Make a template functionality of close point
This commit is contained in:
parent
8f66ba4bd5
commit
08f18d28a4
@ -1,95 +1,6 @@
|
||||
#include "ClosestPoint.hpp"
|
||||
#include "Point.hpp"
|
||||
|
||||
size_t Slic3r::find_closest_in_sorted(const Point &p, const Points &pts)
|
||||
{
|
||||
using namespace closestPoint;
|
||||
// check that input is really sorted
|
||||
assert(std::is_sorted(pts.begin(), pts.end(), sort_fnc));
|
||||
|
||||
// check input
|
||||
if (pts.empty()) return std::numeric_limits<size_t>::max();
|
||||
if (pts.size() == 1) return 0;
|
||||
|
||||
// closest point node in X
|
||||
Points::const_iterator it_x = std::upper_bound(pts.begin(), pts.end(), p.x(), upper_fnc);
|
||||
bool is_it_x_end = it_x == pts.end();
|
||||
// it_x can't pointing to end so change to last point
|
||||
if (is_it_x_end) --it_x;
|
||||
// manhatn distance to closest point
|
||||
uint32_t manhattan_dist = manhattan_size(*it_x - p);
|
||||
|
||||
// node for lower bound
|
||||
Points::const_iterator it_l;
|
||||
if (it_x == pts.begin()) {
|
||||
it_l = it_x;
|
||||
} else {
|
||||
it_l = std::lower_bound(pts.begin(), it_x, p.x() - manhattan_dist, lower_fnc);
|
||||
for (auto it = it_x - 1; it > it_l; --it) {
|
||||
uint32_t diff_y = std::abs(it->y() - p.y());
|
||||
if (diff_y > manhattan_dist) continue;
|
||||
uint32_t diff_x = std::abs(it->x() - p.x());
|
||||
uint32_t act_dist = diff_y + diff_x;
|
||||
if (manhattan_dist > act_dist) {
|
||||
manhattan_dist = act_dist;
|
||||
it_l = std::lower_bound(it_l, it_x, p.x() - manhattan_dist, lower_fnc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// node for upper bound
|
||||
Points::const_iterator it_u;
|
||||
if (is_it_x_end) {
|
||||
it_u = pts.end();
|
||||
} else {
|
||||
it_u = std::upper_bound(it_x, pts.end(), p.x() + manhattan_dist, upper_fnc);
|
||||
for (auto it = it_x + 1; it < it_u; ++it) {
|
||||
uint32_t diff_y = std::abs(it->y() - p.y());
|
||||
if (diff_y > manhattan_dist) continue;
|
||||
uint32_t diff_x = std::abs(it->x() - p.x());
|
||||
uint32_t act_dist = diff_y + diff_x;
|
||||
if (manhattan_dist > act_dist) {
|
||||
// IMPROVE: calc euclid distance when e.g. (diff_Biggery < 2*diff_smaller)
|
||||
manhattan_dist = act_dist;
|
||||
it_u = std::upper_bound(it_x, it_u, p.x() + manhattan_dist, upper_fnc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// find closest by squer distance
|
||||
float dist_sq = std::numeric_limits<float>::max();
|
||||
size_t result = it_x - pts.begin();
|
||||
for (Points::const_iterator it = it_l; it < it_u; ++it) {
|
||||
uint32_t diff_y = std::abs(it->y() - p.y());
|
||||
if (diff_y > manhattan_dist) continue;
|
||||
float diff_x = it->x() - p.x();
|
||||
// calculate square distance
|
||||
float d = (float) diff_y * diff_y + diff_x * diff_x;
|
||||
if (dist_sq > d) {
|
||||
dist_sq = d;
|
||||
result = it - pts.begin();
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
using namespace Slic3r;
|
||||
|
||||
bool closestPoint::sort_fnc(const Point &p1, const Point &p2)
|
||||
{
|
||||
return p1.x() < p2.x();
|
||||
}
|
||||
|
||||
bool closestPoint::upper_fnc(coord_t value, const Point &p)
|
||||
{
|
||||
return value < p.x();
|
||||
}
|
||||
|
||||
bool closestPoint::lower_fnc(const Point &p, coord_t value)
|
||||
{
|
||||
return value > p.x();
|
||||
}
|
||||
|
||||
uint32_t closestPoint::manhattan_size(const Point &p)
|
||||
{
|
||||
return std::abs(p.x()) + abs(p.y());
|
||||
}
|
||||
// Compile template for specific data type
|
||||
template<>
|
||||
size_t Slic3r::find_closest_in_sorted<Slic3r::Point>(const Slic3r::Point &p, const Slic3r::Points &pts);
|
@ -1,8 +1,7 @@
|
||||
#ifndef slic3r_ClosestPoint_hpp_
|
||||
#define slic3r_ClosestPoint_hpp_
|
||||
|
||||
#include "Point.hpp"
|
||||
#include "ExPolygon.hpp"
|
||||
#include <vector>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
@ -12,7 +11,7 @@ namespace Slic3r {
|
||||
/// <param name="p">Seach for closest index to this point</param>
|
||||
/// <param name="pts">Search inside of thoose points</param>
|
||||
/// <returns>Index of closest point from sorted_pts</returns>
|
||||
//size_t find_closest(const Point &p, const Points& pts);
|
||||
// size_t find_closest(const Point &p, const Points& pts);
|
||||
|
||||
/// <summary>
|
||||
/// Use a plane sweep algorithm to find closest point in sorted points
|
||||
@ -21,7 +20,8 @@ namespace Slic3r {
|
||||
/// <param name="p">Seach for closest index to this point</param>
|
||||
/// <param name="sorted_pts">Sorted points by X coordinate</param>
|
||||
/// <returns>Index of closest point from sorted_pts</returns>
|
||||
size_t find_closest_in_sorted(const Point &p, const Points &sorted_pts);
|
||||
template<class P>
|
||||
size_t find_closest_in_sorted(const P &p, const std::vector<P> &sorted_pts);
|
||||
|
||||
/// <summary>
|
||||
/// Use a plane sweep algorithm to find closest point from pts in sorted_pts
|
||||
@ -30,7 +30,7 @@ size_t find_closest_in_sorted(const Point &p, const Points &sorted_pts);
|
||||
/// <param name="pts">Seach for closest index to thoose points</param>
|
||||
/// <param name="sorted_pts">Sorted points by X coordinate</param>
|
||||
/// <returns>Index of closest point from sorted_pts</returns>
|
||||
//size_t find_closest_in_sorted(const Point &pts, const Points &sorted_pts);
|
||||
// size_t find_closest_in_sorted(const Point &pts, const Points &sorted_pts);
|
||||
|
||||
namespace closestPoint {
|
||||
/// <summary>
|
||||
@ -39,15 +39,90 @@ namespace closestPoint {
|
||||
/// <param name="p1">First point</param>
|
||||
/// <param name="p2">Second Point</param>
|
||||
/// <returns>True when, p1.x < p2.x </returns>
|
||||
bool sort_fnc(const Point &p1, const Point &p2);
|
||||
template<class P> bool sort_fnc(const P &p1, const P &p2){ return p1.x() < p2.x(); }
|
||||
|
||||
/// <summary> Function used to find upper bound in sorted points. </summary>
|
||||
bool upper_fnc(coord_t value, const Point &p);
|
||||
template<class P, typename V> bool upper_fnc(V value, const P &p){ return value < p.x(); }
|
||||
/// <summary> Function used to find lower bound in sorted points. </summary>
|
||||
bool lower_fnc(const Point &p, coord_t value);
|
||||
template<class P, typename V> bool lower_fnc(const P &p, V value){ return value > p.x(); }
|
||||
/// <summary> Calc manhatn size of point. Mainly to explain meaning</summary>
|
||||
uint32_t manhattan_size(const Point &p);
|
||||
|
||||
template<class P> uint32_t manhattan_size(const P &p){ return std::abs(p.x()) + abs(p.y()); }
|
||||
} // namespace closestPoint
|
||||
} // namespace Slic3r
|
||||
|
||||
template<class P>
|
||||
size_t Slic3r::find_closest_in_sorted(const P &p, const std::vector<P> &pts)
|
||||
{
|
||||
using namespace closestPoint;
|
||||
// check that input is really sorted
|
||||
assert(std::is_sorted(pts.begin(), pts.end(), sort_fnc<P>));
|
||||
|
||||
// check input
|
||||
if (pts.empty()) return std::numeric_limits<size_t>::max();
|
||||
if (pts.size() == 1) return 0;
|
||||
|
||||
using V = decltype(p.x());
|
||||
|
||||
// closest point node in X
|
||||
Points::const_iterator it_x = std::upper_bound(pts.begin(), pts.end(), p.x(), upper_fnc<P,V>);
|
||||
bool is_it_x_end = it_x == pts.end();
|
||||
// it_x can't pointing to end so change to last point
|
||||
if (is_it_x_end) --it_x;
|
||||
// manhatn distance to closest point
|
||||
uint32_t manhattan_dist = manhattan_size(*it_x - p);
|
||||
|
||||
// node for lower bound
|
||||
Points::const_iterator it_l;
|
||||
if (it_x == pts.begin()) {
|
||||
it_l = it_x;
|
||||
} else {
|
||||
it_l = std::lower_bound(pts.begin(), it_x, p.x() - manhattan_dist, lower_fnc<P,V>);
|
||||
for (auto it = it_x - 1; it > it_l; --it) {
|
||||
uint32_t diff_y = std::abs(it->y() - p.y());
|
||||
if (diff_y > manhattan_dist) continue;
|
||||
uint32_t diff_x = std::abs(it->x() - p.x());
|
||||
uint32_t act_dist = diff_y + diff_x;
|
||||
if (manhattan_dist > act_dist) {
|
||||
manhattan_dist = act_dist;
|
||||
it_l = std::lower_bound(it_l, it_x, p.x() - manhattan_dist, lower_fnc<P,V>);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// node for upper bound
|
||||
Points::const_iterator it_u;
|
||||
if (is_it_x_end) {
|
||||
it_u = pts.end();
|
||||
} else {
|
||||
it_u = std::upper_bound(it_x, pts.end(), p.x() + manhattan_dist, upper_fnc<P,V>);
|
||||
for (auto it = it_x + 1; it < it_u; ++it) {
|
||||
uint32_t diff_y = std::abs(it->y() - p.y());
|
||||
if (diff_y > manhattan_dist) continue;
|
||||
uint32_t diff_x = std::abs(it->x() - p.x());
|
||||
uint32_t act_dist = diff_y + diff_x;
|
||||
if (manhattan_dist > act_dist) {
|
||||
// IMPROVE: calc euclid distance when e.g. (diff_Biggery < 2*diff_smaller)
|
||||
manhattan_dist = act_dist;
|
||||
it_u = std::upper_bound(it_x, it_u, p.x() + manhattan_dist, upper_fnc<P,V>);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// find closest by squer distance
|
||||
float dist_sq = std::numeric_limits<float>::max();
|
||||
size_t result = it_x - pts.begin();
|
||||
for (Points::const_iterator it = it_l; it < it_u; ++it) {
|
||||
uint32_t diff_y = std::abs(it->y() - p.y());
|
||||
if (diff_y > manhattan_dist) continue;
|
||||
float diff_x = it->x() - p.x();
|
||||
// calculate square distance
|
||||
float d = (float) diff_y * diff_y + diff_x * diff_x;
|
||||
if (dist_sq > d) {
|
||||
dist_sq = d;
|
||||
result = it - pts.begin();
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif // slic3r_ClosestPoint_hpp_
|
||||
|
Loading…
Reference in New Issue
Block a user