
} else {
|
|
||||||
// get the (transformed) size of each instance so that we take
|
// get the (transformed) size of each instance so that we take
|
||||||
// into account their different transformations when packing
|
// into account their different transformations when packing
|
||||||
Pointfs instance_sizes;
|
Pointfs instance_sizes;
|
||||||
@ -730,9 +327,8 @@ bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb,
|
|||||||
}
|
}
|
||||||
o->invalidate_bounding_box();
|
o->invalidate_bounding_box();
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
return ret;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Duplicate the entire model preserving instance relative positions.
|
// Duplicate the entire model preserving instance relative positions.
|
||||||
|
@ -290,8 +290,7 @@ public:
|
|||||||
void center_instances_around_point(const Pointf &point);
|
void center_instances_around_point(const Pointf &point);
|
||||||
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
|
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
|
||||||
TriangleMesh mesh() const;
|
TriangleMesh mesh() const;
|
||||||
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL,
|
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||||
std::function<void(unsigned)> progressind = [](unsigned){});
|
|
||||||
// Croaks if the duplicated objects do not fit the print bed.
|
// Croaks if the duplicated objects do not fit the print bed.
|
||||||
void duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
|
void duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||||
void duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
|
void duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||||
|
597
xs/src/libslic3r/ModelArrange.hpp
Normal file
597
xs/src/libslic3r/ModelArrange.hpp
Normal file
@ -0,0 +1,597 @@
|
|||||||
|
#ifndef MODELARRANGE_HPP
|
||||||
|
#define MODELARRANGE_HPP
|
||||||
|
|
||||||
|
#include "Model.hpp"
|
||||||
|
#include "SVG.hpp"
|
||||||
|
#include <libnest2d.h>
|
||||||
|
|
||||||
|
#include <numeric>
|
||||||
|
#include <ClipperUtils.hpp>
|
||||||
|
|
||||||
|
#include <boost/geometry/index/rtree.hpp>
|
||||||
|
|
||||||
|
namespace Slic3r {
|
||||||
|
namespace arr {
|
||||||
|
|
||||||
|
using namespace libnest2d;
|
||||||
|
|
||||||
|
std::string toString(const Model& model, bool holes = true) {
|
||||||
|
std::stringstream ss;
|
||||||
|
|
||||||
|
ss << "{\n";
|
||||||
|
|
||||||
|
for(auto objptr : model.objects) {
|
||||||
|
if(!objptr) continue;
|
||||||
|
|
||||||
|
auto rmesh = objptr->raw_mesh();
|
||||||
|
|
||||||
|
for(auto objinst : objptr->instances) {
|
||||||
|
if(!objinst) continue;
|
||||||
|
|
||||||
|
Slic3r::TriangleMesh tmpmesh = rmesh;
|
||||||
|
tmpmesh.scale(objinst->scaling_factor);
|
||||||
|
objinst->transform_mesh(&tmpmesh);
|
||||||
|
ExPolygons expolys = tmpmesh.horizontal_projection();
|
||||||
|
for(auto& expoly_complex : expolys) {
|
||||||
|
|
||||||
|
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
|
||||||
|
if(tmp.empty()) continue;
|
||||||
|
auto expoly = tmp.front();
|
||||||
|
expoly.contour.make_clockwise();
|
||||||
|
for(auto& h : expoly.holes) h.make_counter_clockwise();
|
||||||
|
|
||||||
|
ss << "\t{\n";
|
||||||
|
ss << "\t\t{\n";
|
||||||
|
|
||||||
|
for(auto v : expoly.contour.points) ss << "\t\t\t{"
|
||||||
|
<< v.x << ", "
|
||||||
|
<< v.y << "},\n";
|
||||||
|
{
|
||||||
|
auto v = expoly.contour.points.front();
|
||||||
|
ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
|
||||||
|
}
|
||||||
|
ss << "\t\t},\n";
|
||||||
|
|
||||||
|
// Holes:
|
||||||
|
ss << "\t\t{\n";
|
||||||
|
if(holes) for(auto h : expoly.holes) {
|
||||||
|
ss << "\t\t\t{\n";
|
||||||
|
for(auto v : h.points) ss << "\t\t\t\t{"
|
||||||
|
<< v.x << ", "
|
||||||
|
<< v.y << "},\n";
|
||||||
|
{
|
||||||
|
auto v = h.points.front();
|
||||||
|
ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
|
||||||
|
}
|
||||||
|
ss << "\t\t\t},\n";
|
||||||
|
}
|
||||||
|
ss << "\t\t},\n";
|
||||||
|
|
||||||
|
ss << "\t},\n";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ss << "}\n";
|
||||||
|
|
||||||
|
return ss.str();
|
||||||
|
}
|
||||||
|
|
||||||
|
void toSVG(SVG& svg, const Model& model) {
|
||||||
|
for(auto objptr : model.objects) {
|
||||||
|
if(!objptr) continue;
|
||||||
|
|
||||||
|
auto rmesh = objptr->raw_mesh();
|
||||||
|
|
||||||
|
for(auto objinst : objptr->instances) {
|
||||||
|
if(!objinst) continue;
|
||||||
|
|
||||||
|
Slic3r::TriangleMesh tmpmesh = rmesh;
|
||||||
|
tmpmesh.scale(objinst->scaling_factor);
|
||||||
|
objinst->transform_mesh(&tmpmesh);
|
||||||
|
ExPolygons expolys = tmpmesh.horizontal_projection();
|
||||||
|
svg.draw(expolys);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
namespace bgi = boost::geometry::index;
|
||||||
|
|
||||||
|
using SpatElement = std::pair<Box, unsigned>;
|
||||||
|
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
|
||||||
|
|
||||||
|
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
|
||||||
|
objfunc(const PointImpl& bincenter,
|
||||||
|
double /*bin_area*/,
|
||||||
|
ShapeLike::Shapes<PolygonImpl>& pile, // The currently arranged pile
|
||||||
|
double /*pile_area*/,
|
||||||
|
const Item &item,
|
||||||
|
double norm, // A norming factor for physical dimensions
|
||||||
|
std::vector<double>& areacache, // pile item areas will be cached
|
||||||
|
// a spatial index to quickly get neighbors of the candidate item
|
||||||
|
SpatIndex& spatindex
|
||||||
|
)
|
||||||
|
{
|
||||||
|
using pl = PointLike;
|
||||||
|
using sl = ShapeLike;
|
||||||
|
|
||||||
|
static const double BIG_ITEM_TRESHOLD = 0.2;
|
||||||
|
static const double ROUNDNESS_RATIO = 0.5;
|
||||||
|
static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
|
||||||
|
|
||||||
|
// We will treat big items (compared to the print bed) differently
|
||||||
|
auto normarea = [norm](double area) { return std::sqrt(area)/norm; };
|
||||||
|
|
||||||
|
// If a new bin has been created:
|
||||||
|
if(pile.size() < areacache.size()) {
|
||||||
|
areacache.clear();
|
||||||
|
spatindex.clear();
|
||||||
|
}
|
||||||
|
|
||||||
|
// We must fill the caches:
|
||||||
|
int idx = 0;
|
||||||
|
for(auto& p : pile) {
|
||||||
|
if(idx == areacache.size()) {
|
||||||
|
areacache.emplace_back(sl::area(p));
|
||||||
|
if(normarea(areacache[idx]) > BIG_ITEM_TRESHOLD)
|
||||||
|
spatindex.insert({sl::boundingBox(p), idx});
|
||||||
|
}
|
||||||
|
|
||||||
|
idx++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Candidate item bounding box
|
||||||
|
auto ibb = item.boundingBox();
|
||||||
|
|
||||||
|
// Calculate the full bounding box of the pile with the candidate item
|
||||||
|
pile.emplace_back(item.transformedShape());
|
||||||
|
auto fullbb = ShapeLike::boundingBox(pile);
|
||||||
|
pile.pop_back();
|
||||||
|
|
||||||
|
// The bounding box of the big items (they will accumulate in the center
|
||||||
|
// of the pile
|
||||||
|
Box bigbb;
|
||||||
|
if(spatindex.empty()) bigbb = fullbb;
|
||||||
|
else {
|
||||||
|
auto boostbb = spatindex.bounds();
|
||||||
|
boost::geometry::convert(boostbb, bigbb);
|
||||||
|
}
|
||||||
|
|
||||||
|
// The size indicator of the candidate item. This is not the area,
|
||||||
|
// but almost...
|
||||||
|
double item_normarea = normarea(item.area());
|
||||||
|
|
||||||
|
// Will hold the resulting score
|
||||||
|
double score = 0;
|
||||||
|
|
||||||
|
if(item_normarea > BIG_ITEM_TRESHOLD) {
|
||||||
|
// This branch is for the bigger items..
|
||||||
|
// Here we will use the closest point of the item bounding box to
|
||||||
|
// the already arranged pile. So not the bb center nor the a choosen
|
||||||
|
// corner but whichever is the closest to the center. This will
|
||||||
|
// prevent some unwanted strange arrangements.
|
||||||
|
|
||||||
|
auto minc = ibb.minCorner(); // bottom left corner
|
||||||
|
auto maxc = ibb.maxCorner(); // top right corner
|
||||||
|
|
||||||
|
// top left and bottom right corners
|
||||||
|
auto top_left = PointImpl{getX(minc), getY(maxc)};
|
||||||
|
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
||||||
|
|
||||||
|
// Now the distance of the gravity center will be calculated to the
|
||||||
|
// five anchor points and the smallest will be chosen.
|
||||||
|
std::array<double, 5> dists;
|
||||||
|
auto cc = fullbb.center(); // The gravity center
|
||||||
|
dists[0] = pl::distance(minc, cc);
|
||||||
|
dists[1] = pl::distance(maxc, cc);
|
||||||
|
dists[2] = pl::distance(ibb.center(), cc);
|
||||||
|
dists[3] = pl::distance(top_left, cc);
|
||||||
|
dists[4] = pl::distance(bottom_right, cc);
|
||||||
|
|
||||||
|
// The smalles distance from the arranged pile center:
|
||||||
|
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
||||||
|
|
||||||
|
// Density is the pack density: how big is the arranged pile
|
||||||
|
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||||
|
|
||||||
|
// Prepare a variable for the alignment score.
|
||||||
|
// This will indicate: how well is the candidate item aligned with
|
||||||
|
// its neighbors. We will check the aligment with all neighbors and
|
||||||
|
// return the score for the best alignment. So it is enough for the
|
||||||
|
// candidate to be aligned with only one item.
|
||||||
|
auto alignment_score = std::numeric_limits<double>::max();
|
||||||
|
|
||||||
|
auto& trsh = item.transformedShape();
|
||||||
|
|
||||||
|
auto querybb = item.boundingBox();
|
||||||
|
|
||||||
|
// Query the spatial index for the neigbours
|
||||||
|
std::vector<SpatElement> result;
|
||||||
|
spatindex.query(bgi::intersects(querybb), std::back_inserter(result));
|
||||||
|
|
||||||
|
for(auto& e : result) { // now get the score for the best alignment
|
||||||
|
auto idx = e.second;
|
||||||
|
auto& p = pile[idx];
|
||||||
|
auto parea = areacache[idx];
|
||||||
|
auto bb = sl::boundingBox(sl::Shapes<PolygonImpl>{p, trsh});
|
||||||
|
auto bbarea = bb.area();
|
||||||
|
auto ascore = 1.0 - (item.area() + parea)/bbarea;
|
||||||
|
|
||||||
|
if(ascore < alignment_score) alignment_score = ascore;
|
||||||
|
}
|
||||||
|
|
||||||
|
// The final mix of the score is the balance between the distance
|
||||||
|
// from the full pile center, the pack density and the
|
||||||
|
// alignment with the neigbours
|
||||||
|
auto C = 0.33;
|
||||||
|
score = C * dist + C * density + C * alignment_score;
|
||||||
|
|
||||||
|
} else if( item_normarea < BIG_ITEM_TRESHOLD && spatindex.empty()) {
|
||||||
|
// If there are no big items, only small, we should consider the
|
||||||
|
// density here as well to not get silly results
|
||||||
|
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
|
||||||
|
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||||
|
score = ROUNDNESS_RATIO * bindist + DENSITY_RATIO * density;
|
||||||
|
} else {
|
||||||
|
// Here there are the small items that should be placed around the
|
||||||
|
// already processed bigger items.
|
||||||
|
// No need to play around with the anchor points, the center will be
|
||||||
|
// just fine for small items
|
||||||
|
score = pl::distance(ibb.center(), bigbb.center()) / norm;
|
||||||
|
}
|
||||||
|
|
||||||
|
return std::make_tuple(score, fullbb);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class PConf>
|
||||||
|
void fillConfig(PConf& pcfg) {
|
||||||
|
|
||||||
|
// Align the arranged pile into the center of the bin
|
||||||
|
pcfg.alignment = PConf::Alignment::CENTER;
|
||||||
|
|
||||||
|
// Start placing the items from the center of the print bed
|
||||||
|
pcfg.starting_point = PConf::Alignment::CENTER;
|
||||||
|
|
||||||
|
// TODO cannot use rotations until multiple objects of same geometry can
|
||||||
|
// handle different rotations
|
||||||
|
// arranger.useMinimumBoundigBoxRotation();
|
||||||
|
pcfg.rotations = { 0.0 };
|
||||||
|
|
||||||
|
// The accuracy of optimization.
|
||||||
|
// Goes from 0.0 to 1.0 and scales performance as well
|
||||||
|
pcfg.accuracy = 0.6f;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class TBin>
|
||||||
|
class AutoArranger {};
|
||||||
|
|
||||||
|
template<class TBin>
|
||||||
|
class _ArrBase {
|
||||||
|
protected:
|
||||||
|
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, TBin>;
|
||||||
|
using Selector = FirstFitSelection;
|
||||||
|
using Packer = Arranger<Placer, Selector>;
|
||||||
|
using PConfig = typename Packer::PlacementConfig;
|
||||||
|
using Distance = TCoord<PointImpl>;
|
||||||
|
using Pile = ShapeLike::Shapes<PolygonImpl>;
|
||||||
|
|
||||||
|
Packer pck_;
|
||||||
|
PConfig pconf_; // Placement configuration
|
||||||
|
double bin_area_;
|
||||||
|
std::vector<double> areacache_;
|
||||||
|
SpatIndex rtree_;
|
||||||
|
public:
|
||||||
|
|
||||||
|
_ArrBase(const TBin& bin, Distance dist,
|
||||||
|
std::function<void(unsigned)> progressind):
|
||||||
|
pck_(bin, dist), bin_area_(ShapeLike::area<PolygonImpl>(bin))
|
||||||
|
{
|
||||||
|
fillConfig(pconf_);
|
||||||
|
pck_.progressIndicator(progressind);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
|
||||||
|
areacache_.clear();
|
||||||
|
return pck_.arrangeIndexed(std::forward<Args>(args)...);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<>
|
||||||
|
class AutoArranger<Box>: public _ArrBase<Box> {
|
||||||
|
public:
|
||||||
|
|
||||||
|
AutoArranger(const Box& bin, Distance dist,
|
||||||
|
std::function<void(unsigned)> progressind):
|
||||||
|
_ArrBase<Box>(bin, dist, progressind)
|
||||||
|
{
|
||||||
|
pconf_.object_function = [this, bin] (
|
||||||
|
Pile& pile,
|
||||||
|
const Item &item,
|
||||||
|
double pile_area,
|
||||||
|
double norm,
|
||||||
|
double /*penality*/) {
|
||||||
|
|
||||||
|
auto result = objfunc(bin.center(), bin_area_, pile,
|
||||||
|
pile_area, item, norm, areacache_, rtree_);
|
||||||
|
double score = std::get<0>(result);
|
||||||
|
auto& fullbb = std::get<1>(result);
|
||||||
|
|
||||||
|
auto wdiff = fullbb.width() - bin.width();
|
||||||
|
auto hdiff = fullbb.height() - bin.height();
|
||||||
|
if(wdiff > 0) score += std::pow(wdiff, 2) / norm;
|
||||||
|
if(hdiff > 0) score += std::pow(hdiff, 2) / norm;
|
||||||
|
|
||||||
|
return score;
|
||||||
|
};
|
||||||
|
|
||||||
|
pck_.configure(pconf_);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<>
|
||||||
|
class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
|
||||||
|
public:
|
||||||
|
AutoArranger(const PolygonImpl& bin, Distance dist,
|
||||||
|
std::function<void(unsigned)> progressind):
|
||||||
|
_ArrBase<PolygonImpl>(bin, dist, progressind)
|
||||||
|
{
|
||||||
|
pconf_.object_function = [this, &bin] (
|
||||||
|
Pile& pile,
|
||||||
|
const Item &item,
|
||||||
|
double pile_area,
|
||||||
|
double norm,
|
||||||
|
double /*penality*/) {
|
||||||
|
|
||||||
|
auto binbb = ShapeLike::boundingBox(bin);
|
||||||
|
auto result = objfunc(binbb.center(), bin_area_, pile,
|
||||||
|
pile_area, item, norm, areacache_, rtree_);
|
||||||
|
double score = std::get<0>(result);
|
||||||
|
|
||||||
|
pile.emplace_back(item.transformedShape());
|
||||||
|
auto chull = ShapeLike::convexHull(pile);
|
||||||
|
pile.pop_back();
|
||||||
|
|
||||||
|
// If it does not fit into the print bed we will beat it with a
|
||||||
|
// large penality. If we would not do this, there would be only one
|
||||||
|
// big pile that doesn't care whether it fits onto the print bed.
|
||||||
|
if(!Placer::wouldFit(chull, bin)) score += norm;
|
||||||
|
|
||||||
|
return score;
|
||||||
|
};
|
||||||
|
|
||||||
|
pck_.configure(pconf_);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<> // Specialization with no bin
|
||||||
|
class AutoArranger<bool>: public _ArrBase<Box> {
|
||||||
|
public:
|
||||||
|
|
||||||
|
AutoArranger(Distance dist, std::function<void(unsigned)> progressind):
|
||||||
|
_ArrBase<Box>(Box(0, 0), dist, progressind)
|
||||||
|
{
|
||||||
|
this->pconf_.object_function = [this] (
|
||||||
|
Pile& pile,
|
||||||
|
const Item &item,
|
||||||
|
double pile_area,
|
||||||
|
double norm,
|
||||||
|
double /*penality*/) {
|
||||||
|
|
||||||
|
auto result = objfunc({0, 0}, 0, pile, pile_area,
|
||||||
|
item, norm, areacache_, rtree_);
|
||||||
|
return std::get<0>(result);
|
||||||
|
};
|
||||||
|
|
||||||
|
this->pck_.configure(pconf_);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// A container which stores a pointer to the 3D object and its projected
|
||||||
|
// 2D shape from top view.
|
||||||
|
using ShapeData2D =
|
||||||
|
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
|
||||||
|
|
||||||
|
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
|
||||||
|
ShapeData2D ret;
|
||||||
|
|
||||||
|
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
|
||||||
|
[](size_t s, ModelObject* o){
|
||||||
|
return s + o->instances.size();
|
||||||
|
});
|
||||||
|
|
||||||
|
ret.reserve(s);
|
||||||
|
|
||||||
|
for(auto objptr : model.objects) {
|
||||||
|
if(objptr) {
|
||||||
|
|
||||||
|
auto rmesh = objptr->raw_mesh();
|
||||||
|
|
||||||
|
for(auto objinst : objptr->instances) {
|
||||||
|
if(objinst) {
|
||||||
|
Slic3r::TriangleMesh tmpmesh = rmesh;
|
||||||
|
ClipperLib::PolygonImpl pn;
|
||||||
|
|
||||||
|
tmpmesh.scale(objinst->scaling_factor);
|
||||||
|
|
||||||
|
// TODO export the exact 2D projection
|
||||||
|
auto p = tmpmesh.convex_hull();
|
||||||
|
|
||||||
|
p.make_clockwise();
|
||||||
|
p.append(p.first_point());
|
||||||
|
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
|
||||||
|
|
||||||
|
// Efficient conversion to item.
|
||||||
|
Item item(std::move(pn));
|
||||||
|
|
||||||
|
// Invalid geometries would throw exceptions when arranging
|
||||||
|
if(item.vertexCount() > 3) {
|
||||||
|
item.rotation(objinst->rotation);
|
||||||
|
item.translation( {
|
||||||
|
ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
|
||||||
|
ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
|
||||||
|
});
|
||||||
|
ret.emplace_back(objinst, item);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
enum BedShapeHint {
|
||||||
|
BOX,
|
||||||
|
CIRCLE,
|
||||||
|
IRREGULAR,
|
||||||
|
WHO_KNOWS
|
||||||
|
};
|
||||||
|
|
||||||
|
BedShapeHint bedShape(const Slic3r::Polyline& /*bed*/) {
|
||||||
|
// Determine the bed shape by hand
|
||||||
|
return BOX;
|
||||||
|
}
|
||||||
|
|
||||||
|
void applyResult(
|
||||||
|
IndexedPackGroup::value_type& group,
|
||||||
|
Coord batch_offset,
|
||||||
|
ShapeData2D& shapemap)
|
||||||
|
{
|
||||||
|
for(auto& r : group) {
|
||||||
|
auto idx = r.first; // get the original item index
|
||||||
|
Item& item = r.second; // get the item itself
|
||||||
|
|
||||||
|
// Get the model instance from the shapemap using the index
|
||||||
|
ModelInstance *inst_ptr = shapemap[idx].first;
|
||||||
|
|
||||||
|
// Get the tranformation data from the item object and scale it
|
||||||
|
// appropriately
|
||||||
|
auto off = item.translation();
|
||||||
|
Radians rot = item.rotation();
|
||||||
|
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
|
||||||
|
off.Y*SCALING_FACTOR);
|
||||||
|
|
||||||
|
// write the tranformation data into the model instance
|
||||||
|
inst_ptr->rotation = rot;
|
||||||
|
inst_ptr->offset = foff;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Arranges the model objects on the screen.
|
||||||
|
*
|
||||||
|
* The arrangement considers multiple bins (aka. print beds) for placing all
|
||||||
|
* the items provided in the model argument. If the items don't fit on one
|
||||||
|
* print bed, the remaining will be placed onto newly created print beds.
|
||||||
|
* The first_bin_only parameter, if set to true, disables this behaviour and
|
||||||
|
* makes sure that only one print bed is filled and the remaining items will be
|
||||||
|
* untouched. When set to false, the items which could not fit onto the
|
||||||
|
* print bed will be placed next to the print bed so the user should see a
|
||||||
|
* pile of items on the print bed and some other piles outside the print
|
||||||
|
* area that can be dragged later onto the print bed as a group.
|
||||||
|
*
|
||||||
|
* \param model The model object with the 3D content.
|
||||||
|
* \param dist The minimum distance which is allowed for any pair of items
|
||||||
|
* on the print bed in any direction.
|
||||||
|
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
|
||||||
|
* for bin packing.
|
||||||
|
* \param first_bin_only This parameter controls whether to place the
|
||||||
|
* remaining items which do not fit onto the print area next to the print
|
||||||
|
* bed or leave them untouched (let the user arrange them by hand or remove
|
||||||
|
* them).
|
||||||
|
*/
|
||||||
|
bool arrange(Model &model, coordf_t min_obj_distance,
|
||||||
|
const Slic3r::Polyline& bed,
|
||||||
|
BedShapeHint bedhint,
|
||||||
|
bool first_bin_only,
|
||||||
|
std::function<void(unsigned)> progressind)
|
||||||
|
{
|
||||||
|
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
|
||||||
|
|
||||||
|
bool ret = true;
|
||||||
|
|
||||||
|
// Get the 2D projected shapes with their 3D model instance pointers
|
||||||
|
auto shapemap = arr::projectModelFromTop(model);
|
||||||
|
|
||||||
|
// Copy the references for the shapes only as the arranger expects a
|
||||||
|
// sequence of objects convertible to Item or ClipperPolygon
|
||||||
|
std::vector<std::reference_wrapper<Item>> shapes;
|
||||||
|
shapes.reserve(shapemap.size());
|
||||||
|
std::for_each(shapemap.begin(), shapemap.end(),
|
||||||
|
[&shapes] (ShapeData2D::value_type& it)
|
||||||
|
{
|
||||||
|
shapes.push_back(std::ref(it.second));
|
||||||
|
});
|
||||||
|
|
||||||
|
IndexedPackGroup result;
|
||||||
|
BoundingBox bbb(bed.points);
|
||||||
|
|
||||||
|
auto binbb = Box({
|
||||||
|
static_cast<libnest2d::Coord>(bbb.min.x),
|
||||||
|
static_cast<libnest2d::Coord>(bbb.min.y)
|
||||||
|
},
|
||||||
|
{
|
||||||
|
static_cast<libnest2d::Coord>(bbb.max.x),
|
||||||
|
static_cast<libnest2d::Coord>(bbb.max.y)
|
||||||
|
});
|
||||||
|
|
||||||
|
switch(bedhint) {
|
||||||
|
case BOX: {
|
||||||
|
|
||||||
|
// Create the arranger for the box shaped bed
|
||||||
|
AutoArranger<Box> arrange(binbb, min_obj_distance, progressind);
|
||||||
|
|
||||||
|
// Arrange and return the items with their respective indices within the
|
||||||
|
// input sequence.
|
||||||
|
result = arrange(shapes.begin(), shapes.end());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case CIRCLE:
|
||||||
|
break;
|
||||||
|
case IRREGULAR:
|
||||||
|
case WHO_KNOWS: {
|
||||||
|
using P = libnest2d::PolygonImpl;
|
||||||
|
|
||||||
|
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
|
||||||
|
P irrbed = ShapeLike::create<PolygonImpl>(std::move(ctour));
|
||||||
|
|
||||||
|
// std::cout << ShapeLike::toString(irrbed) << std::endl;
|
||||||
|
|
||||||
|
AutoArranger<P> arrange(irrbed, min_obj_distance, progressind);
|
||||||
|
|
||||||
|
// Arrange and return the items with their respective indices within the
|
||||||
|
// input sequence.
|
||||||
|
result = arrange(shapes.begin(), shapes.end());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
if(first_bin_only) {
|
||||||
|
applyResult(result.front(), 0, shapemap);
|
||||||
|
} else {
|
||||||
|
|
||||||
|
const auto STRIDE_PADDING = 1.2;
|
||||||
|
|
||||||
|
Coord stride = static_cast<Coord>(STRIDE_PADDING*
|
||||||
|
binbb.width()*SCALING_FACTOR);
|
||||||
|
Coord batch_offset = 0;
|
||||||
|
|
||||||
|
for(auto& group : result) {
|
||||||
|
applyResult(group, batch_offset, shapemap);
|
||||||
|
|
||||||
|
// Only the first pack group can be placed onto the print bed. The
|
||||||
|
// other objects which could not fit will be placed next to the
|
||||||
|
// print bed
|
||||||
|
batch_offset += stride;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
|
||||||
|
|
||||||
|
return ret && result.size() == 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif // MODELARRANGE_HPP
|
@ -8,6 +8,7 @@
|
|||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
|
|
||||||
#include <slic3r/GUI/GUI.hpp>
|
#include <slic3r/GUI/GUI.hpp>
|
||||||
|
#include <ModelArrange.hpp>
|
||||||
#include <slic3r/GUI/PresetBundle.hpp>
|
#include <slic3r/GUI/PresetBundle.hpp>
|
||||||
|
|
||||||
#include <Geometry.hpp>
|
#include <Geometry.hpp>
|
||||||
@ -293,6 +294,8 @@ void AppController::arrange_model()
|
|||||||
supports_asynch()? std::launch::async : std::launch::deferred,
|
supports_asynch()? std::launch::async : std::launch::deferred,
|
||||||
[this]()
|
[this]()
|
||||||
{
|
{
|
||||||
|
using Coord = libnest2d::TCoord<libnest2d::PointImpl>;
|
||||||
|
|
||||||
unsigned count = 0;
|
unsigned count = 0;
|
||||||
for(auto obj : model_->objects) count += obj->instances.size();
|
for(auto obj : model_->objects) count += obj->instances.size();
|
||||||
|
|
||||||
@ -310,13 +313,25 @@ void AppController::arrange_model()
|
|||||||
|
|
||||||
auto dist = print_ctl()->config().min_object_distance();
|
auto dist = print_ctl()->config().min_object_distance();
|
||||||
|
|
||||||
BoundingBoxf bb(print_ctl()->config().bed_shape.values);
|
// Create the arranger config
|
||||||
|
auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);
|
||||||
|
|
||||||
|
auto& bedpoints = print_ctl()->config().bed_shape.values;
|
||||||
|
Polyline bed; bed.points.reserve(bedpoints.size());
|
||||||
|
for(auto& v : bedpoints)
|
||||||
|
bed.append(Point::new_scale(v.x, v.y));
|
||||||
|
|
||||||
if(pind) pind->update(0, _(L("Arranging objects...")));
|
if(pind) pind->update(0, _(L("Arranging objects...")));
|
||||||
|
|
||||||
try {
|
try {
|
||||||
model_->arrange_objects(dist, &bb, [pind, count](unsigned rem){
|
arr::arrange(*model_,
|
||||||
if(pind) pind->update(count - rem, _(L("Arranging objects...")));
|
min_obj_distance,
|
||||||
|
bed,
|
||||||
|
arr::BOX,
|
||||||
|
false, // create many piles not just one pile
|
||||||
|
[pind, count](unsigned rem) {
|
||||||
|
if(pind)
|
||||||
|
pind->update(count - rem, _(L("Arranging objects...")));
|
||||||
});
|
});
|
||||||
} catch(std::exception& e) {
|
} catch(std::exception& e) {
|
||||||
std::cerr << e.what() << std::endl;
|
std::cerr << e.what() << std::endl;
|
||||||
|
Loading…
Reference in New Issue
Block a user