fixed various bugs

This commit is contained in:
PavelMikus 2022-07-21 14:41:53 +02:00
parent 8723fb22bb
commit 07049b849e

View File

@ -74,7 +74,7 @@ private:
AABBTreeIndirect::Tree<2, float> tree;
public:
explicit LinesDistancer(std::vector<ExtrusionLine> &lines) :
explicit LinesDistancer(const std::vector<ExtrusionLine> &lines) :
lines(lines) {
tree = AABBTreeLines::build_aabb_tree_over_indexed_lines(this->lines);
}
@ -249,17 +249,17 @@ public:
};
struct IslandConnection {
float area;
Vec3f centroid_accumulator;
float area{};
Vec3f centroid_accumulator = Vec3f::Zero();
};
struct Island {
std::unordered_map<size_t, IslandConnection> connected_islands;
std::vector<Vec3f> pivot_points; // for support points present on this layer (or bed extrusions)
float volume;
Vec3f volume_centroid_accumulator;
float sticking_force; // for support points present on this layer (or bed extrusions)
Vec3f sticking_centroid_accumulator;
std::unordered_map<size_t, IslandConnection> connected_islands{};
std::vector<Vec3f> pivot_points{}; // for support points present on this layer (or bed extrusions)
float volume{};
Vec3f volume_centroid_accumulator = Vec3f::Zero();
float sticking_force{}; // for support points present on this layer (or bed extrusions)
Vec3f sticking_centroid_accumulator = Vec3f::Zero();
std::vector<ExtrusionLine> external_lines;
};
@ -316,7 +316,7 @@ struct ExtrusionPropertiesAccumulator {
void check_extrusion_entity_stability(const ExtrusionEntity *entity,
std::vector<ExtrusionLine> &checked_lines_out,
float print_z,
float layer_z,
const LayerRegion *layer_region,
const LinesDistancer &prev_layer_lines,
Issues &issues,
@ -324,12 +324,12 @@ void check_extrusion_entity_stability(const ExtrusionEntity *entity,
if (entity->is_collection()) {
for (const auto *e : static_cast<const ExtrusionEntityCollection*>(entity)->entities) {
check_extrusion_entity_stability(e, checked_lines_out, print_z, layer_region, prev_layer_lines,
check_extrusion_entity_stability(e, checked_lines_out, layer_z, layer_region, prev_layer_lines,
issues, params);
}
} else { //single extrusion path, with possible varying parameters
const auto to_vec3f = [print_z](const Vec2f &point) {
return Vec3f(point.x(), point.y(), print_z);
const auto to_vec3f = [layer_z](const Vec2f &point) {
return Vec3f(point.x(), point.y(), layer_z);
};
Points points { };
entity->collect_points(points);
@ -509,16 +509,16 @@ std::tuple<LayerIslands, PixelGrid> reckon_islands(
const ExtrusionLine &line = layer_lines[lidx];
float volume = line.origin_entity->min_mm3_per_mm() * line.len;
island.volume += volume;
island.volume_centroid_accumulator += to_3d(Vec2f((line.a + line.b) / 2.0f), float(layer->print_z))
island.volume_centroid_accumulator += to_3d(Vec2f((line.a + line.b) / 2.0f), float(layer->slice_z))
* volume;
if (first_layer) {
float sticking_force = line.len * flow_width * params.base_adhesion;
island.sticking_force += sticking_force;
island.sticking_centroid_accumulator += sticking_force
* to_3d(Vec2f((line.a + line.b) / 2.0f), float(layer->print_z));
* to_3d(Vec2f((line.a + line.b) / 2.0f), float(layer->slice_z));
if (line.is_external_perimeter()) {
island.pivot_points.push_back(to_3d(Vec2f(line.b), float(layer->print_z)));
island.pivot_points.push_back(to_3d(Vec2f(line.b), float(layer->slice_z)));
}
} else if (layer_lines[lidx].support_point_generated) {
float support_interface_area = params.support_points_interface_radius
@ -527,8 +527,8 @@ std::tuple<LayerIslands, PixelGrid> reckon_islands(
float sticking_force = support_interface_area * params.support_adhesion;
island.sticking_force += sticking_force;
island.sticking_centroid_accumulator += sticking_force
* to_3d(Vec2f(line.b), float(layer->print_z));
island.pivot_points.push_back(to_3d(Vec2f(line.b), float(layer->print_z)));
* to_3d(Vec2f(line.b), float(layer->slice_z));
island.pivot_points.push_back(to_3d(Vec2f(line.b), float(layer->slice_z)));
}
}
}
@ -555,10 +555,11 @@ std::tuple<LayerIslands, PixelGrid> reckon_islands(
Vec2i coords = Vec2i(x, y);
if (current_layer_grid.get_pixel(coords) != NULL_ISLAND
&& prev_layer_grid.get_pixel(coords) != NULL_ISLAND) {
IslandConnection& connection = result.islands[current_layer_grid.get_pixel(coords)]
IslandConnection &connection = result.islands[current_layer_grid.get_pixel(coords)]
.connected_islands[prev_layer_grid.get_pixel(coords)];
connection.area += current_layer_grid.pixel_area();
connection.centroid_accumulator += to_3d(current_layer_grid.get_pixel_center(coords), result.layer_z) * current_layer_grid.pixel_area();
connection.centroid_accumulator += to_3d(current_layer_grid.get_pixel_center(coords), result.layer_z)
* current_layer_grid.pixel_area();
}
}
}
@ -580,7 +581,6 @@ struct CoordinateFunctor {
}
};
//TODO make pivot tree part of this structure, with cached invalidation, then recompute manually when needed
class ObjectPart {
float volume { };
Vec3f volume_centroid_accumulator = Vec3f::Zero();
@ -592,6 +592,15 @@ class ObjectPart {
bool is_pivot_tree_valid = false;
KDTreeIndirect<3, float, CoordinateFunctor> pivot_tree { CoordinateFunctor { } };
void check_pivot_tree() {
if (!is_pivot_tree_valid) {
this->pivots_coordinate_functor = CoordinateFunctor(&this->pivot_points);
this->pivot_tree = { this->pivots_coordinate_functor };
pivot_tree.build(pivot_points.size());
is_pivot_tree_valid = true;
}
}
public:
void add(const ObjectPart &other) {
this->volume_centroid_accumulator += other.volume_centroid_accumulator;
@ -599,6 +608,7 @@ public:
this->sticking_force += other.sticking_force;
this->sticking_centroid_accumulator += other.sticking_centroid_accumulator;
this->pivot_points.insert(this->pivot_points.end(), other.pivot_points.begin(), other.pivot_points.end());
this->is_pivot_tree_valid = this->is_pivot_tree_valid && other.pivot_points.empty();
}
ObjectPart(const Island &island) {
@ -607,25 +617,121 @@ public:
this->sticking_force = island.sticking_force;
this->sticking_centroid_accumulator = island.sticking_centroid_accumulator;
this->pivot_points = island.pivot_points;
this->pivots_coordinate_functor = CoordinateFunctor(&this->pivot_points);
}
ObjectPart() {
this->pivots_coordinate_functor = CoordinateFunctor(&this->pivot_points);
};
ObjectPart() = default;
std::tuple<float, Vec3f> is_stable_while_extruding(const ExtrusionLine &extruded_line, float layer_z,
const Params &params) {
check_pivot_tree();
Vec2f line_dir = (extruded_line.b - extruded_line.a).normalized();
Vec3f pivot_site_search_point = to_3d(Vec2f(extruded_line.b + line_dir * 300.0f), layer_z);
size_t pivot_idx = find_closest_point(this->pivot_tree, pivot_site_search_point);
const Vec3f &pivot = pivot_points[pivot_idx];
const Vec3f &sticking_centroid = this->sticking_centroid_accumulator / this->sticking_force;
float sticking_arm = (pivot - sticking_centroid).norm();
float sticking_torque = sticking_arm * this->sticking_force;
float mass = this->volume * params.filament_density;
const Vec3f &mass_centorid = this->volume_centroid_accumulator / this->volume;
float weight = mass * params.gravity_constant;
float weight_arm = (pivot.head<2>() - mass_centorid.head<2>()).norm();
float weight_torque = weight_arm * weight;
float bed_movement_arm = mass_centorid.z();
float bed_movement_force = params.max_acceleration * mass;
float bed_movement_torque = bed_movement_force * bed_movement_arm;
Vec3f extruder_pressure_direction = to_3d(line_dir, 0.0f);
extruder_pressure_direction.z() = -0.1f - extruded_line.malformation * 0.5f;
extruder_pressure_direction.normalize();
Vec3d endpoint = (to_3d(extruded_line.b, layer_z)).cast<double>();
float conflict_torque_arm = line_alg::distance_to(Linef3(endpoint, endpoint + extruder_pressure_direction.cast<double>()), pivot.cast<double>());
// float conflict_torque_arm = (to_3d(Vec2f(pivot.head<2>() - extruded_line.b), layer_z).cross(
// extruder_pressure_direction)).norm();
float extruder_conflict_force = params.tolerable_extruder_conflict_force +
std::min(extruded_line.malformation, 1.0f) * params.malformations_additive_conflict_extruder_force;
float extruder_conflict_torque = extruder_conflict_force * conflict_torque_arm;
float total_torque = bed_movement_torque + extruder_conflict_torque - weight_torque - sticking_torque;
#if 1
BOOST_LOG_TRIVIAL(debug)
<< "pivot: " << pivot.x() << " " << pivot.y() << " " << pivot.z();
BOOST_LOG_TRIVIAL(debug)
<< "sticking_centroid: " << sticking_centroid.x() << " " << sticking_centroid.y() << " " << sticking_centroid.z();
BOOST_LOG_TRIVIAL(debug)
<< "SSG: sticking_force: " << sticking_force;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: sticking_arm: " << sticking_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: sticking_torque: " << sticking_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: weight_arm: " << sticking_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: weight_torque: " << weight_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: bed_movement_arm: " << bed_movement_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: bed_movement_torque: " << bed_movement_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: conflict_torque_arm: " << conflict_torque_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: extruder_conflict_torque: " << extruder_conflict_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: total_torque: " << total_torque << " layer_z: " << layer_z;
#endif
return {total_torque / conflict_torque_arm, pivot_site_search_point};
}
void add_pivot_point(const Vec3f pivot_point, float sticking_force) {
this->pivot_points.push_back(pivot_point);
this->sticking_force += sticking_force;
this->sticking_centroid_accumulator += sticking_force * pivot_point;
this->is_pivot_tree_valid = false;
}
void print() const {
std::cout << "sticking_force: " << sticking_force << std::endl;
std::cout << "volume: " << volume << std::endl;
}
};
struct WeakestConnection {
float area = 0.0f;
Vec3f centroid_accumulator = Vec3f::Zero();
void add(const WeakestConnection& other) {
void add(const WeakestConnection &other) {
this->area += other.area;
this->centroid_accumulator += other.centroid_accumulator;
}
};
Issues check_global_stability(const std::vector<LayerIslands> &islands_graph, const Params &params) {
void debug_print_graph(const std::vector<LayerIslands>& islands_graph) {
std::cout << "BUILT ISLANDS GRAPH:" << std::endl;
for (size_t layer_idx = 0; layer_idx < islands_graph.size(); ++layer_idx) {
std::cout << "ISLANDS AT LAYER: " << layer_idx << " AT HEIGHT: " << islands_graph[layer_idx].layer_z << std::endl;
for (size_t island_idx = 0; island_idx < islands_graph[layer_idx].islands.size(); ++island_idx) {
const Island &island = islands_graph[layer_idx].islands[island_idx];
std::cout << " ISLAND " << island_idx << std::endl;
std::cout << " volume: " << island.volume << std::endl;
std::cout << " sticking_force: " << island.sticking_force << std::endl;
std::cout << " pivot_points count: " << island.pivot_points.size() << std::endl;
std::cout << " connected_islands count: " << island.connected_islands.size() << std::endl;
}
}
std::cout << "END OF GRAPH" << std::endl;
}
Issues check_global_stability(SupportGridFilter supports_presence_grid,
const std::vector<LayerIslands> &islands_graph, const Params &params) {
debug_print_graph(islands_graph);
Issues issues { };
size_t next_part_idx = 0;
std::unordered_map<size_t, ObjectPart> active_object_parts;
@ -641,7 +747,8 @@ Issues check_global_stability(const std::vector<LayerIslands> &islands_graph, co
std::cout << "at layer: " << layer_idx << " the following island to object mapping is used:" << std::endl;
for (const auto &m : prev_island_to_object_part_mapping) {
std::cout << "island " << m.first << " maps to part " << m.second << std::endl;
Vec3f connection_center = prev_island_to_weakest_connection[m.first].centroid_accumulator / prev_island_to_weakest_connection[m.first].area;
Vec3f connection_center = prev_island_to_weakest_connection[m.first].centroid_accumulator
/ prev_island_to_weakest_connection[m.first].area;
std::cout << " island has weak point with connection area: " <<
prev_island_to_weakest_connection[m.first].area << " and center: " <<
connection_center.x() << " " << connection_center.y() << " " << connection_center.z() << std::endl;
@ -655,12 +762,12 @@ Issues check_global_stability(const std::vector<LayerIslands> &islands_graph, co
active_object_parts.emplace(part_idx, ObjectPart(island));
next_island_to_object_part_mapping.emplace(island_idx, part_idx);
next_island_to_weakest_connection.emplace(island_idx,
WeakestConnection{INFINITY, Vec3f::Zero()});
WeakestConnection { INFINITY, Vec3f::Zero() });
layer_active_parts.insert(part_idx);
} else {
size_t final_part_idx{};
WeakestConnection transfered_weakest_connection{};
WeakestConnection new_weakest_connection{};
size_t final_part_idx { };
WeakestConnection transfered_weakest_connection { };
WeakestConnection new_weakest_connection { };
// MERGE parts
{
std::unordered_set<size_t> part_indices;
@ -680,7 +787,7 @@ Issues check_global_stability(const std::vector<LayerIslands> &islands_graph, co
}
}
}
auto estimate_strength = [layer_z](const WeakestConnection& conn){
auto estimate_strength = [layer_z](const WeakestConnection &conn) {
float radius = fsqrt(conn.area / PI);
float arm_len_estimate = std::max(0.001f, layer_z - (conn.centroid_accumulator.z() / conn.area));
return radius * conn.area / arm_len_estimate;
@ -703,6 +810,7 @@ Issues check_global_stability(const std::vector<LayerIslands> &islands_graph, co
parts_to_delete.insert(part.first);
} else {
std::cout << "at layer " << layer_idx << " part is still active: " << part.first << std::endl;
part.second.print();
}
}
for (size_t part_id : parts_to_delete) {
@ -718,11 +826,50 @@ Issues check_global_stability(const std::vector<LayerIslands> &islands_graph, co
// Now compute the stability of each active object part, adding supports where necessary, and also
// check each island whether the weakest point is strong enough. If not, add supports as well.
for (size_t island_idx = 0; island_idx < islands_graph[layer_idx].islands.size(); ++island_idx) {
const Island &island = islands_graph[layer_idx].islands[island_idx];
ObjectPart &part = active_object_parts.at(prev_island_to_object_part_mapping[island_idx]);
std::vector<ExtrusionLine> dummy { };
LinesDistancer island_lines_dist(dummy);
float unchecked_dist = params.min_distance_between_support_points + 1.0f;
for (const ExtrusionLine &line : island.external_lines) {
if (unchecked_dist + line.len < params.min_distance_between_support_points
&& line.malformation < 0.3f) {
unchecked_dist += line.len;
} else {
unchecked_dist = line.len;
auto [force, pivot_site_search_point] = part.is_stable_while_extruding(line, layer_z, params);
if (force > 0) {
if (island_lines_dist.get_lines().empty()) {
island_lines_dist = LinesDistancer(island.external_lines);
}
Vec2f target_point;
size_t _idx;
island_lines_dist.signed_distance_from_lines(pivot_site_search_point.head<2>(), _idx,
target_point);
Vec3f support_point = to_3d(target_point, layer_z);
if (!supports_presence_grid.position_taken(support_point)) {
float area = params.support_points_interface_radius * params.support_points_interface_radius
* float(PI);
float sticking_force = area * params.support_adhesion;
part.add_pivot_point(support_point, sticking_force);
issues.support_points.emplace_back(support_point, force,
to_3d(Vec2f(line.b - line.a).normalized(), 0.0f));
supports_presence_grid.take_position(support_point);
}
}
}
}
}
//end of iteration over layer
}
return issues;
}
/*
void a() {
// islands_graph.back() refers to the top most (current) layer
for (size_t island_idx = 0; island_idx < islands_graph.back().islands.size(); ++island_idx) {
@ -788,7 +935,7 @@ Issues check_global_stability(const std::vector<LayerIslands> &islands_graph, co
Vec3f extruder_pressure_direction = to_3d(line_dir, 0.0f);
extruder_pressure_direction.z() = -0.2 - line.malformation * 0.5;
extruder_pressure_direction.normalize();
float conflict_torque_arm = (to_3d(Vec2f(pivot - line.b), print_z).cross(
float conflict_torque_arm = (to_3d(Vec2f(pivot - line.b), layer_z).cross(
extruder_pressure_direction)).norm();
float extruder_conflict_force = params.tolerable_extruder_conflict_force +
std::min(line.malformation, 1.0f) * params.malformations_additive_conflict_extruder_force;
@ -800,17 +947,17 @@ Issues check_global_stability(const std::vector<LayerIslands> &islands_graph, co
Vec2f target_point { };
size_t _idx { };
island_lines_dist.signed_distance_from_lines(pivot_site_search_point, _idx, target_point);
if (!supports_presence_grid.position_taken(to_3d(target_point, print_z))) {
if (!supports_presence_grid.position_taken(to_3d(target_point, layer_z))) {
float area = params.support_points_interface_radius * params.support_points_interface_radius
* float(PI);
float sticking_force = area * params.support_adhesion;
Vec3f support_point = to_3d(target_point, print_z);
Vec3f support_point = to_3d(target_point, layer_z);
island.pivot_points.push_back(support_point);
island.sticking_force += sticking_force;
island.sticking_centroid_accumulator += sticking_force * support_point;
issues.support_points.emplace_back(support_point,
extruder_conflict_torque - sticking_torque, extruder_pressure_direction);
supports_presence_grid.take_position(to_3d(target_point, print_z));
supports_presence_grid.take_position(to_3d(target_point, layer_z));
}
}
#if 0
@ -831,7 +978,7 @@ Issues check_global_stability(const std::vector<LayerIslands> &islands_graph, co
BOOST_LOG_TRIVIAL(debug)
<< "SSG: extruder_conflict_torque: " << extruder_conflict_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: total_torque: " << total_torque << " printz: " << print_z;
<< "SSG: total_torque: " << total_torque << " layer_z: " << layer_z;
#endif
}
@ -886,7 +1033,7 @@ Issues check_global_stability(const std::vector<LayerIslands> &islands_graph, co
Vec3f extruder_pressure_direction = to_3d(line_dir, 0.0f);
extruder_pressure_direction.z() = -0.2 - line.malformation * 0.5;
extruder_pressure_direction.normalize();
float conflict_torque_arm = (to_3d(Vec2f(pivot - line.b), print_z).cross(
float conflict_torque_arm = (to_3d(Vec2f(pivot - line.b), layer_z).cross(
extruder_pressure_direction)).norm();
float extruder_conflict_force = params.tolerable_extruder_conflict_force +
std::min(line.malformation, 1.0f) * params.malformations_additive_conflict_extruder_force;
@ -898,17 +1045,17 @@ Issues check_global_stability(const std::vector<LayerIslands> &islands_graph, co
Vec2f target_point;
size_t _idx;
island_lines_dist.signed_distance_from_lines(pivot_site_search_point, _idx, target_point);
if (!supports_presence_grid.position_taken(to_3d(target_point, print_z))) {
if (!supports_presence_grid.position_taken(to_3d(target_point, layer_z))) {
float area = params.support_points_interface_radius * params.support_points_interface_radius
* float(PI);
float sticking_force = area * params.support_adhesion;
Vec3f support_point = to_3d(target_point, print_z);
Vec3f support_point = to_3d(target_point, layer_z);
island.pivot_points.push_back(support_point);
island.sticking_force += sticking_force;
island.sticking_centroid_accumulator += sticking_force * support_point;
issues.support_points.emplace_back(support_point,
extruder_conflict_torque - sticking_torque, extruder_pressure_direction);
supports_presence_grid.take_position(to_3d(target_point, print_z));
supports_presence_grid.take_position(to_3d(target_point, layer_z));
}
}
#if 0
@ -929,12 +1076,13 @@ Issues check_global_stability(const std::vector<LayerIslands> &islands_graph, co
BOOST_LOG_TRIVIAL(debug)
<< "SSG: extruder_conflict_torque: " << extruder_conflict_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: total_torque: " << total_torque << " printz: " << print_z;
<< "SSG: total_torque: " << total_torque << " layer_z: " << layer_z;
#endif
}
}
return issues;
}
*/
std::tuple<Issues, std::vector<LayerIslands>> check_extrusions_and_build_graph(const PrintObject *po,
@ -950,7 +1098,7 @@ std::tuple<Issues, std::vector<LayerIslands>> check_extrusions_and_build_graph(c
float flow_width = get_flow_width(po->layers()[po->layer_count() - 1]->regions()[0], erExternalPerimeter);
PixelGrid prev_layer_grid(po, flow_width);
// PREPARE BASE LAYER
// PREPARE BASE LAYER
const Layer *layer = po->layers()[0];
for (const LayerRegion *layer_region : layer->regions()) {
for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) {
@ -998,7 +1146,7 @@ std::tuple<Issues, std::vector<LayerIslands>> check_extrusions_and_build_graph(c
size_t pseudornd = ((island_idx + 127) * 33331 + 6907) % 23;
Vec3f color = value_to_rgbf(0.0f, float(23), float(pseudornd));
fprintf(segmentation_f, "v %f %f %f %f %f %f\n", pos[0],
pos[1], layer->print_z, color[0], color[1], color[2]);
pos[1], layer->slice_z, color[0], color[1], color[2]);
}
}
}
@ -1006,7 +1154,7 @@ std::tuple<Issues, std::vector<LayerIslands>> check_extrusions_and_build_graph(c
if (line.malformation > 0.0f) {
Vec3f color = value_to_rgbf(0, 1.0f, line.malformation);
fprintf(malform_f, "v %f %f %f %f %f %f\n", line.b[0],
line.b[1], layer->print_z, color[0], color[1], color[2]);
line.b[1], layer->slice_z, color[0], color[1], color[2]);
}
}
#endif
@ -1019,7 +1167,7 @@ std::tuple<Issues, std::vector<LayerIslands>> check_extrusions_and_build_graph(c
for (const LayerRegion *layer_region : layer->regions()) {
for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) {
for (const ExtrusionEntity *perimeter : static_cast<const ExtrusionEntityCollection*>(ex_entity)->entities) {
check_extrusion_entity_stability(perimeter, layer_lines, layer->print_z, layer_region,
check_extrusion_entity_stability(perimeter, layer_lines, layer->slice_z, layer_region,
external_lines, issues, params);
} // perimeter
} // ex_entity
@ -1027,7 +1175,7 @@ std::tuple<Issues, std::vector<LayerIslands>> check_extrusions_and_build_graph(c
for (const ExtrusionEntity *fill : static_cast<const ExtrusionEntityCollection*>(ex_entity)->entities) {
if (fill->role() == ExtrusionRole::erGapFill
|| fill->role() == ExtrusionRole::erBridgeInfill) {
check_extrusion_entity_stability(fill, layer_lines, layer->print_z, layer_region,
check_extrusion_entity_stability(fill, layer_lines, layer->slice_z, layer_region,
external_lines, issues, params);
} else {
Points points { };
@ -1043,7 +1191,7 @@ std::tuple<Issues, std::vector<LayerIslands>> check_extrusions_and_build_graph(c
} // ex_entity
} // region
auto [layer_islands, layer_grid] = reckon_islands(layer, true, 0, prev_layer_grid,
auto [layer_islands, layer_grid] = reckon_islands(layer, false, 0, prev_layer_grid,
layer_lines, params);
islands_graph.push_back(std::move(layer_islands));
@ -1057,7 +1205,7 @@ std::tuple<Issues, std::vector<LayerIslands>> check_extrusions_and_build_graph(c
size_t pseudornd = ((island_idx + 127) * 33331 + 6907) % 23;
Vec3f color = value_to_rgbf(0.0f, float(23), float(pseudornd));
fprintf(segmentation_f, "v %f %f %f %f %f %f\n", pos[0],
pos[1], layer->print_z, color[0], color[1], color[2]);
pos[1], layer->slice_z, color[0], color[1], color[2]);
}
}
}
@ -1065,7 +1213,7 @@ std::tuple<Issues, std::vector<LayerIslands>> check_extrusions_and_build_graph(c
if (line.malformation > 0.0f) {
Vec3f color = value_to_rgbf(0, 1.0f, line.malformation);
fprintf(malform_f, "v %f %f %f %f %f %f\n", line.b[0],
line.b[1], layer->print_z, color[0], color[1], color[2]);
line.b[1], layer->slice_z, color[0], color[1], color[2]);
}
}
#endif
@ -1110,7 +1258,7 @@ std::vector<size_t> quick_search(const PrintObject *po, const Params &params) {
Issues full_search(const PrintObject *po, const Params &params) {
auto [local_issues, graph] = check_extrusions_and_build_graph(po, params);
Issues global_issues = check_global_stability(graph, params);
Issues global_issues = check_global_stability( { po, params.min_distance_between_support_points }, graph, params);
#ifdef DEBUG_FILES
debug_export(local_issues, "local_issues");
debug_export(global_issues, "global_issues");