Removed the old motion planner.
This commit is contained in:
parent
49ce613be7
commit
04c2fde671
@ -128,8 +128,6 @@ add_library(libslic3r STATIC
|
||||
CustomGCode.hpp
|
||||
Arrange.hpp
|
||||
Arrange.cpp
|
||||
MotionPlanner.cpp
|
||||
MotionPlanner.hpp
|
||||
MultiPoint.cpp
|
||||
MultiPoint.hpp
|
||||
MutablePriorityQueue.hpp
|
||||
|
@ -1140,13 +1140,6 @@ void GCode::_do_export(Print& print, FILE* file, ThumbnailsGeneratorCallback thu
|
||||
// Set other general things.
|
||||
_write(file, this->preamble());
|
||||
|
||||
// Initialize a motion planner for object-to-object travel moves.
|
||||
m_avoid_crossing_perimeters.reset();
|
||||
if (print.config().avoid_crossing_perimeters.value) {
|
||||
m_avoid_crossing_perimeters.init_external_mp(print);
|
||||
print.throw_if_canceled();
|
||||
}
|
||||
|
||||
// Calculate wiping points if needed
|
||||
DoExport::init_ooze_prevention(print, m_ooze_prevention);
|
||||
print.throw_if_canceled();
|
||||
@ -2054,11 +2047,8 @@ void GCode::process_layer(
|
||||
for (InstanceToPrint &instance_to_print : instances_to_print) {
|
||||
m_config.apply(instance_to_print.print_object.config(), true);
|
||||
m_layer = layers[instance_to_print.layer_id].layer();
|
||||
if (m_config.avoid_crossing_perimeters) {
|
||||
m_avoid_crossing_perimeters.init_layer_mp(union_ex(m_layer->lslices, true));
|
||||
if (m_config.avoid_crossing_perimeters)
|
||||
m_avoid_crossing_perimeters.init_layer(*m_layer);
|
||||
}
|
||||
|
||||
if (this->config().gcode_label_objects)
|
||||
gcode += std::string("; printing object ") + instance_to_print.print_object.model_object()->name + " id:" + std::to_string(instance_to_print.layer_id) + " copy " + std::to_string(instance_to_print.instance_id) + "\n";
|
||||
// When starting a new object, use the external motion planner for the first travel move.
|
||||
|
@ -5,7 +5,6 @@
|
||||
#include "ExPolygon.hpp"
|
||||
#include "GCodeWriter.hpp"
|
||||
#include "Layer.hpp"
|
||||
#include "MotionPlanner.hpp"
|
||||
#include "Point.hpp"
|
||||
#include "PlaceholderParser.hpp"
|
||||
#include "PrintConfig.hpp"
|
||||
@ -299,7 +298,7 @@ private:
|
||||
std::set<std::string> m_placeholder_parser_failed_templates;
|
||||
OozePrevention m_ooze_prevention;
|
||||
Wipe m_wipe;
|
||||
AvoidCrossingPerimeters2 m_avoid_crossing_perimeters;
|
||||
AvoidCrossingPerimeters m_avoid_crossing_perimeters;
|
||||
bool m_enable_loop_clipping;
|
||||
// If enabled, the G-code generator will put following comments at the ends
|
||||
// of the G-code lines: _EXTRUDE_SET_SPEED, _WIPE, _BRIDGE_FAN_START, _BRIDGE_FAN_END
|
||||
|
@ -1,7 +1,5 @@
|
||||
#include "../Layer.hpp"
|
||||
#include "../MotionPlanner.hpp"
|
||||
#include "../GCode.hpp"
|
||||
#include "../MotionPlanner.hpp"
|
||||
#include "../EdgeGrid.hpp"
|
||||
#include "../Geometry.hpp"
|
||||
#include "../ShortestPath.hpp"
|
||||
@ -21,93 +19,6 @@
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
void AvoidCrossingPerimeters::init_external_mp(const Print& print)
|
||||
{
|
||||
m_external_mp = Slic3r::make_unique<MotionPlanner>(union_ex(this->collect_contours_all_layers(print.objects())));
|
||||
}
|
||||
|
||||
// Plan a travel move while minimizing the number of perimeter crossings.
|
||||
// point is in unscaled coordinates, in the coordinate system of the current active object
|
||||
// (set by gcodegen.set_origin()).
|
||||
Polyline AvoidCrossingPerimeters::travel_to(const GCode& gcodegen, const Point& point)
|
||||
{
|
||||
// If use_external, then perform the path planning in the world coordinate system (correcting for the gcodegen offset).
|
||||
// Otherwise perform the path planning in the coordinate system of the active object.
|
||||
bool use_external = this->use_external_mp || this->use_external_mp_once;
|
||||
Point scaled_origin = use_external ? Point::new_scale(gcodegen.origin()(0), gcodegen.origin()(1)) : Point(0, 0);
|
||||
Polyline result = (use_external ? m_external_mp.get() : m_layer_mp.get())->
|
||||
shortest_path(gcodegen.last_pos() + scaled_origin, point + scaled_origin);
|
||||
if (use_external)
|
||||
result.translate(-scaled_origin);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Collect outer contours of all objects over all layers.
|
||||
// Discard objects only containing thin walls (offset would fail on an empty polygon).
|
||||
// Used by avoid crossing perimeters feature.
|
||||
Polygons AvoidCrossingPerimeters::collect_contours_all_layers(const PrintObjectPtrs& objects)
|
||||
{
|
||||
Polygons islands;
|
||||
for (const PrintObject* object : objects) {
|
||||
// Reducing all the object slices into the Z projection in a logarithimc fashion.
|
||||
// First reduce to half the number of layers.
|
||||
std::vector<Polygons> polygons_per_layer((object->layers().size() + 1) / 2);
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(0, object->layers().size() / 2),
|
||||
[&object, &polygons_per_layer](const tbb::blocked_range<size_t>& range) {
|
||||
for (size_t i = range.begin(); i < range.end(); ++i) {
|
||||
const Layer* layer1 = object->layers()[i * 2];
|
||||
const Layer* layer2 = object->layers()[i * 2 + 1];
|
||||
Polygons polys;
|
||||
polys.reserve(layer1->lslices.size() + layer2->lslices.size());
|
||||
for (const ExPolygon& expoly : layer1->lslices)
|
||||
//FIXME no holes?
|
||||
polys.emplace_back(expoly.contour);
|
||||
for (const ExPolygon& expoly : layer2->lslices)
|
||||
//FIXME no holes?
|
||||
polys.emplace_back(expoly.contour);
|
||||
polygons_per_layer[i] = union_(polys);
|
||||
}
|
||||
});
|
||||
if (object->layers().size() & 1) {
|
||||
const Layer* layer = object->layers().back();
|
||||
Polygons polys;
|
||||
polys.reserve(layer->lslices.size());
|
||||
for (const ExPolygon& expoly : layer->lslices)
|
||||
//FIXME no holes?
|
||||
polys.emplace_back(expoly.contour);
|
||||
polygons_per_layer.back() = union_(polys);
|
||||
}
|
||||
// Now reduce down to a single layer.
|
||||
size_t cnt = polygons_per_layer.size();
|
||||
while (cnt > 1) {
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(0, cnt / 2),
|
||||
[&polygons_per_layer](const tbb::blocked_range<size_t>& range) {
|
||||
for (size_t i = range.begin(); i < range.end(); ++i) {
|
||||
Polygons polys;
|
||||
polys.reserve(polygons_per_layer[i * 2].size() + polygons_per_layer[i * 2 + 1].size());
|
||||
polygons_append(polys, polygons_per_layer[i * 2]);
|
||||
polygons_append(polys, polygons_per_layer[i * 2 + 1]);
|
||||
polygons_per_layer[i * 2] = union_(polys);
|
||||
}
|
||||
});
|
||||
for (size_t i = 1; i < cnt / 2; ++i)
|
||||
polygons_per_layer[i] = std::move(polygons_per_layer[i * 2]);
|
||||
if (cnt & 1)
|
||||
polygons_per_layer[cnt / 2] = std::move(polygons_per_layer[cnt - 1]);
|
||||
cnt = (cnt + 1) / 2;
|
||||
}
|
||||
// And collect copies of the objects.
|
||||
for (const PrintInstance& instance : object->instances()) {
|
||||
// All the layers were reduced to the 1st item of polygons_per_layer.
|
||||
size_t i = islands.size();
|
||||
polygons_append(islands, polygons_per_layer.front());
|
||||
for (; i < islands.size(); ++i)
|
||||
islands[i].translate(instance.shift);
|
||||
}
|
||||
}
|
||||
return islands;
|
||||
}
|
||||
|
||||
// Create a rotation matrix for projection on the given vector
|
||||
static Matrix2d rotation_by_direction(const Point &direction)
|
||||
{
|
||||
@ -274,16 +185,16 @@ static std::pair<Polygons, Polygons> split_expolygon(const ExPolygons &ex_polygo
|
||||
return std::make_pair(std::move(contours), std::move(holes));
|
||||
}
|
||||
|
||||
static Polyline to_polyline(const std::vector<AvoidCrossingPerimeters2::TravelPoint> &travel)
|
||||
static Polyline to_polyline(const std::vector<AvoidCrossingPerimeters::TravelPoint> &travel)
|
||||
{
|
||||
Polyline result;
|
||||
result.points.reserve(travel.size());
|
||||
for (const AvoidCrossingPerimeters2::TravelPoint &t_point : travel)
|
||||
for (const AvoidCrossingPerimeters::TravelPoint &t_point : travel)
|
||||
result.append(t_point.point);
|
||||
return result;
|
||||
}
|
||||
|
||||
static double travel_length(const std::vector<AvoidCrossingPerimeters2::TravelPoint> &travel) {
|
||||
static double travel_length(const std::vector<AvoidCrossingPerimeters::TravelPoint> &travel) {
|
||||
double total_length = 0;
|
||||
for (size_t idx = 1; idx < travel.size(); ++idx)
|
||||
total_length += (travel[idx].point - travel[idx - 1].point).cast<double>().norm();
|
||||
@ -295,7 +206,7 @@ static double travel_length(const std::vector<AvoidCrossingPerimeters2::TravelPo
|
||||
static void export_travel_to_svg(const Polygons &boundary,
|
||||
const Line &original_travel,
|
||||
const Polyline &result_travel,
|
||||
const std::vector<AvoidCrossingPerimeters2::Intersection> &intersections,
|
||||
const std::vector<AvoidCrossingPerimeters::Intersection> &intersections,
|
||||
const std::string &path)
|
||||
{
|
||||
BoundingBox bbox = get_extents(boundary);
|
||||
@ -306,21 +217,21 @@ static void export_travel_to_svg(const Polygons
|
||||
svg.draw(original_travel.a, "black");
|
||||
svg.draw(original_travel.b, "grey");
|
||||
|
||||
for (const AvoidCrossingPerimeters2::Intersection &intersection : intersections)
|
||||
for (const AvoidCrossingPerimeters::Intersection &intersection : intersections)
|
||||
svg.draw(intersection.point, "lightseagreen");
|
||||
}
|
||||
|
||||
static void export_travel_to_svg(const Polygons &boundary,
|
||||
const Line &original_travel,
|
||||
const std::vector<AvoidCrossingPerimeters2::TravelPoint> &result_travel,
|
||||
const std::vector<AvoidCrossingPerimeters2::Intersection> &intersections,
|
||||
const std::vector<AvoidCrossingPerimeters::TravelPoint> &result_travel,
|
||||
const std::vector<AvoidCrossingPerimeters::Intersection> &intersections,
|
||||
const std::string &path)
|
||||
{
|
||||
export_travel_to_svg(boundary, original_travel, to_polyline(result_travel), intersections, path);
|
||||
}
|
||||
#endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */
|
||||
|
||||
ExPolygons AvoidCrossingPerimeters2::get_boundary(const Layer &layer)
|
||||
ExPolygons AvoidCrossingPerimeters::get_boundary(const Layer &layer)
|
||||
{
|
||||
const float perimeter_spacing = get_perimeter_spacing(layer);
|
||||
const float perimeter_offset = perimeter_spacing / 2.f;
|
||||
@ -380,7 +291,7 @@ ExPolygons AvoidCrossingPerimeters2::get_boundary(const Layer &layer)
|
||||
return result_boundary;
|
||||
}
|
||||
|
||||
ExPolygons AvoidCrossingPerimeters2::get_boundary_external(const Layer &layer)
|
||||
ExPolygons AvoidCrossingPerimeters::get_boundary_external(const Layer &layer)
|
||||
{
|
||||
const float perimeter_spacing = get_perimeter_spacing_external(layer);
|
||||
const float perimeter_offset = perimeter_spacing / 2.f;
|
||||
@ -417,7 +328,7 @@ ExPolygons AvoidCrossingPerimeters2::get_boundary_external(const Layer &layer)
|
||||
}
|
||||
|
||||
// Returns a direction of the shortest path along the polygon boundary
|
||||
AvoidCrossingPerimeters2::Direction AvoidCrossingPerimeters2::get_shortest_direction(const Lines &lines,
|
||||
AvoidCrossingPerimeters::Direction AvoidCrossingPerimeters::get_shortest_direction(const Lines &lines,
|
||||
const size_t start_idx,
|
||||
const size_t end_idx,
|
||||
const Point &intersection_first,
|
||||
@ -447,7 +358,7 @@ AvoidCrossingPerimeters2::Direction AvoidCrossingPerimeters2::get_shortest_direc
|
||||
return (total_length_forward < total_length_backward) ? Direction::Forward : Direction::Backward;
|
||||
}
|
||||
|
||||
std::vector<AvoidCrossingPerimeters2::TravelPoint> AvoidCrossingPerimeters2::simplify_travel(const EdgeGrid::Grid &edge_grid,
|
||||
std::vector<AvoidCrossingPerimeters::TravelPoint> AvoidCrossingPerimeters::simplify_travel(const EdgeGrid::Grid &edge_grid,
|
||||
const std::vector<TravelPoint> &travel,
|
||||
const Polygons &boundaries,
|
||||
const bool use_heuristics)
|
||||
@ -521,7 +432,7 @@ std::vector<AvoidCrossingPerimeters2::TravelPoint> AvoidCrossingPerimeters2::sim
|
||||
return simplified_path;
|
||||
}
|
||||
|
||||
std::vector<AvoidCrossingPerimeters2::TravelPoint> AvoidCrossingPerimeters2::simplify_travel_heuristics(const EdgeGrid::Grid &edge_grid,
|
||||
std::vector<AvoidCrossingPerimeters::TravelPoint> AvoidCrossingPerimeters::simplify_travel_heuristics(const EdgeGrid::Grid &edge_grid,
|
||||
const std::vector<TravelPoint> &travel,
|
||||
const Polygons &boundaries)
|
||||
{
|
||||
@ -600,7 +511,7 @@ std::vector<AvoidCrossingPerimeters2::TravelPoint> AvoidCrossingPerimeters2::sim
|
||||
return simplified_path;
|
||||
}
|
||||
|
||||
size_t AvoidCrossingPerimeters2::avoid_perimeters(const Polygons &boundaries,
|
||||
size_t AvoidCrossingPerimeters::avoid_perimeters(const Polygons &boundaries,
|
||||
const EdgeGrid::Grid &edge_grid,
|
||||
const Point &start,
|
||||
const Point &end,
|
||||
@ -697,7 +608,7 @@ size_t AvoidCrossingPerimeters2::avoid_perimeters(const Polygons &boun
|
||||
return intersections.size();
|
||||
}
|
||||
|
||||
bool AvoidCrossingPerimeters2::need_wipe(const GCode & gcodegen,
|
||||
bool AvoidCrossingPerimeters::need_wipe(const GCode & gcodegen,
|
||||
const Line & original_travel,
|
||||
const Polyline &result_travel,
|
||||
const size_t intersection_count)
|
||||
@ -731,7 +642,7 @@ bool AvoidCrossingPerimeters2::need_wipe(const GCode & gcodegen,
|
||||
}
|
||||
|
||||
// Plan travel, which avoids perimeter crossings by following the boundaries of the layer.
|
||||
Polyline AvoidCrossingPerimeters2::travel_to(const GCode &gcodegen, const Point &point, bool *could_be_wipe_disabled)
|
||||
Polyline AvoidCrossingPerimeters::travel_to(const GCode &gcodegen, const Point &point, bool *could_be_wipe_disabled)
|
||||
{
|
||||
// If use_external, then perform the path planning in the world coordinate system (correcting for the gcodegen offset).
|
||||
// Otherwise perform the path planning in the coordinate system of the active object.
|
||||
@ -772,7 +683,7 @@ Polyline AvoidCrossingPerimeters2::travel_to(const GCode &gcodegen, const Point
|
||||
return result_pl;
|
||||
}
|
||||
|
||||
void AvoidCrossingPerimeters2::init_layer(const Layer &layer)
|
||||
void AvoidCrossingPerimeters::init_layer(const Layer &layer)
|
||||
{
|
||||
m_slice.clear();
|
||||
m_boundaries.clear();
|
||||
|
@ -13,7 +13,6 @@ namespace Slic3r {
|
||||
// Forward declarations.
|
||||
class GCode;
|
||||
class Layer;
|
||||
class MotionPlanner;
|
||||
class Point;
|
||||
class Print;
|
||||
class PrintObject;
|
||||
@ -23,44 +22,6 @@ using PrintObjectPtrs = std::vector<PrintObject *>;
|
||||
|
||||
class AvoidCrossingPerimeters
|
||||
{
|
||||
public:
|
||||
// this flag triggers the use of the external configuration space
|
||||
bool use_external_mp;
|
||||
bool use_external_mp_once; // just for the next travel move
|
||||
|
||||
// this flag disables avoid_crossing_perimeters just for the next travel move
|
||||
// we enable it by default for the first travel move in print
|
||||
bool disable_once;
|
||||
|
||||
AvoidCrossingPerimeters() : use_external_mp(false), use_external_mp_once(false), disable_once(true) {}
|
||||
virtual ~AvoidCrossingPerimeters() = default;
|
||||
|
||||
void reset()
|
||||
{
|
||||
m_external_mp.reset();
|
||||
m_layer_mp.reset();
|
||||
}
|
||||
virtual void init_external_mp(const Print &print);
|
||||
virtual void init_layer_mp(const ExPolygons &islands) { m_layer_mp = Slic3r::make_unique<MotionPlanner>(islands); }
|
||||
|
||||
virtual Polyline travel_to(const GCode &gcodegen, const Point &point);
|
||||
|
||||
virtual Polyline travel_to(const GCode &gcodegen, const Point &point, bool *could_be_wipe_disabled)
|
||||
{
|
||||
*could_be_wipe_disabled = true;
|
||||
return this->travel_to(gcodegen, point);
|
||||
}
|
||||
|
||||
protected:
|
||||
// For initializing the regions to avoid.
|
||||
static Polygons collect_contours_all_layers(const PrintObjectPtrs &objects);
|
||||
|
||||
std::unique_ptr<MotionPlanner> m_external_mp;
|
||||
std::unique_ptr<MotionPlanner> m_layer_mp;
|
||||
};
|
||||
|
||||
class AvoidCrossingPerimeters2 : public AvoidCrossingPerimeters
|
||||
{
|
||||
public:
|
||||
struct Intersection
|
||||
{
|
||||
@ -88,12 +49,12 @@ public:
|
||||
|
||||
struct AllIntersectionsVisitor
|
||||
{
|
||||
AllIntersectionsVisitor(const EdgeGrid::Grid &grid, std::vector<AvoidCrossingPerimeters2::Intersection> &intersections)
|
||||
AllIntersectionsVisitor(const EdgeGrid::Grid &grid, std::vector<AvoidCrossingPerimeters::Intersection> &intersections)
|
||||
: grid(grid), intersections(intersections)
|
||||
{}
|
||||
|
||||
AllIntersectionsVisitor(const EdgeGrid::Grid &grid,
|
||||
std::vector<AvoidCrossingPerimeters2::Intersection> &intersections,
|
||||
std::vector<AvoidCrossingPerimeters::Intersection> &intersections,
|
||||
const Matrix2d &transform_to_x_axis,
|
||||
const Line &travel_line)
|
||||
: grid(grid), intersections(intersections), transform_to_x_axis(transform_to_x_axis), travel_line(travel_line)
|
||||
@ -125,7 +86,7 @@ public:
|
||||
}
|
||||
|
||||
const EdgeGrid::Grid &grid;
|
||||
std::vector<AvoidCrossingPerimeters2::Intersection> &intersections;
|
||||
std::vector<AvoidCrossingPerimeters::Intersection> &intersections;
|
||||
Matrix2d transform_to_x_axis;
|
||||
Line travel_line;
|
||||
std::unordered_set<std::pair<size_t, size_t>, boost::hash<std::pair<size_t, size_t>>> intersection_set;
|
||||
@ -141,12 +102,12 @@ private:
|
||||
static Direction get_shortest_direction(
|
||||
const Lines &lines, const size_t start_idx, const size_t end_idx, const Point &intersection_first, const Point &intersection_last);
|
||||
|
||||
static std::vector<AvoidCrossingPerimeters2::TravelPoint> simplify_travel(const EdgeGrid::Grid &edge_grid,
|
||||
static std::vector<AvoidCrossingPerimeters::TravelPoint> simplify_travel(const EdgeGrid::Grid &edge_grid,
|
||||
const std::vector<TravelPoint> &travel,
|
||||
const Polygons &boundaries,
|
||||
const bool use_heuristics);
|
||||
|
||||
static std::vector<AvoidCrossingPerimeters2::TravelPoint> simplify_travel_heuristics(const EdgeGrid::Grid &edge_grid,
|
||||
static std::vector<AvoidCrossingPerimeters::TravelPoint> simplify_travel_heuristics(const EdgeGrid::Grid &edge_grid,
|
||||
const std::vector<TravelPoint> &travel,
|
||||
const Polygons &boundaries);
|
||||
|
||||
@ -173,24 +134,27 @@ private:
|
||||
EdgeGrid::Grid m_grid_external;
|
||||
|
||||
public:
|
||||
AvoidCrossingPerimeters2() : AvoidCrossingPerimeters() {}
|
||||
// this flag triggers the use of the external configuration space
|
||||
bool use_external_mp { false };
|
||||
// just for the next travel move
|
||||
bool use_external_mp_once { false };
|
||||
// this flag disables avoid_crossing_perimeters just for the next travel move
|
||||
// we enable it by default for the first travel move in print
|
||||
bool disable_once { true };
|
||||
|
||||
virtual ~AvoidCrossingPerimeters2() = default;
|
||||
AvoidCrossingPerimeters() = default;
|
||||
|
||||
// Used for disabling unnecessary calling collect_contours_all_layers
|
||||
virtual void init_external_mp(const Print &print) override {};
|
||||
virtual void init_layer_mp(const ExPolygons &islands) override {};
|
||||
|
||||
virtual Polyline travel_to(const GCode &gcodegen, const Point &point) override
|
||||
Polyline travel_to(const GCode& gcodegen, const Point& point)
|
||||
{
|
||||
bool could_be_wipe_disabled;
|
||||
return this->travel_to(gcodegen, point, &could_be_wipe_disabled);
|
||||
}
|
||||
|
||||
virtual Polyline travel_to(const GCode &gcodegen, const Point &point, bool *could_be_wipe_disabled) override;
|
||||
Polyline travel_to(const GCode& gcodegen, const Point& point, bool* could_be_wipe_disabled);
|
||||
|
||||
void init_layer(const Layer &layer);
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_AvoidCrossingPerimeters_hpp_
|
@ -1,363 +0,0 @@
|
||||
#include "BoundingBox.hpp"
|
||||
#include "MotionPlanner.hpp"
|
||||
#include "MutablePriorityQueue.hpp"
|
||||
#include "Utils.hpp"
|
||||
|
||||
#include <limits> // for numeric_limits
|
||||
#include <assert.h>
|
||||
|
||||
#define BOOST_VORONOI_USE_GMP 1
|
||||
#include "boost/polygon/voronoi.hpp"
|
||||
using boost::polygon::voronoi_builder;
|
||||
using boost::polygon::voronoi_diagram;
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
MotionPlanner::MotionPlanner(const ExPolygons &islands) : m_initialized(false)
|
||||
{
|
||||
ExPolygons expp;
|
||||
for (const ExPolygon &island : islands) {
|
||||
island.simplify(SCALED_EPSILON, &expp);
|
||||
for (ExPolygon &island : expp)
|
||||
m_islands.emplace_back(MotionPlannerEnv(island));
|
||||
expp.clear();
|
||||
}
|
||||
}
|
||||
|
||||
void MotionPlanner::initialize()
|
||||
{
|
||||
// prevent initialization of empty BoundingBox
|
||||
if (m_initialized || m_islands.empty())
|
||||
return;
|
||||
|
||||
// loop through islands in order to create inner expolygons and collect their contours.
|
||||
Polygons outer_holes;
|
||||
for (MotionPlannerEnv &island : m_islands) {
|
||||
// Generate the internal env boundaries by shrinking the island
|
||||
// we'll use these inner rings for motion planning (endpoints of the Voronoi-based
|
||||
// graph, visibility check) in order to avoid moving too close to the boundaries.
|
||||
island.m_env = ExPolygonCollection(offset_ex(island.m_island, -MP_INNER_MARGIN));
|
||||
// Island contours are holes of our external environment.
|
||||
outer_holes.push_back(island.m_island.contour);
|
||||
}
|
||||
|
||||
// Generate a box contour around everyting.
|
||||
Polygons contour = offset(get_extents(outer_holes).polygon(), +MP_OUTER_MARGIN*2);
|
||||
assert(contour.size() == 1);
|
||||
// make expolygon for outer environment
|
||||
ExPolygons outer = diff_ex(contour, outer_holes);
|
||||
assert(outer.size() == 1);
|
||||
// If some of the islands are nested, then the 0th contour is the outer contour due to the order of conversion
|
||||
// from Clipper data structure into the Slic3r expolygons inside diff_ex().
|
||||
m_outer = MotionPlannerEnv(outer.front());
|
||||
m_outer.m_env = ExPolygonCollection(diff_ex(contour, offset(outer_holes, +MP_OUTER_MARGIN)));
|
||||
m_graphs.resize(m_islands.size() + 1);
|
||||
m_initialized = true;
|
||||
}
|
||||
|
||||
Polyline MotionPlanner::shortest_path(const Point &from, const Point &to)
|
||||
{
|
||||
// If we have an empty configuration space, return a straight move.
|
||||
if (m_islands.empty())
|
||||
return Polyline(from, to);
|
||||
|
||||
// Are both points in the same island?
|
||||
int island_idx_from = -1;
|
||||
int island_idx_to = -1;
|
||||
int island_idx = -1;
|
||||
for (MotionPlannerEnv &island : m_islands) {
|
||||
int idx = &island - m_islands.data();
|
||||
if (island.island_contains(from))
|
||||
island_idx_from = idx;
|
||||
if (island.island_contains(to))
|
||||
island_idx_to = idx;
|
||||
if (island_idx_from == idx && island_idx_to == idx) {
|
||||
// Since both points are in the same island, is a direct move possible?
|
||||
// If so, we avoid generating the visibility environment.
|
||||
if (island.m_island.contains(Line(from, to)))
|
||||
return Polyline(from, to);
|
||||
// Both points are inside a single island, but the straight line crosses the island boundary.
|
||||
island_idx = idx;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// lazy generation of configuration space.
|
||||
this->initialize();
|
||||
|
||||
// Get environment. If the from / to points do not share an island, then they cross an open space,
|
||||
// therefore island_idx == -1 and env will be set to the environment of the empty space.
|
||||
const MotionPlannerEnv &env = this->get_env(island_idx);
|
||||
if (env.m_env.expolygons.empty()) {
|
||||
// if this environment is empty (probably because it's too small), perform straight move
|
||||
// and avoid running the algorithms on empty dataset
|
||||
return Polyline(from, to);
|
||||
}
|
||||
|
||||
// Now check whether points are inside the environment.
|
||||
Point inner_from = from;
|
||||
Point inner_to = to;
|
||||
|
||||
if (island_idx == -1) {
|
||||
// The end points do not share the same island. In that case some of the travel
|
||||
// will be likely performed inside the empty space.
|
||||
// TODO: instead of using the nearest_env_point() logic, we should
|
||||
// create a temporary graph where we connect 'from' and 'to' to the
|
||||
// nodes which don't require more than one crossing, and let Dijkstra
|
||||
// figure out the entire path - this should also replace the call to
|
||||
// find_node() below
|
||||
if (island_idx_from != -1)
|
||||
// The start point is inside some island. Find the closest point at the empty space to start from.
|
||||
inner_from = env.nearest_env_point(from, to);
|
||||
if (island_idx_to != -1)
|
||||
// The start point is inside some island. Find the closest point at the empty space to start from.
|
||||
inner_to = env.nearest_env_point(to, inner_from);
|
||||
}
|
||||
|
||||
// Perform a path search either in the open space, or in a common island of from/to.
|
||||
const MotionPlannerGraph &graph = this->init_graph(island_idx);
|
||||
// If no path exists without crossing perimeters, returns a straight segment.
|
||||
Polyline polyline = graph.shortest_path(inner_from, inner_to);
|
||||
polyline.points.insert(polyline.points.begin(), from);
|
||||
polyline.points.emplace_back(to);
|
||||
|
||||
{
|
||||
// grow our environment slightly in order for simplify_by_visibility()
|
||||
// to work best by considering moves on boundaries valid as well
|
||||
ExPolygonCollection grown_env(offset_ex(env.m_env.expolygons, float(+SCALED_EPSILON)));
|
||||
|
||||
if (island_idx == -1) {
|
||||
/* If 'from' or 'to' are not inside our env, they were connected using the
|
||||
nearest_env_point() search which maybe produce ugly paths since it does not
|
||||
include the endpoint in the Dijkstra search; the simplify_by_visibility()
|
||||
call below will not work in many cases where the endpoint is not contained in
|
||||
grown_env (whose contour was arbitrarily constructed with MP_OUTER_MARGIN,
|
||||
which may not be enough for, say, including a skirt point). So we prune
|
||||
the extra points manually. */
|
||||
if (! grown_env.contains(from)) {
|
||||
// delete second point while the line connecting first to third crosses the
|
||||
// boundaries as many times as the current first to second
|
||||
while (polyline.points.size() > 2 && intersection_ln(Line(from, polyline.points[2]), (Polygons)grown_env).size() == 1)
|
||||
polyline.points.erase(polyline.points.begin() + 1);
|
||||
}
|
||||
if (! grown_env.contains(to))
|
||||
while (polyline.points.size() > 2 && intersection_ln(Line(*(polyline.points.end() - 3), to), (Polygons)grown_env).size() == 1)
|
||||
polyline.points.erase(polyline.points.end() - 2);
|
||||
}
|
||||
|
||||
// Perform some quick simplification (simplify_by_visibility() would make this
|
||||
// unnecessary, but this is much faster)
|
||||
polyline.simplify(MP_INNER_MARGIN/10);
|
||||
|
||||
// remove unnecessary vertices
|
||||
// Note: this is computationally intensive and does not look very necessary
|
||||
// now that we prune the endpoints with the logic above,
|
||||
// so we comment it for now until a good test case arises
|
||||
//polyline.simplify_by_visibility(grown_env);
|
||||
|
||||
/*
|
||||
SVG svg("shortest_path.svg");
|
||||
svg.draw(grown_env.expolygons);
|
||||
svg.arrows = false;
|
||||
for (MotionPlannerGraph::adjacency_list_t::const_iterator it = graph->adjacency_list.begin(); it != graph->adjacency_list.end(); ++it) {
|
||||
Point a = graph->nodes[it - graph->adjacency_list.begin()];
|
||||
for (std::vector<MotionPlannerGraph::Neighbor>::const_iterator n = it->begin(); n != it->end(); ++n) {
|
||||
Point b = graph->nodes[n->target];
|
||||
svg.draw(Line(a, b));
|
||||
}
|
||||
}
|
||||
svg.arrows = true;
|
||||
svg.draw(from);
|
||||
svg.draw(inner_from, "red");
|
||||
svg.draw(to);
|
||||
svg.draw(inner_to, "red");
|
||||
svg.draw(polyline, "red");
|
||||
svg.Close();
|
||||
*/
|
||||
}
|
||||
|
||||
return polyline;
|
||||
}
|
||||
|
||||
const MotionPlannerGraph& MotionPlanner::init_graph(int island_idx)
|
||||
{
|
||||
// 0th graph is the graph for m_outer. Other graphs are 1 indexed.
|
||||
MotionPlannerGraph *graph = m_graphs[island_idx + 1].get();
|
||||
if (graph == nullptr) {
|
||||
// If this graph doesn't exist, initialize it.
|
||||
m_graphs[island_idx + 1] = make_unique<MotionPlannerGraph>();
|
||||
graph = m_graphs[island_idx + 1].get();
|
||||
|
||||
/* We don't add polygon boundaries as graph edges, because we'd need to connect
|
||||
them to the Voronoi-generated edges by recognizing coinciding nodes. */
|
||||
|
||||
typedef voronoi_diagram<double> VD;
|
||||
VD vd;
|
||||
// Mapping between Voronoi vertices and graph nodes.
|
||||
std::map<const VD::vertex_type*, size_t> vd_vertices;
|
||||
// get boundaries as lines
|
||||
const MotionPlannerEnv &env = this->get_env(island_idx);
|
||||
Lines lines = env.m_env.lines();
|
||||
boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd);
|
||||
// traverse the Voronoi diagram and generate graph nodes and edges
|
||||
for (const VD::edge_type &edge : vd.edges()) {
|
||||
if (edge.is_infinite())
|
||||
continue;
|
||||
const VD::vertex_type* v0 = edge.vertex0();
|
||||
const VD::vertex_type* v1 = edge.vertex1();
|
||||
Point p0(v0->x(), v0->y());
|
||||
Point p1(v1->x(), v1->y());
|
||||
// Insert only Voronoi edges fully contained in the island.
|
||||
//FIXME This test has a terrible O(n^2) time complexity.
|
||||
if (env.island_contains_b(p0) && env.island_contains_b(p1)) {
|
||||
// Find v0 in the graph, allocate a new node if v0 does not exist in the graph yet.
|
||||
auto i_v0 = vd_vertices.find(v0);
|
||||
size_t v0_idx;
|
||||
if (i_v0 == vd_vertices.end())
|
||||
vd_vertices[v0] = v0_idx = graph->add_node(p0);
|
||||
else
|
||||
v0_idx = i_v0->second;
|
||||
// Find v1 in the graph, allocate a new node if v0 does not exist in the graph yet.
|
||||
auto i_v1 = vd_vertices.find(v1);
|
||||
size_t v1_idx;
|
||||
if (i_v1 == vd_vertices.end())
|
||||
vd_vertices[v1] = v1_idx = graph->add_node(p1);
|
||||
else
|
||||
v1_idx = i_v1->second;
|
||||
// Euclidean distance is used as weight for the graph edge
|
||||
graph->add_edge(v0_idx, v1_idx, (p1 - p0).cast<double>().norm());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return *graph;
|
||||
}
|
||||
|
||||
// Find a middle point on the path from start_point to end_point with the shortest path.
|
||||
static inline size_t nearest_waypoint_index(const Point &start_point, const Points &middle_points, const Point &end_point)
|
||||
{
|
||||
size_t idx = size_t(-1);
|
||||
double dmin = std::numeric_limits<double>::infinity();
|
||||
for (const Point &p : middle_points) {
|
||||
double d = (p - start_point).cast<double>().norm() + (end_point - p).cast<double>().norm();
|
||||
if (d < dmin) {
|
||||
idx = &p - middle_points.data();
|
||||
dmin = d;
|
||||
if (dmin < EPSILON)
|
||||
break;
|
||||
}
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) const
|
||||
{
|
||||
/* In order to ensure that the move between 'from' and the initial env point does
|
||||
not violate any of the configuration space boundaries, we limit our search to
|
||||
the points that satisfy this condition. */
|
||||
|
||||
/* Assume that this method is never called when 'env' contains 'from';
|
||||
so 'from' is either inside a hole or outside all contours */
|
||||
|
||||
// get the points of the hole containing 'from', if any
|
||||
Points pp;
|
||||
for (const ExPolygon &ex : m_env.expolygons) {
|
||||
for (const Polygon &hole : ex.holes)
|
||||
if (hole.contains(from))
|
||||
pp = hole;
|
||||
if (! pp.empty())
|
||||
break;
|
||||
}
|
||||
|
||||
// If 'from' is not inside a hole, it's outside of all contours, so take all contours' points.
|
||||
if (pp.empty())
|
||||
for (const ExPolygon &ex : m_env.expolygons)
|
||||
append(pp, ex.contour.points);
|
||||
|
||||
// Find the candidate result and check that it doesn't cross too many boundaries.
|
||||
while (pp.size() > 1) {
|
||||
// find the point in pp that is closest to both 'from' and 'to'
|
||||
size_t result = nearest_waypoint_index(from, pp, to);
|
||||
// as we assume 'from' is outside env, any node will require at least one crossing
|
||||
if (intersection_ln(Line(from, pp[result]), m_island).size() > 1) {
|
||||
// discard result
|
||||
pp.erase(pp.begin() + result);
|
||||
} else
|
||||
return pp[result];
|
||||
}
|
||||
|
||||
// if we're here, return last point if any (better than nothing)
|
||||
// if we have no points at all, then we have an empty environment and we
|
||||
// make this method behave as a no-op (we shouldn't get here by the way)
|
||||
return pp.empty() ? from : pp.front();
|
||||
}
|
||||
|
||||
// Add a new directed edge to the adjacency graph.
|
||||
void MotionPlannerGraph::add_edge(size_t from, size_t to, double weight)
|
||||
{
|
||||
// Extend adjacency list until this start node.
|
||||
if (m_adjacency_list.size() < from + 1) {
|
||||
// Reserve in powers of two to avoid repeated reallocation.
|
||||
m_adjacency_list.reserve(std::max<uint32_t>(8, next_highest_power_of_2((uint32_t)(from + 1))));
|
||||
// Allocate new empty adjacency vectors.
|
||||
m_adjacency_list.resize(from + 1);
|
||||
}
|
||||
m_adjacency_list[from].emplace_back(Neighbor(node_t(to), weight));
|
||||
}
|
||||
|
||||
// Dijkstra's shortest path in a weighted graph from node_start to node_end.
|
||||
// The returned path contains the end points.
|
||||
// If no path exists from node_start to node_end, a straight segment is returned.
|
||||
Polyline MotionPlannerGraph::shortest_path(size_t node_start, size_t node_end) const
|
||||
{
|
||||
// This prevents a crash in case for some reason we got here with an empty adjacency list.
|
||||
if (this->empty())
|
||||
return Polyline();
|
||||
|
||||
// Dijkstra algorithm, previous node of the current node 'u' in the shortest path towards node_start.
|
||||
std::vector<node_t> previous(m_adjacency_list.size(), -1);
|
||||
std::vector<weight_t> distance(m_adjacency_list.size(), std::numeric_limits<weight_t>::infinity());
|
||||
std::vector<size_t> map_node_to_queue_id(m_adjacency_list.size(), size_t(-1));
|
||||
distance[node_start] = 0.;
|
||||
|
||||
auto queue = make_mutable_priority_queue<node_t, false>(
|
||||
[&map_node_to_queue_id](const node_t node, size_t idx) { map_node_to_queue_id[node] = idx; },
|
||||
[&distance](const node_t node1, const node_t node2) { return distance[node1] < distance[node2]; });
|
||||
queue.reserve(m_adjacency_list.size());
|
||||
for (size_t i = 0; i < m_adjacency_list.size(); ++ i)
|
||||
queue.push(node_t(i));
|
||||
|
||||
while (! queue.empty()) {
|
||||
// Get the next node with the lowest distance to node_start.
|
||||
node_t u = node_t(queue.top());
|
||||
queue.pop();
|
||||
map_node_to_queue_id[u] = size_t(-1);
|
||||
// Stop searching if we reached our destination.
|
||||
if (size_t(u) == node_end)
|
||||
break;
|
||||
// Visit each edge starting at node u.
|
||||
for (const Neighbor& neighbor : m_adjacency_list[u])
|
||||
if (map_node_to_queue_id[neighbor.target] != size_t(-1)) {
|
||||
weight_t alt = distance[u] + neighbor.weight;
|
||||
// If total distance through u is shorter than the previous
|
||||
// distance (if any) between node_start and neighbor.target, replace it.
|
||||
if (alt < distance[neighbor.target]) {
|
||||
distance[neighbor.target] = alt;
|
||||
previous[neighbor.target] = u;
|
||||
queue.update(map_node_to_queue_id[neighbor.target]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// In case the end point was not reached, previous[node_end] contains -1
|
||||
// and a straight line from node_start to node_end is returned.
|
||||
Polyline polyline;
|
||||
polyline.points.reserve(m_adjacency_list.size());
|
||||
for (node_t vertex = node_t(node_end); vertex != -1; vertex = previous[vertex])
|
||||
polyline.points.emplace_back(m_nodes[vertex]);
|
||||
polyline.points.emplace_back(m_nodes[node_start]);
|
||||
polyline.reverse();
|
||||
return polyline;
|
||||
}
|
||||
|
||||
}
|
@ -1,91 +0,0 @@
|
||||
#ifndef slic3r_MotionPlanner_hpp_
|
||||
#define slic3r_MotionPlanner_hpp_
|
||||
|
||||
#include "libslic3r.h"
|
||||
#include "BoundingBox.hpp"
|
||||
#include "ClipperUtils.hpp"
|
||||
#include "ExPolygonCollection.hpp"
|
||||
#include "Polyline.hpp"
|
||||
#include <map>
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#define MP_INNER_MARGIN scale_(1.0)
|
||||
#define MP_OUTER_MARGIN scale_(2.0)
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class MotionPlanner;
|
||||
|
||||
class MotionPlannerEnv
|
||||
{
|
||||
friend class MotionPlanner;
|
||||
|
||||
public:
|
||||
MotionPlannerEnv() {};
|
||||
MotionPlannerEnv(const ExPolygon &island) : m_island(island), m_island_bbox(get_extents(island)) {};
|
||||
Point nearest_env_point(const Point &from, const Point &to) const;
|
||||
bool island_contains(const Point &pt) const
|
||||
{ return m_island_bbox.contains(pt) && m_island.contains(pt); }
|
||||
bool island_contains_b(const Point &pt) const
|
||||
{ return m_island_bbox.contains(pt) && m_island.contains_b(pt); }
|
||||
|
||||
private:
|
||||
ExPolygon m_island;
|
||||
BoundingBox m_island_bbox;
|
||||
// Region, where the travel is allowed.
|
||||
ExPolygonCollection m_env;
|
||||
};
|
||||
|
||||
// A 2D directed graph for searching a shortest path using the famous Dijkstra algorithm.
|
||||
class MotionPlannerGraph
|
||||
{
|
||||
public:
|
||||
// Add a directed edge into the graph.
|
||||
size_t add_node(const Point &p) { m_nodes.emplace_back(p); return m_nodes.size() - 1; }
|
||||
void add_edge(size_t from, size_t to, double weight);
|
||||
size_t find_closest_node(const Point &point) const { return point.nearest_point_index(m_nodes); }
|
||||
|
||||
bool empty() const { return m_adjacency_list.empty(); }
|
||||
Polyline shortest_path(size_t from, size_t to) const;
|
||||
Polyline shortest_path(const Point &from, const Point &to) const
|
||||
{ return this->shortest_path(this->find_closest_node(from), this->find_closest_node(to)); }
|
||||
|
||||
private:
|
||||
typedef int node_t;
|
||||
typedef double weight_t;
|
||||
struct Neighbor {
|
||||
Neighbor(node_t target, weight_t weight) : target(target), weight(weight) {}
|
||||
node_t target;
|
||||
weight_t weight;
|
||||
};
|
||||
Points m_nodes;
|
||||
std::vector<std::vector<Neighbor>> m_adjacency_list;
|
||||
};
|
||||
|
||||
class MotionPlanner
|
||||
{
|
||||
public:
|
||||
MotionPlanner(const ExPolygons &islands);
|
||||
~MotionPlanner() {}
|
||||
|
||||
Polyline shortest_path(const Point &from, const Point &to);
|
||||
size_t islands_count() const { return m_islands.size(); }
|
||||
|
||||
private:
|
||||
bool m_initialized;
|
||||
std::vector<MotionPlannerEnv> m_islands;
|
||||
MotionPlannerEnv m_outer;
|
||||
// 0th graph is the graph for m_outer. Other graphs are 1 indexed.
|
||||
std::vector<std::unique_ptr<MotionPlannerGraph>> m_graphs;
|
||||
|
||||
void initialize();
|
||||
const MotionPlannerGraph& init_graph(int island_idx);
|
||||
const MotionPlannerEnv& get_env(int island_idx) const
|
||||
{ return (island_idx == -1) ? m_outer : m_islands[island_idx]; }
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
@ -15,8 +15,6 @@ REGISTER_CLASS(Filler, "Filler");
|
||||
REGISTER_CLASS(Flow, "Flow");
|
||||
REGISTER_CLASS(CoolingBuffer, "GCode::CoolingBuffer");
|
||||
REGISTER_CLASS(GCode, "GCode");
|
||||
//REGISTER_CLASS(GCodePreviewData, "GCode::PreviewData");
|
||||
// REGISTER_CLASS(GCodeSender, "GCode::Sender");
|
||||
REGISTER_CLASS(Layer, "Layer");
|
||||
REGISTER_CLASS(SupportLayer, "Layer::Support");
|
||||
REGISTER_CLASS(LayerRegion, "Layer::Region");
|
||||
@ -35,7 +33,6 @@ REGISTER_CLASS(ModelMaterial, "Model::Material");
|
||||
REGISTER_CLASS(ModelObject, "Model::Object");
|
||||
REGISTER_CLASS(ModelVolume, "Model::Volume");
|
||||
REGISTER_CLASS(ModelInstance, "Model::Instance");
|
||||
REGISTER_CLASS(MotionPlanner, "MotionPlanner");
|
||||
REGISTER_CLASS(BoundingBox, "Geometry::BoundingBox");
|
||||
REGISTER_CLASS(BoundingBoxf, "Geometry::BoundingBoxf");
|
||||
REGISTER_CLASS(BoundingBoxf3, "Geometry::BoundingBoxf3");
|
||||
|
@ -1,92 +0,0 @@
|
||||
#!/usr/bin/perl
|
||||
|
||||
use strict;
|
||||
use warnings;
|
||||
|
||||
BEGIN {
|
||||
use FindBin;
|
||||
use lib "$FindBin::Bin/../../lib";
|
||||
}
|
||||
|
||||
use Slic3r::XS;
|
||||
use Test::More tests => 20;
|
||||
|
||||
my $square = Slic3r::Polygon->new( # ccw
|
||||
[100, 100],
|
||||
[200, 100],
|
||||
[200, 200],
|
||||
[100, 200],
|
||||
);
|
||||
my $hole_in_square = Slic3r::Polygon->new( # cw
|
||||
[140, 140],
|
||||
[140, 160],
|
||||
[160, 160],
|
||||
[160, 140],
|
||||
);
|
||||
$_->scale(1/0.000001) for $square, $hole_in_square;
|
||||
|
||||
my $expolygon = Slic3r::ExPolygon->new($square, $hole_in_square);
|
||||
|
||||
{
|
||||
my $mp = Slic3r::MotionPlanner->new([ $expolygon ]);
|
||||
isa_ok $mp, 'Slic3r::MotionPlanner';
|
||||
|
||||
my $from = Slic3r::Point->new(120, 120);
|
||||
my $to = Slic3r::Point->new(180,180);
|
||||
$_->scale(1/0.000001) for $from, $to;
|
||||
my $path = $mp->shortest_path($from, $to);
|
||||
ok $path->is_valid(), 'return path is valid';
|
||||
ok $path->length > Slic3r::Line->new($from, $to)->length, 'path length is greater than straight line';
|
||||
ok $path->first_point->coincides_with($from), 'first path point coincides with initial point';
|
||||
ok $path->last_point->coincides_with($to), 'last path point coincides with destination point';
|
||||
ok $expolygon->contains_polyline($path), 'path is fully contained in expolygon';
|
||||
}
|
||||
|
||||
{
|
||||
my $mp = Slic3r::MotionPlanner->new([ $expolygon ]);
|
||||
isa_ok $mp, 'Slic3r::MotionPlanner';
|
||||
|
||||
my $from = Slic3r::Point->new(80, 100);
|
||||
my $to = Slic3r::Point->new(220,200);
|
||||
$_->scale(1/0.000001) for $from, $to;
|
||||
|
||||
my $path = $mp->shortest_path($from, $to);
|
||||
ok $path->is_valid(), 'return path is valid';
|
||||
ok $path->length > Slic3r::Line->new($from, $to)->length, 'path length is greater than straight line';
|
||||
ok $path->first_point->coincides_with($from), 'first path point coincides with initial point';
|
||||
ok $path->last_point->coincides_with($to), 'last path point coincides with destination point';
|
||||
is scalar(@{ Slic3r::Geometry::Clipper::intersection_pl([$path], [@$expolygon]) }), 0, 'path has no intersection with expolygon';
|
||||
}
|
||||
|
||||
{
|
||||
my $expolygon2 = $expolygon->clone;
|
||||
$expolygon2->translate(300/0.000001, 0);
|
||||
my $mp = Slic3r::MotionPlanner->new([ $expolygon, $expolygon2 ]);
|
||||
isa_ok $mp, 'Slic3r::MotionPlanner';
|
||||
|
||||
my $from = Slic3r::Point->new(120, 120);
|
||||
my $to = Slic3r::Point->new(120 + 300, 120);
|
||||
$_->scale(1/0.000001) for $from, $to;
|
||||
ok $expolygon->contains_point($from), 'start point is contained in first expolygon';
|
||||
ok $expolygon2->contains_point($to), 'end point is contained in second expolygon';
|
||||
my $path = $mp->shortest_path($from, $to);
|
||||
ok $path->is_valid(), 'return path is valid';
|
||||
}
|
||||
|
||||
{
|
||||
my $expolygons = [
|
||||
Slic3r::ExPolygon->new([[123800962,89330311],[123959159,89699438],[124000004,89898430],[124000012,110116427],[123946510,110343065],[123767391,110701303],[123284087,111000001],[102585791,111000009],[102000004,110414223],[102000004,89585787],[102585790,89000000],[123300022,88999993]]),
|
||||
Slic3r::ExPolygon->new([[97800954,89330311],[97959151,89699438],[97999996,89898430],[98000004,110116427],[97946502,110343065],[97767383,110701303],[97284079,111000001],[76585783,111000009],[75999996,110414223],[75999996,89585787],[76585782,89000000],[97300014,88999993]]),
|
||||
];
|
||||
my $mp = Slic3r::MotionPlanner->new($expolygons);
|
||||
isa_ok $mp, 'Slic3r::MotionPlanner';
|
||||
|
||||
my $from = Slic3r::Point->new(79120520, 107839491);
|
||||
my $to = Slic3r::Point->new(104664164, 108335852);
|
||||
ok $expolygons->[1]->contains_point($from), 'start point is contained in second expolygon';
|
||||
ok $expolygons->[0]->contains_point($to), 'end point is contained in first expolygon';
|
||||
my $path = $mp->shortest_path($from, $to);
|
||||
ok $path->is_valid(), 'return path is valid';
|
||||
}
|
||||
|
||||
__END__
|
@ -1,15 +0,0 @@
|
||||
%module{Slic3r::XS};
|
||||
|
||||
%{
|
||||
#include <xsinit.h>
|
||||
#include "libslic3r/MotionPlanner.hpp"
|
||||
%}
|
||||
|
||||
%name{Slic3r::MotionPlanner} class MotionPlanner {
|
||||
MotionPlanner(ExPolygons islands);
|
||||
~MotionPlanner();
|
||||
|
||||
int islands_count();
|
||||
Clone<Polyline> shortest_path(Point* from, Point* to)
|
||||
%code%{ RETVAL = THIS->shortest_path(*from, *to); %};
|
||||
};
|
@ -191,18 +191,6 @@ GCode* O_OBJECT_SLIC3R
|
||||
Ref<GCode> O_OBJECT_SLIC3R_T
|
||||
Clone<GCode> O_OBJECT_SLIC3R_T
|
||||
|
||||
//GCodePreviewData* O_OBJECT_SLIC3R
|
||||
//Ref<GCodePreviewData> O_OBJECT_SLIC3R_T
|
||||
//Clone<GCodePreviewData> O_OBJECT_SLIC3R_T
|
||||
|
||||
MotionPlanner* O_OBJECT_SLIC3R
|
||||
Ref<MotionPlanner> O_OBJECT_SLIC3R_T
|
||||
Clone<MotionPlanner> O_OBJECT_SLIC3R_T
|
||||
|
||||
// GCodeSender* O_OBJECT_SLIC3R
|
||||
// Ref<GCodeSender> O_OBJECT_SLIC3R_T
|
||||
// Clone<GCodeSender> O_OBJECT_SLIC3R_T
|
||||
|
||||
BridgeDetector* O_OBJECT_SLIC3R
|
||||
Ref<BridgeDetector> O_OBJECT_SLIC3R_T
|
||||
Clone<BridgeDetector> O_OBJECT_SLIC3R_T
|
||||
|
@ -97,12 +97,6 @@
|
||||
%typemap{PolylineCollection*};
|
||||
%typemap{Ref<PolylineCollection>}{simple};
|
||||
%typemap{Clone<PolylineCollection>}{simple};
|
||||
%typemap{MotionPlanner*};
|
||||
%typemap{Ref<MotionPlanner>}{simple};
|
||||
%typemap{Clone<MotionPlanner>}{simple};
|
||||
// %typemap{GCodeSender*};
|
||||
// %typemap{Ref<GCodeSender>}{simple};
|
||||
// %typemap{Clone<GCodeSender>}{simple};
|
||||
%typemap{BridgeDetector*};
|
||||
%typemap{Ref<BridgeDetector>}{simple};
|
||||
%typemap{Clone<BridgeDetector>}{simple};
|
||||
|
Loading…
Reference in New Issue
Block a user