diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index ab1c7b964..e5ee9b3ee 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -15,6 +15,7 @@ add_subdirectory(semver) add_subdirectory(libigl) add_subdirectory(hints) add_subdirectory(qoi) +add_subdirectory(jpeg-compressor) # Adding libnest2d project for bin packing... add_subdirectory(libnest2d) diff --git a/src/jpeg-compressor/CMakeLists.txt b/src/jpeg-compressor/CMakeLists.txt new file mode 100644 index 000000000..7d404dc99 --- /dev/null +++ b/src/jpeg-compressor/CMakeLists.txt @@ -0,0 +1,9 @@ +# PrusaSlicer specific CMake + +cmake_minimum_required(VERSION 2.8.12) +project(jpeg-compressor) + +add_library(jpeg-compressor STATIC + jpge.h + jpge.cpp +) diff --git a/src/jpeg-compressor/README.md b/src/jpeg-compressor/README.md new file mode 100644 index 000000000..2722225e6 --- /dev/null +++ b/src/jpeg-compressor/README.md @@ -0,0 +1,15 @@ +** jpeg-compressor is a C++ JPEG compression/fuzzed low-RAM JPEG decompression codec.** + +For more information go to https://github.com/richgel999/jpeg-compressor + +THIS DIRECTORY CONTAINS THE TWO FILES: + +jpge.h +jpge.cpp + +TAKEN FROM + +master branch + +ON 03 FEB 2022. + diff --git a/src/jpeg-compressor/jpge.cpp b/src/jpeg-compressor/jpge.cpp new file mode 100644 index 000000000..4bdc34a97 --- /dev/null +++ b/src/jpeg-compressor/jpge.cpp @@ -0,0 +1,1076 @@ +// jpge.cpp - C++ class for JPEG compression. Richard Geldreich +// Supports grayscale, H1V1, H2V1, and H2V2 chroma subsampling factors, one or two pass Huffman table optimization, libjpeg-style quality 1-100 quality factors. +// Also supports using luma quantization tables for chroma. +// +// Released under two licenses. You are free to choose which license you want: +// License 1: +// Public Domain +// +// License 2: +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// v1.01, Dec. 18, 2010 - Initial release +// v1.02, Apr. 6, 2011 - Removed 2x2 ordered dither in H2V1 chroma subsampling method load_block_16_8_8(). (The rounding factor was 2, when it should have been 1. Either way, it wasn't helping.) +// v1.03, Apr. 16, 2011 - Added support for optimized Huffman code tables, optimized dynamic memory allocation down to only 1 alloc. +// Also from Alex Evans: Added RGBA support, linear memory allocator (no longer needed in v1.03). +// v1.04, May. 19, 2012: Forgot to set m_pFile ptr to NULL in cfile_stream::close(). Thanks to Owen Kaluza for reporting this bug. +// Code tweaks to fix VS2008 static code analysis warnings (all looked harmless). +// Code review revealed method load_block_16_8_8() (used for the non-default H2V1 sampling mode to downsample chroma) somehow didn't get the rounding factor fix from v1.02. +// v1.05, March 25, 2020: Added Apache 2.0 alternate license + +#include "jpge.h" + +#include +#include +#include + +#define JPGE_MAX(a,b) (((a)>(b))?(a):(b)) +#define JPGE_MIN(a,b) (((a)<(b))?(a):(b)) + +namespace jpge { + + static inline void* jpge_malloc(size_t nSize) { return malloc(nSize); } + static inline void jpge_free(void* p) { free(p); } + + // Various JPEG enums and tables. + enum { M_SOF0 = 0xC0, M_DHT = 0xC4, M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_APP0 = 0xE0 }; + enum { DC_LUM_CODES = 12, AC_LUM_CODES = 256, DC_CHROMA_CODES = 12, AC_CHROMA_CODES = 256, MAX_HUFF_SYMBOLS = 257, MAX_HUFF_CODESIZE = 32 }; + + static uint8 s_zag[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 }; + static int16 s_std_lum_quant[64] = { 16,11,12,14,12,10,16,14,13,14,18,17,16,19,24,40,26,24,22,22,24,49,35,37,29,40,58,51,61,60,57,51,56,55,64,72,92,78,64,68,87,69,55,56,80,109,81,87,95,98,103,104,103,62,77,113,121,112,100,120,92,101,103,99 }; + static int16 s_std_croma_quant[64] = { 17,18,18,24,21,24,47,26,26,47,99,66,56,66,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99 }; + + // Table from http://www.imagemagick.org/discourse-server/viewtopic.php?f=22&t=20333&p=98008#p98008 + // This is mozjpeg's default table, in zag order. + static int16 s_alt_quant[64] = { 16,16,16,16,17,16,18,20,20,18,25,27,24,27,25,37,34,31,31,34,37,56,40,43,40,43,40,56,85,53,62,53,53,62,53,85,75,91,74,69,74,91,75,135,106,94,94,106,135,156,131,124,131,156,189,169,169,189,238,226,238,311,311,418 }; + + static uint8 s_dc_lum_bits[17] = { 0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0 }; + static uint8 s_dc_lum_val[DC_LUM_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 }; + static uint8 s_ac_lum_bits[17] = { 0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d }; + static uint8 s_ac_lum_val[AC_LUM_CODES] = + { + 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0, + 0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49, + 0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89, + 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5, + 0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8, + 0xf9,0xfa + }; + static uint8 s_dc_chroma_bits[17] = { 0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 }; + static uint8 s_dc_chroma_val[DC_CHROMA_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 }; + static uint8 s_ac_chroma_bits[17] = { 0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 }; + static uint8 s_ac_chroma_val[AC_CHROMA_CODES] = + { + 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0, + 0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48, + 0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87, + 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3, + 0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8, + 0xf9,0xfa + }; + + // Low-level helper functions. + template inline void clear_obj(T& obj) { memset(&obj, 0, sizeof(obj)); } + + const int YR = 19595, YG = 38470, YB = 7471, CB_R = -11059, CB_G = -21709, CB_B = 32768, CR_R = 32768, CR_G = -27439, CR_B = -5329; + static inline uint8 clamp(int i) { if (static_cast(i) > 255U) { if (i < 0) i = 0; else if (i > 255) i = 255; } return static_cast(i); } + + static inline int left_shifti(int val, uint32 bits) + { + return static_cast(static_cast(val) << bits); + } + + static void RGB_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels) + { + for (; num_pixels; pDst += 3, pSrc += 3, num_pixels--) + { + const int r = pSrc[0], g = pSrc[1], b = pSrc[2]; + pDst[0] = static_cast((r * YR + g * YG + b * YB + 32768) >> 16); + pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16)); + pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16)); + } + } + + static void RGB_to_Y(uint8* pDst, const uint8* pSrc, int num_pixels) + { + for (; num_pixels; pDst++, pSrc += 3, num_pixels--) + pDst[0] = static_cast((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16); + } + + static void RGBA_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels) + { + for (; num_pixels; pDst += 3, pSrc += 4, num_pixels--) + { + const int r = pSrc[0], g = pSrc[1], b = pSrc[2]; + pDst[0] = static_cast((r * YR + g * YG + b * YB + 32768) >> 16); + pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16)); + pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16)); + } + } + + static void RGBA_to_Y(uint8* pDst, const uint8* pSrc, int num_pixels) + { + for (; num_pixels; pDst++, pSrc += 4, num_pixels--) + pDst[0] = static_cast((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16); + } + + static void Y_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels) + { + for (; num_pixels; pDst += 3, pSrc++, num_pixels--) { pDst[0] = pSrc[0]; pDst[1] = 128; pDst[2] = 128; } + } + + // Forward DCT - DCT derived from jfdctint. + enum { CONST_BITS = 13, ROW_BITS = 2 }; +#define DCT_DESCALE(x, n) (((x) + (((int32)1) << ((n) - 1))) >> (n)) +#define DCT_MUL(var, c) (static_cast(var) * static_cast(c)) +#define DCT1D(s0, s1, s2, s3, s4, s5, s6, s7) \ + int32 t0 = s0 + s7, t7 = s0 - s7, t1 = s1 + s6, t6 = s1 - s6, t2 = s2 + s5, t5 = s2 - s5, t3 = s3 + s4, t4 = s3 - s4; \ + int32 t10 = t0 + t3, t13 = t0 - t3, t11 = t1 + t2, t12 = t1 - t2; \ + int32 u1 = DCT_MUL(t12 + t13, 4433); \ + s2 = u1 + DCT_MUL(t13, 6270); \ + s6 = u1 + DCT_MUL(t12, -15137); \ + u1 = t4 + t7; \ + int32 u2 = t5 + t6, u3 = t4 + t6, u4 = t5 + t7; \ + int32 z5 = DCT_MUL(u3 + u4, 9633); \ + t4 = DCT_MUL(t4, 2446); t5 = DCT_MUL(t5, 16819); \ + t6 = DCT_MUL(t6, 25172); t7 = DCT_MUL(t7, 12299); \ + u1 = DCT_MUL(u1, -7373); u2 = DCT_MUL(u2, -20995); \ + u3 = DCT_MUL(u3, -16069); u4 = DCT_MUL(u4, -3196); \ + u3 += z5; u4 += z5; \ + s0 = t10 + t11; s1 = t7 + u1 + u4; s3 = t6 + u2 + u3; s4 = t10 - t11; s5 = t5 + u2 + u4; s7 = t4 + u1 + u3; + + static void DCT2D(int32* p) + { + int32 c, * q = p; + for (c = 7; c >= 0; c--, q += 8) + { + int32 s0 = q[0], s1 = q[1], s2 = q[2], s3 = q[3], s4 = q[4], s5 = q[5], s6 = q[6], s7 = q[7]; + DCT1D(s0, s1, s2, s3, s4, s5, s6, s7); + q[0] = left_shifti(s0, ROW_BITS); q[1] = DCT_DESCALE(s1, CONST_BITS - ROW_BITS); q[2] = DCT_DESCALE(s2, CONST_BITS - ROW_BITS); q[3] = DCT_DESCALE(s3, CONST_BITS - ROW_BITS); + q[4] = left_shifti(s4, ROW_BITS); q[5] = DCT_DESCALE(s5, CONST_BITS - ROW_BITS); q[6] = DCT_DESCALE(s6, CONST_BITS - ROW_BITS); q[7] = DCT_DESCALE(s7, CONST_BITS - ROW_BITS); + } + for (q = p, c = 7; c >= 0; c--, q++) + { + int32 s0 = q[0 * 8], s1 = q[1 * 8], s2 = q[2 * 8], s3 = q[3 * 8], s4 = q[4 * 8], s5 = q[5 * 8], s6 = q[6 * 8], s7 = q[7 * 8]; + DCT1D(s0, s1, s2, s3, s4, s5, s6, s7); + q[0 * 8] = DCT_DESCALE(s0, ROW_BITS + 3); q[1 * 8] = DCT_DESCALE(s1, CONST_BITS + ROW_BITS + 3); q[2 * 8] = DCT_DESCALE(s2, CONST_BITS + ROW_BITS + 3); q[3 * 8] = DCT_DESCALE(s3, CONST_BITS + ROW_BITS + 3); + q[4 * 8] = DCT_DESCALE(s4, ROW_BITS + 3); q[5 * 8] = DCT_DESCALE(s5, CONST_BITS + ROW_BITS + 3); q[6 * 8] = DCT_DESCALE(s6, CONST_BITS + ROW_BITS + 3); q[7 * 8] = DCT_DESCALE(s7, CONST_BITS + ROW_BITS + 3); + } + } + + struct sym_freq { uint m_key, m_sym_index; }; + + // Radix sorts sym_freq[] array by 32-bit key m_key. Returns ptr to sorted values. + static inline sym_freq* radix_sort_syms(uint num_syms, sym_freq* pSyms0, sym_freq* pSyms1) + { + const uint cMaxPasses = 4; + uint32 hist[256 * cMaxPasses]; clear_obj(hist); + for (uint i = 0; i < num_syms; i++) { uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; hist[256 * 2 + ((freq >> 16) & 0xFF)]++; hist[256 * 3 + ((freq >> 24) & 0xFF)]++; } + sym_freq* pCur_syms = pSyms0, * pNew_syms = pSyms1; + uint total_passes = cMaxPasses; while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--; + for (uint pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) + { + const uint32* pHist = &hist[pass << 8]; + uint offsets[256], cur_ofs = 0; + for (uint i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; } + for (uint i = 0; i < num_syms; i++) + pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; + sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t; + } + return pCur_syms; + } + + // calculate_minimum_redundancy() originally written by: Alistair Moffat, alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996. + static void calculate_minimum_redundancy(sym_freq* A, int n) + { + int root, leaf, next, avbl, used, dpth; + if (n == 0) return; else if (n == 1) { A[0].m_key = 1; return; } + A[0].m_key += A[1].m_key; root = 0; leaf = 2; + for (next = 1; next < n - 1; next++) + { + if (leaf >= n || A[root].m_key < A[leaf].m_key) { A[next].m_key = A[root].m_key; A[root++].m_key = next; } + else A[next].m_key = A[leaf++].m_key; + if (leaf >= n || (root < next && A[root].m_key < A[leaf].m_key)) { A[next].m_key += A[root].m_key; A[root++].m_key = next; } + else A[next].m_key += A[leaf++].m_key; + } + A[n - 2].m_key = 0; + for (next = n - 3; next >= 0; next--) A[next].m_key = A[A[next].m_key].m_key + 1; + avbl = 1; used = dpth = 0; root = n - 2; next = n - 1; + while (avbl > 0) + { + while (root >= 0 && (int)A[root].m_key == dpth) { used++; root--; } + while (avbl > used) { A[next--].m_key = dpth; avbl--; } + avbl = 2 * used; dpth++; used = 0; + } + } + + // Limits canonical Huffman code table's max code size to max_code_size. + static void huffman_enforce_max_code_size(int* pNum_codes, int code_list_len, int max_code_size) + { + if (code_list_len <= 1) return; + + for (int i = max_code_size + 1; i <= MAX_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i]; + + uint32 total = 0; + for (int i = max_code_size; i > 0; i--) + total += (((uint32)pNum_codes[i]) << (max_code_size - i)); + + while (total != (1UL << max_code_size)) + { + pNum_codes[max_code_size]--; + for (int i = max_code_size - 1; i > 0; i--) + { + if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; } + } + total--; + } + } + + // Generates an optimized offman table. + void jpeg_encoder::optimize_huffman_table(int table_num, int table_len) + { + sym_freq syms0[MAX_HUFF_SYMBOLS], syms1[MAX_HUFF_SYMBOLS]; + syms0[0].m_key = 1; syms0[0].m_sym_index = 0; // dummy symbol, assures that no valid code contains all 1's + int num_used_syms = 1; + const uint32* pSym_count = &m_huff_count[table_num][0]; + for (int i = 0; i < table_len; i++) + if (pSym_count[i]) { syms0[num_used_syms].m_key = pSym_count[i]; syms0[num_used_syms++].m_sym_index = i + 1; } + sym_freq* pSyms = radix_sort_syms(num_used_syms, syms0, syms1); + calculate_minimum_redundancy(pSyms, num_used_syms); + + // Count the # of symbols of each code size. + int num_codes[1 + MAX_HUFF_CODESIZE]; clear_obj(num_codes); + for (int i = 0; i < num_used_syms; i++) + num_codes[pSyms[i].m_key]++; + + const uint JPGE_CODE_SIZE_LIMIT = 16; // the maximum possible size of a JPEG Huffman code (valid range is [9,16] - 9 vs. 8 because of the dummy symbol) + huffman_enforce_max_code_size(num_codes, num_used_syms, JPGE_CODE_SIZE_LIMIT); + + // Compute m_huff_bits array, which contains the # of symbols per code size. + clear_obj(m_huff_bits[table_num]); + for (int i = 1; i <= (int)JPGE_CODE_SIZE_LIMIT; i++) + m_huff_bits[table_num][i] = static_cast(num_codes[i]); + + // Remove the dummy symbol added above, which must be in largest bucket. + for (int i = JPGE_CODE_SIZE_LIMIT; i >= 1; i--) + { + if (m_huff_bits[table_num][i]) { m_huff_bits[table_num][i]--; break; } + } + + // Compute the m_huff_val array, which contains the symbol indices sorted by code size (smallest to largest). + for (int i = num_used_syms - 1; i >= 1; i--) + m_huff_val[table_num][num_used_syms - 1 - i] = static_cast(pSyms[i].m_sym_index - 1); + } + + // JPEG marker generation. + void jpeg_encoder::emit_byte(uint8 i) + { + m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_obj(i); + } + + void jpeg_encoder::emit_word(uint i) + { + emit_byte(uint8(i >> 8)); emit_byte(uint8(i & 0xFF)); + } + + void jpeg_encoder::emit_marker(int marker) + { + emit_byte(uint8(0xFF)); emit_byte(uint8(marker)); + } + + // Emit JFIF marker + void jpeg_encoder::emit_jfif_app0() + { + emit_marker(M_APP0); + emit_word(2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); + emit_byte(0x4A); emit_byte(0x46); emit_byte(0x49); emit_byte(0x46); /* Identifier: ASCII "JFIF" */ + emit_byte(0); + emit_byte(1); /* Major version */ + emit_byte(1); /* Minor version */ + emit_byte(0); /* Density unit */ + emit_word(1); + emit_word(1); + emit_byte(0); /* No thumbnail image */ + emit_byte(0); + } + + // Emit quantization tables + void jpeg_encoder::emit_dqt() + { + for (int i = 0; i < ((m_num_components == 3) ? 2 : 1); i++) + { + emit_marker(M_DQT); + emit_word(64 + 1 + 2); + emit_byte(static_cast(i)); + for (int j = 0; j < 64; j++) + emit_byte(static_cast(m_quantization_tables[i][j])); + } + } + + // Emit start of frame marker + void jpeg_encoder::emit_sof() + { + emit_marker(M_SOF0); /* baseline */ + emit_word(3 * m_num_components + 2 + 5 + 1); + emit_byte(8); /* precision */ + emit_word(m_image_y); + emit_word(m_image_x); + emit_byte(m_num_components); + for (int i = 0; i < m_num_components; i++) + { + emit_byte(static_cast(i + 1)); /* component ID */ + emit_byte((m_comp_h_samp[i] << 4) + m_comp_v_samp[i]); /* h and v sampling */ + emit_byte(i > 0); /* quant. table num */ + } + } + + // Emit Huffman table. + void jpeg_encoder::emit_dht(uint8* bits, uint8* val, int index, bool ac_flag) + { + emit_marker(M_DHT); + + int length = 0; + for (int i = 1; i <= 16; i++) + length += bits[i]; + + emit_word(length + 2 + 1 + 16); + emit_byte(static_cast(index + (ac_flag << 4))); + + for (int i = 1; i <= 16; i++) + emit_byte(bits[i]); + + for (int i = 0; i < length; i++) + emit_byte(val[i]); + } + + // Emit all Huffman tables. + void jpeg_encoder::emit_dhts() + { + emit_dht(m_huff_bits[0 + 0], m_huff_val[0 + 0], 0, false); + emit_dht(m_huff_bits[2 + 0], m_huff_val[2 + 0], 0, true); + if (m_num_components == 3) + { + emit_dht(m_huff_bits[0 + 1], m_huff_val[0 + 1], 1, false); + emit_dht(m_huff_bits[2 + 1], m_huff_val[2 + 1], 1, true); + } + } + + // emit start of scan + void jpeg_encoder::emit_sos() + { + emit_marker(M_SOS); + emit_word(2 * m_num_components + 2 + 1 + 3); + emit_byte(m_num_components); + for (int i = 0; i < m_num_components; i++) + { + emit_byte(static_cast(i + 1)); + if (i == 0) + emit_byte((0 << 4) + 0); + else + emit_byte((1 << 4) + 1); + } + emit_byte(0); /* spectral selection */ + emit_byte(63); + emit_byte(0); + } + + // Emit all markers at beginning of image file. + void jpeg_encoder::emit_markers() + { + emit_marker(M_SOI); + emit_jfif_app0(); + emit_dqt(); + emit_sof(); + emit_dhts(); + emit_sos(); + } + + // Compute the actual canonical Huffman codes/code sizes given the JPEG huff bits and val arrays. + void jpeg_encoder::compute_huffman_table(uint* codes, uint8* code_sizes, uint8* bits, uint8* val) + { + int i, l, last_p, si; + uint8 huff_size[257]; + uint huff_code[257]; + uint code; + + int p = 0; + for (l = 1; l <= 16; l++) + for (i = 1; i <= bits[l]; i++) + huff_size[p++] = (char)l; + + huff_size[p] = 0; last_p = p; // write sentinel + + code = 0; si = huff_size[0]; p = 0; + + while (huff_size[p]) + { + while (huff_size[p] == si) + huff_code[p++] = code++; + code <<= 1; + si++; + } + + memset(codes, 0, sizeof(codes[0]) * 256); + memset(code_sizes, 0, sizeof(code_sizes[0]) * 256); + for (p = 0; p < last_p; p++) + { + codes[val[p]] = huff_code[p]; + code_sizes[val[p]] = huff_size[p]; + } + } + + // Quantization table generation. + void jpeg_encoder::compute_quant_table(int32* pDst, int16* pSrc) + { + int32 q; + if (m_params.m_quality < 50) + q = 5000 / m_params.m_quality; + else + q = 200 - m_params.m_quality * 2; + for (int i = 0; i < 64; i++) + { + int32 j = *pSrc++; j = (j * q + 50L) / 100L; + *pDst++ = JPGE_MIN(JPGE_MAX(j, 1), 255); + } + } + + // Higher-level methods. + void jpeg_encoder::first_pass_init() + { + m_bit_buffer = 0; m_bits_in = 0; + memset(m_last_dc_val, 0, 3 * sizeof(m_last_dc_val[0])); + m_mcu_y_ofs = 0; + m_pass_num = 1; + } + + bool jpeg_encoder::second_pass_init() + { + compute_huffman_table(&m_huff_codes[0 + 0][0], &m_huff_code_sizes[0 + 0][0], m_huff_bits[0 + 0], m_huff_val[0 + 0]); + compute_huffman_table(&m_huff_codes[2 + 0][0], &m_huff_code_sizes[2 + 0][0], m_huff_bits[2 + 0], m_huff_val[2 + 0]); + if (m_num_components > 1) + { + compute_huffman_table(&m_huff_codes[0 + 1][0], &m_huff_code_sizes[0 + 1][0], m_huff_bits[0 + 1], m_huff_val[0 + 1]); + compute_huffman_table(&m_huff_codes[2 + 1][0], &m_huff_code_sizes[2 + 1][0], m_huff_bits[2 + 1], m_huff_val[2 + 1]); + } + first_pass_init(); + emit_markers(); + m_pass_num = 2; + return true; + } + + bool jpeg_encoder::jpg_open(int p_x_res, int p_y_res, int src_channels) + { + m_num_components = 3; + switch (m_params.m_subsampling) + { + case Y_ONLY: + { + m_num_components = 1; + m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1; + m_mcu_x = 8; m_mcu_y = 8; + break; + } + case H1V1: + { + m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1; + m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1; + m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1; + m_mcu_x = 8; m_mcu_y = 8; + break; + } + case H2V1: + { + m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 1; + m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1; + m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1; + m_mcu_x = 16; m_mcu_y = 8; + break; + } + case H2V2: + { + m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 2; + m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1; + m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1; + m_mcu_x = 16; m_mcu_y = 16; + } + } + + m_image_x = p_x_res; m_image_y = p_y_res; + m_image_bpp = src_channels; + m_image_bpl = m_image_x * src_channels; + m_image_x_mcu = (m_image_x + m_mcu_x - 1) & (~(m_mcu_x - 1)); + m_image_y_mcu = (m_image_y + m_mcu_y - 1) & (~(m_mcu_y - 1)); + m_image_bpl_xlt = m_image_x * m_num_components; + m_image_bpl_mcu = m_image_x_mcu * m_num_components; + m_mcus_per_row = m_image_x_mcu / m_mcu_x; + + if ((m_mcu_lines[0] = static_cast(jpge_malloc(m_image_bpl_mcu * m_mcu_y))) == NULL) return false; + for (int i = 1; i < m_mcu_y; i++) + m_mcu_lines[i] = m_mcu_lines[i - 1] + m_image_bpl_mcu; + + if (m_params.m_use_std_tables) + { + compute_quant_table(m_quantization_tables[0], s_std_lum_quant); + compute_quant_table(m_quantization_tables[1], m_params.m_no_chroma_discrim_flag ? s_std_lum_quant : s_std_croma_quant); + } + else + { + compute_quant_table(m_quantization_tables[0], s_alt_quant); + memcpy(m_quantization_tables[1], m_quantization_tables[0], sizeof(m_quantization_tables[1])); + } + + m_out_buf_left = JPGE_OUT_BUF_SIZE; + m_pOut_buf = m_out_buf; + + if (m_params.m_two_pass_flag) + { + clear_obj(m_huff_count); + first_pass_init(); + } + else + { + memcpy(m_huff_bits[0 + 0], s_dc_lum_bits, 17); memcpy(m_huff_val[0 + 0], s_dc_lum_val, DC_LUM_CODES); + memcpy(m_huff_bits[2 + 0], s_ac_lum_bits, 17); memcpy(m_huff_val[2 + 0], s_ac_lum_val, AC_LUM_CODES); + memcpy(m_huff_bits[0 + 1], s_dc_chroma_bits, 17); memcpy(m_huff_val[0 + 1], s_dc_chroma_val, DC_CHROMA_CODES); + memcpy(m_huff_bits[2 + 1], s_ac_chroma_bits, 17); memcpy(m_huff_val[2 + 1], s_ac_chroma_val, AC_CHROMA_CODES); + if (!second_pass_init()) return false; // in effect, skip over the first pass + } + return m_all_stream_writes_succeeded; + } + + void jpeg_encoder::load_block_8_8_grey(int x) + { + uint8* pSrc; + sample_array_t* pDst = m_sample_array; + x <<= 3; + for (int i = 0; i < 8; i++, pDst += 8) + { + pSrc = m_mcu_lines[i] + x; + pDst[0] = pSrc[0] - 128; pDst[1] = pSrc[1] - 128; pDst[2] = pSrc[2] - 128; pDst[3] = pSrc[3] - 128; + pDst[4] = pSrc[4] - 128; pDst[5] = pSrc[5] - 128; pDst[6] = pSrc[6] - 128; pDst[7] = pSrc[7] - 128; + } + } + + void jpeg_encoder::load_block_8_8(int x, int y, int c) + { + uint8* pSrc; + sample_array_t* pDst = m_sample_array; + x = (x * (8 * 3)) + c; + y <<= 3; + for (int i = 0; i < 8; i++, pDst += 8) + { + pSrc = m_mcu_lines[y + i] + x; + pDst[0] = pSrc[0 * 3] - 128; pDst[1] = pSrc[1 * 3] - 128; pDst[2] = pSrc[2 * 3] - 128; pDst[3] = pSrc[3 * 3] - 128; + pDst[4] = pSrc[4 * 3] - 128; pDst[5] = pSrc[5 * 3] - 128; pDst[6] = pSrc[6 * 3] - 128; pDst[7] = pSrc[7 * 3] - 128; + } + } + + void jpeg_encoder::load_block_16_8(int x, int c) + { + uint8* pSrc1, * pSrc2; + sample_array_t* pDst = m_sample_array; + x = (x * (16 * 3)) + c; + for (int i = 0; i < 16; i += 2, pDst += 8) + { + pSrc1 = m_mcu_lines[i + 0] + x; + pSrc2 = m_mcu_lines[i + 1] + x; + pDst[0] = ((pSrc1[0 * 3] + pSrc1[1 * 3] + pSrc2[0 * 3] + pSrc2[1 * 3] + 2) >> 2) - 128; pDst[1] = ((pSrc1[2 * 3] + pSrc1[3 * 3] + pSrc2[2 * 3] + pSrc2[3 * 3] + 2) >> 2) - 128; + pDst[2] = ((pSrc1[4 * 3] + pSrc1[5 * 3] + pSrc2[4 * 3] + pSrc2[5 * 3] + 2) >> 2) - 128; pDst[3] = ((pSrc1[6 * 3] + pSrc1[7 * 3] + pSrc2[6 * 3] + pSrc2[7 * 3] + 2) >> 2) - 128; + pDst[4] = ((pSrc1[8 * 3] + pSrc1[9 * 3] + pSrc2[8 * 3] + pSrc2[9 * 3] + 2) >> 2) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3] + pSrc2[10 * 3] + pSrc2[11 * 3] + 2) >> 2) - 128; + pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3] + pSrc2[12 * 3] + pSrc2[13 * 3] + 2) >> 2) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3] + pSrc2[14 * 3] + pSrc2[15 * 3] + 2) >> 2) - 128; + } + } + + void jpeg_encoder::load_block_16_8_8(int x, int c) + { + uint8* pSrc1; + sample_array_t* pDst = m_sample_array; + x = (x * (16 * 3)) + c; + for (int i = 0; i < 8; i++, pDst += 8) + { + pSrc1 = m_mcu_lines[i + 0] + x; + pDst[0] = ((pSrc1[0 * 3] + pSrc1[1 * 3] + 1) >> 1) - 128; pDst[1] = ((pSrc1[2 * 3] + pSrc1[3 * 3] + 1) >> 1) - 128; + pDst[2] = ((pSrc1[4 * 3] + pSrc1[5 * 3] + 1) >> 1) - 128; pDst[3] = ((pSrc1[6 * 3] + pSrc1[7 * 3] + 1) >> 1) - 128; + pDst[4] = ((pSrc1[8 * 3] + pSrc1[9 * 3] + 1) >> 1) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3] + 1) >> 1) - 128; + pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3] + 1) >> 1) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3] + 1) >> 1) - 128; + } + } + + void jpeg_encoder::load_quantized_coefficients(int component_num) + { + int32* q = m_quantization_tables[component_num > 0]; + int16* pDst = m_coefficient_array; + for (int i = 0; i < 64; i++) + { + sample_array_t j = m_sample_array[s_zag[i]]; + if (j < 0) + { + if ((j = -j + (*q >> 1)) < *q) + *pDst++ = 0; + else + *pDst++ = static_cast(-(j / *q)); + } + else + { + if ((j = j + (*q >> 1)) < *q) + *pDst++ = 0; + else + *pDst++ = static_cast((j / *q)); + } + q++; + } + } + + void jpeg_encoder::flush_output_buffer() + { + if (m_out_buf_left != JPGE_OUT_BUF_SIZE) + m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_buf(m_out_buf, JPGE_OUT_BUF_SIZE - m_out_buf_left); + m_pOut_buf = m_out_buf; + m_out_buf_left = JPGE_OUT_BUF_SIZE; + } + + void jpeg_encoder::put_bits(uint bits, uint len) + { + m_bit_buffer |= ((uint32)bits << (24 - (m_bits_in += len))); + while (m_bits_in >= 8) + { + uint8 c; +#define JPGE_PUT_BYTE(c) { *m_pOut_buf++ = (c); if (--m_out_buf_left == 0) flush_output_buffer(); } + JPGE_PUT_BYTE(c = (uint8)((m_bit_buffer >> 16) & 0xFF)); + if (c == 0xFF) JPGE_PUT_BYTE(0); + m_bit_buffer <<= 8; + m_bits_in -= 8; + } + } + + void jpeg_encoder::code_coefficients_pass_one(int component_num) + { + if (component_num >= 3) return; // just to shut up static analysis + int i, run_len, nbits, temp1; + int16* src = m_coefficient_array; + uint32* dc_count = component_num ? m_huff_count[0 + 1] : m_huff_count[0 + 0], * ac_count = component_num ? m_huff_count[2 + 1] : m_huff_count[2 + 0]; + + temp1 = src[0] - m_last_dc_val[component_num]; + m_last_dc_val[component_num] = src[0]; + if (temp1 < 0) temp1 = -temp1; + + nbits = 0; + while (temp1) + { + nbits++; temp1 >>= 1; + } + + dc_count[nbits]++; + for (run_len = 0, i = 1; i < 64; i++) + { + if ((temp1 = m_coefficient_array[i]) == 0) + run_len++; + else + { + while (run_len >= 16) + { + ac_count[0xF0]++; + run_len -= 16; + } + if (temp1 < 0) temp1 = -temp1; + nbits = 1; + while (temp1 >>= 1) nbits++; + ac_count[(run_len << 4) + nbits]++; + run_len = 0; + } + } + if (run_len) ac_count[0]++; + } + + void jpeg_encoder::code_coefficients_pass_two(int component_num) + { + int i, j, run_len, nbits, temp1, temp2; + int16* pSrc = m_coefficient_array; + uint* codes[2]; + uint8* code_sizes[2]; + + if (component_num == 0) + { + codes[0] = m_huff_codes[0 + 0]; codes[1] = m_huff_codes[2 + 0]; + code_sizes[0] = m_huff_code_sizes[0 + 0]; code_sizes[1] = m_huff_code_sizes[2 + 0]; + } + else + { + codes[0] = m_huff_codes[0 + 1]; codes[1] = m_huff_codes[2 + 1]; + code_sizes[0] = m_huff_code_sizes[0 + 1]; code_sizes[1] = m_huff_code_sizes[2 + 1]; + } + + temp1 = temp2 = pSrc[0] - m_last_dc_val[component_num]; + m_last_dc_val[component_num] = pSrc[0]; + + if (temp1 < 0) + { + temp1 = -temp1; temp2--; + } + + nbits = 0; + while (temp1) + { + nbits++; temp1 >>= 1; + } + + put_bits(codes[0][nbits], code_sizes[0][nbits]); + if (nbits) put_bits(temp2 & ((1 << nbits) - 1), nbits); + + for (run_len = 0, i = 1; i < 64; i++) + { + if ((temp1 = m_coefficient_array[i]) == 0) + run_len++; + else + { + while (run_len >= 16) + { + put_bits(codes[1][0xF0], code_sizes[1][0xF0]); + run_len -= 16; + } + if ((temp2 = temp1) < 0) + { + temp1 = -temp1; + temp2--; + } + nbits = 1; + while (temp1 >>= 1) + nbits++; + j = (run_len << 4) + nbits; + put_bits(codes[1][j], code_sizes[1][j]); + put_bits(temp2 & ((1 << nbits) - 1), nbits); + run_len = 0; + } + } + if (run_len) + put_bits(codes[1][0], code_sizes[1][0]); + } + + void jpeg_encoder::code_block(int component_num) + { + DCT2D(m_sample_array); + load_quantized_coefficients(component_num); + if (m_pass_num == 1) + code_coefficients_pass_one(component_num); + else + code_coefficients_pass_two(component_num); + } + + void jpeg_encoder::process_mcu_row() + { + if (m_num_components == 1) + { + for (int i = 0; i < m_mcus_per_row; i++) + { + load_block_8_8_grey(i); code_block(0); + } + } + else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1)) + { + for (int i = 0; i < m_mcus_per_row; i++) + { + load_block_8_8(i, 0, 0); code_block(0); load_block_8_8(i, 0, 1); code_block(1); load_block_8_8(i, 0, 2); code_block(2); + } + } + else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1)) + { + for (int i = 0; i < m_mcus_per_row; i++) + { + load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0); + load_block_16_8_8(i, 1); code_block(1); load_block_16_8_8(i, 2); code_block(2); + } + } + else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2)) + { + for (int i = 0; i < m_mcus_per_row; i++) + { + load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0); + load_block_8_8(i * 2 + 0, 1, 0); code_block(0); load_block_8_8(i * 2 + 1, 1, 0); code_block(0); + load_block_16_8(i, 1); code_block(1); load_block_16_8(i, 2); code_block(2); + } + } + } + + bool jpeg_encoder::terminate_pass_one() + { + optimize_huffman_table(0 + 0, DC_LUM_CODES); optimize_huffman_table(2 + 0, AC_LUM_CODES); + if (m_num_components > 1) + { + optimize_huffman_table(0 + 1, DC_CHROMA_CODES); optimize_huffman_table(2 + 1, AC_CHROMA_CODES); + } + return second_pass_init(); + } + + bool jpeg_encoder::terminate_pass_two() + { + put_bits(0x7F, 7); + flush_output_buffer(); + emit_marker(M_EOI); + m_pass_num++; // purposely bump up m_pass_num, for debugging + return true; + } + + bool jpeg_encoder::process_end_of_image() + { + if (m_mcu_y_ofs) + { + if (m_mcu_y_ofs < 16) // check here just to shut up static analysis + { + for (int i = m_mcu_y_ofs; i < m_mcu_y; i++) + memcpy(m_mcu_lines[i], m_mcu_lines[m_mcu_y_ofs - 1], m_image_bpl_mcu); + } + + process_mcu_row(); + } + + if (m_pass_num == 1) + return terminate_pass_one(); + else + return terminate_pass_two(); + } + + void jpeg_encoder::load_mcu(const void* pSrc) + { + const uint8* Psrc = reinterpret_cast(pSrc); + + uint8* pDst = m_mcu_lines[m_mcu_y_ofs]; // OK to write up to m_image_bpl_xlt bytes to pDst + + if (m_num_components == 1) + { + if (m_image_bpp == 4) + RGBA_to_Y(pDst, Psrc, m_image_x); + else if (m_image_bpp == 3) + RGB_to_Y(pDst, Psrc, m_image_x); + else + memcpy(pDst, Psrc, m_image_x); + } + else + { + if (m_image_bpp == 4) + RGBA_to_YCC(pDst, Psrc, m_image_x); + else if (m_image_bpp == 3) + RGB_to_YCC(pDst, Psrc, m_image_x); + else + Y_to_YCC(pDst, Psrc, m_image_x); + } + + // Possibly duplicate pixels at end of scanline if not a multiple of 8 or 16 + if (m_num_components == 1) + memset(m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt, pDst[m_image_bpl_xlt - 1], m_image_x_mcu - m_image_x); + else + { + const uint8 y = pDst[m_image_bpl_xlt - 3 + 0], cb = pDst[m_image_bpl_xlt - 3 + 1], cr = pDst[m_image_bpl_xlt - 3 + 2]; + uint8* q = m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt; + for (int i = m_image_x; i < m_image_x_mcu; i++) + { + *q++ = y; *q++ = cb; *q++ = cr; + } + } + + if (++m_mcu_y_ofs == m_mcu_y) + { + process_mcu_row(); + m_mcu_y_ofs = 0; + } + } + + void jpeg_encoder::clear() + { + m_mcu_lines[0] = NULL; + m_pass_num = 0; + m_all_stream_writes_succeeded = true; + } + + jpeg_encoder::jpeg_encoder() + { + clear(); + } + + jpeg_encoder::~jpeg_encoder() + { + deinit(); + } + + bool jpeg_encoder::init(output_stream* pStream, int width, int height, int src_channels, const params& comp_params) + { + deinit(); + if (((!pStream) || (width < 1) || (height < 1)) || ((src_channels != 1) && (src_channels != 3) && (src_channels != 4)) || (!comp_params.check())) return false; + m_pStream = pStream; + m_params = comp_params; + return jpg_open(width, height, src_channels); + } + + void jpeg_encoder::deinit() + { + jpge_free(m_mcu_lines[0]); + clear(); + } + + bool jpeg_encoder::process_scanline(const void* pScanline) + { + if ((m_pass_num < 1) || (m_pass_num > 2)) return false; + if (m_all_stream_writes_succeeded) + { + if (!pScanline) + { + if (!process_end_of_image()) return false; + } + else + { + load_mcu(pScanline); + } + } + return m_all_stream_writes_succeeded; + } + + // Higher level wrappers/examples (optional). +#include + + class cfile_stream : public output_stream + { + cfile_stream(const cfile_stream&); + cfile_stream& operator= (const cfile_stream&); + + FILE* m_pFile; + bool m_bStatus; + + public: + cfile_stream() : m_pFile(NULL), m_bStatus(false) { } + + virtual ~cfile_stream() + { + close(); + } + + bool open(const char* pFilename) + { + close(); + m_pFile = fopen(pFilename, "wb"); + m_bStatus = (m_pFile != NULL); + return m_bStatus; + } + + bool close() + { + if (m_pFile) + { + if (fclose(m_pFile) == EOF) + { + m_bStatus = false; + } + m_pFile = NULL; + } + return m_bStatus; + } + + virtual bool put_buf(const void* pBuf, int len) + { + m_bStatus = m_bStatus && (fwrite(pBuf, len, 1, m_pFile) == 1); + return m_bStatus; + } + + uint get_size() const + { + return m_pFile ? ftell(m_pFile) : 0; + } + }; + + // Writes JPEG image to file. + bool compress_image_to_jpeg_file(const char* pFilename, int width, int height, int num_channels, const uint8* pImage_data, const params& comp_params) + { + cfile_stream dst_stream; + if (!dst_stream.open(pFilename)) + return false; + + jpge::jpeg_encoder dst_image; + if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params)) + return false; + + for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++) + { + for (int i = 0; i < height; i++) + { + const uint8* pBuf = pImage_data + i * width * num_channels; + if (!dst_image.process_scanline(pBuf)) + return false; + } + if (!dst_image.process_scanline(NULL)) + return false; + } + + dst_image.deinit(); + + return dst_stream.close(); + } + + class memory_stream : public output_stream + { + memory_stream(const memory_stream&); + memory_stream& operator= (const memory_stream&); + + uint8* m_pBuf; + uint m_buf_size, m_buf_ofs; + + public: + memory_stream(void* pBuf, uint buf_size) : m_pBuf(static_cast(pBuf)), m_buf_size(buf_size), m_buf_ofs(0) { } + + virtual ~memory_stream() { } + + virtual bool put_buf(const void* pBuf, int len) + { + uint buf_remaining = m_buf_size - m_buf_ofs; + if ((uint)len > buf_remaining) + return false; + memcpy(m_pBuf + m_buf_ofs, pBuf, len); + m_buf_ofs += len; + return true; + } + + uint get_size() const + { + return m_buf_ofs; + } + }; + + bool compress_image_to_jpeg_file_in_memory(void* pDstBuf, int& buf_size, int width, int height, int num_channels, const uint8* pImage_data, const params& comp_params) + { + if ((!pDstBuf) || (!buf_size)) + return false; + + memory_stream dst_stream(pDstBuf, buf_size); + + buf_size = 0; + + jpge::jpeg_encoder dst_image; + if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params)) + return false; + + for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++) + { + for (int i = 0; i < height; i++) + { + const uint8* pScanline = pImage_data + i * width * num_channels; + if (!dst_image.process_scanline(pScanline)) + return false; + } + if (!dst_image.process_scanline(NULL)) + return false; + } + + dst_image.deinit(); + + buf_size = dst_stream.get_size(); + return true; + } + +} // namespace jpge diff --git a/src/jpeg-compressor/jpge.h b/src/jpeg-compressor/jpge.h new file mode 100644 index 000000000..b98a4a641 --- /dev/null +++ b/src/jpeg-compressor/jpge.h @@ -0,0 +1,173 @@ +// jpge.h - C++ class for JPEG compression. +// Public Domain or Apache 2.0, Richard Geldreich +// Alex Evans: Added RGBA support, linear memory allocator. +#ifndef JPEG_ENCODER_H +#define JPEG_ENCODER_H + +namespace jpge +{ + typedef unsigned char uint8; + typedef signed short int16; + typedef signed int int32; + typedef unsigned short uint16; + typedef unsigned int uint32; + typedef unsigned int uint; + + // JPEG chroma subsampling factors. Y_ONLY (grayscale images) and H2V2 (color images) are the most common. + enum subsampling_t { Y_ONLY = 0, H1V1 = 1, H2V1 = 2, H2V2 = 3 }; + + // JPEG compression parameters structure. + struct params + { + inline params() : m_quality(85), m_subsampling(H2V2), m_no_chroma_discrim_flag(false), m_two_pass_flag(false), m_use_std_tables(false) { } + + inline bool check() const + { + if ((m_quality < 1) || (m_quality > 100)) return false; + if ((uint)m_subsampling > (uint)H2V2) return false; + return true; + } + + // Quality: 1-100, higher is better. Typical values are around 50-95. + int m_quality; + + // m_subsampling: + // 0 = Y (grayscale) only + // 1 = YCbCr, no subsampling (H1V1, YCbCr 1x1x1, 3 blocks per MCU) + // 2 = YCbCr, H2V1 subsampling (YCbCr 2x1x1, 4 blocks per MCU) + // 3 = YCbCr, H2V2 subsampling (YCbCr 4x1x1, 6 blocks per MCU-- very common) + subsampling_t m_subsampling; + + // Disables CbCr discrimination - only intended for testing. + // If true, the Y quantization table is also used for the CbCr channels. + bool m_no_chroma_discrim_flag; + + bool m_two_pass_flag; + + // By default we use the same quantization tables as mozjpeg's default. + // Set to true to use the traditional tables from JPEG Annex K. + bool m_use_std_tables; + }; + + // Writes JPEG image to a file. + // num_channels must be 1 (Y) or 3 (RGB), image pitch must be width*num_channels. + bool compress_image_to_jpeg_file(const char* pFilename, int width, int height, int num_channels, const uint8* pImage_data, const params& comp_params = params()); + + // Writes JPEG image to memory buffer. + // On entry, buf_size is the size of the output buffer pointed at by pBuf, which should be at least ~1024 bytes. + // If return value is true, buf_size will be set to the size of the compressed data. + bool compress_image_to_jpeg_file_in_memory(void* pBuf, int& buf_size, int width, int height, int num_channels, const uint8* pImage_data, const params& comp_params = params()); + + // Output stream abstract class - used by the jpeg_encoder class to write to the output stream. + // put_buf() is generally called with len==JPGE_OUT_BUF_SIZE bytes, but for headers it'll be called with smaller amounts. + class output_stream + { + public: + virtual ~output_stream() { }; + virtual bool put_buf(const void* Pbuf, int len) = 0; + template inline bool put_obj(const T& obj) { return put_buf(&obj, sizeof(T)); } + }; + + // Lower level jpeg_encoder class - useful if more control is needed than the above helper functions. + class jpeg_encoder + { + public: + jpeg_encoder(); + ~jpeg_encoder(); + + // Initializes the compressor. + // pStream: The stream object to use for writing compressed data. + // params - Compression parameters structure, defined above. + // width, height - Image dimensions. + // channels - May be 1, or 3. 1 indicates grayscale, 3 indicates RGB source data. + // Returns false on out of memory or if a stream write fails. + bool init(output_stream* pStream, int width, int height, int src_channels, const params& comp_params = params()); + + const params& get_params() const { return m_params; } + + // Deinitializes the compressor, freeing any allocated memory. May be called at any time. + void deinit(); + + uint get_total_passes() const { return m_params.m_two_pass_flag ? 2 : 1; } + inline uint get_cur_pass() { return m_pass_num; } + + // Call this method with each source scanline. + // width * src_channels bytes per scanline is expected (RGB or Y format). + // You must call with NULL after all scanlines are processed to finish compression. + // Returns false on out of memory or if a stream write fails. + bool process_scanline(const void* pScanline); + + private: + jpeg_encoder(const jpeg_encoder&); + jpeg_encoder& operator =(const jpeg_encoder&); + + typedef int32 sample_array_t; + + output_stream* m_pStream; + params m_params; + uint8 m_num_components; + uint8 m_comp_h_samp[3], m_comp_v_samp[3]; + int m_image_x, m_image_y, m_image_bpp, m_image_bpl; + int m_image_x_mcu, m_image_y_mcu; + int m_image_bpl_xlt, m_image_bpl_mcu; + int m_mcus_per_row; + int m_mcu_x, m_mcu_y; + uint8* m_mcu_lines[16]; + uint8 m_mcu_y_ofs; + sample_array_t m_sample_array[64]; + int16 m_coefficient_array[64]; + int32 m_quantization_tables[2][64]; + uint m_huff_codes[4][256]; + uint8 m_huff_code_sizes[4][256]; + uint8 m_huff_bits[4][17]; + uint8 m_huff_val[4][256]; + uint32 m_huff_count[4][256]; + int m_last_dc_val[3]; + enum { JPGE_OUT_BUF_SIZE = 2048 }; + uint8 m_out_buf[JPGE_OUT_BUF_SIZE]; + uint8* m_pOut_buf; + uint m_out_buf_left; + uint32 m_bit_buffer; + uint m_bits_in; + uint8 m_pass_num; + bool m_all_stream_writes_succeeded; + + void optimize_huffman_table(int table_num, int table_len); + void emit_byte(uint8 i); + void emit_word(uint i); + void emit_marker(int marker); + void emit_jfif_app0(); + void emit_dqt(); + void emit_sof(); + void emit_dht(uint8* bits, uint8* val, int index, bool ac_flag); + void emit_dhts(); + void emit_sos(); + void emit_markers(); + void compute_huffman_table(uint* codes, uint8* code_sizes, uint8* bits, uint8* val); + void compute_quant_table(int32* dst, int16* src); + void adjust_quant_table(int32* dst, int32* src); + void first_pass_init(); + bool second_pass_init(); + bool jpg_open(int p_x_res, int p_y_res, int src_channels); + void load_block_8_8_grey(int x); + void load_block_8_8(int x, int y, int c); + void load_block_16_8(int x, int c); + void load_block_16_8_8(int x, int c); + void load_quantized_coefficients(int component_num); + void flush_output_buffer(); + void put_bits(uint bits, uint len); + void code_coefficients_pass_one(int component_num); + void code_coefficients_pass_two(int component_num); + void code_block(int component_num); + void process_mcu_row(); + bool terminate_pass_one(); + bool terminate_pass_two(); + bool process_end_of_image(); + void load_mcu(const void* src); + void clear(); + void init(); + }; + +} // namespace jpge + +#endif // JPEG_ENCODER diff --git a/src/libslic3r/CMakeLists.txt b/src/libslic3r/CMakeLists.txt index d751969d5..6961432c1 100644 --- a/src/libslic3r/CMakeLists.txt +++ b/src/libslic3r/CMakeLists.txt @@ -365,6 +365,7 @@ target_link_libraries(libslic3r PNG::PNG ZLIB::ZLIB qoi + jpeg-compressor ) if (TARGET OpenVDB::openvdb) diff --git a/src/libslic3r/GCode/Thumbnails.cpp b/src/libslic3r/GCode/Thumbnails.cpp index 655997be1..855c32e69 100644 --- a/src/libslic3r/GCode/Thumbnails.cpp +++ b/src/libslic3r/GCode/Thumbnails.cpp @@ -2,6 +2,7 @@ #include "../miniz_extension.hpp" #include +#include namespace Slic3r::GCodeThumbnails { @@ -13,6 +14,12 @@ struct CompressedPNG : CompressedImageBuffer std::string_view tag() const override { return "thumbnail"sv; } }; +struct CompressedJPG : CompressedImageBuffer +{ + ~CompressedJPG() override { free(data); } + std::string_view tag() const override { return "thumbnail_JPG"sv; } +}; + struct CompressedQOI : CompressedImageBuffer { ~CompressedQOI() override { free(data); } @@ -28,9 +35,28 @@ std::unique_ptr compress_thumbnail_png(const ThumbnailDat std::unique_ptr compress_thumbnail_jpg(const ThumbnailData& data) { - //FIXME change to JPG - auto out = std::make_unique(); - out->data = tdefl_write_image_to_png_file_in_memory_ex((const void*)data.pixels.data(), data.width, data.height, 4, &out->size, MZ_DEFAULT_LEVEL, 1); + // Take vector of RGBA pixels and flip the image vertically + std::vector rgba_pixels(data.pixels.size()); + const size_t row_size = data.width * 4; + for (size_t y = 0; y < data.height; ++y) + ::memcpy(rgba_pixels.data() + (data.height - y - 1) * row_size, data.pixels.data() + y * row_size, row_size); + + auto out = std::make_unique(); + + std::vector compressed_data(data.pixels.size()); + jpge::params params; + params.m_quality = 85; + params.m_subsampling = jpge::H2V2; + params.m_no_chroma_discrim_flag = false; + params.m_two_pass_flag = false; + params.m_use_std_tables = false; + + int compressed_data_size = int(compressed_data.size()); + if (jpge::compress_image_to_jpeg_file_in_memory(compressed_data.data(), compressed_data_size, data.width, data.height, 4, rgba_pixels.data(), params)) { + out->data = malloc(compressed_data_size); + out->size = size_t(compressed_data_size); + ::memcpy(out->data, (const void*)compressed_data.data(), out->size); + } return out; }