Refactoring of PerimeterGenerator:

header interface was reduced,
compiler warnings removed.
This commit is contained in:
bubnikv 2019-09-11 11:37:48 +02:00
parent cf5ec54d6f
commit 0989cb8296
2 changed files with 267 additions and 264 deletions

View file

@ -6,21 +6,246 @@
namespace Slic3r {
static ExtrusionPaths thick_polyline_to_extrusion_paths(const ThickPolyline &thick_polyline, ExtrusionRole role, Flow &flow, const float tolerance)
{
ExtrusionPaths paths;
ExtrusionPath path(role);
ThickLines lines = thick_polyline.thicklines();
for (int i = 0; i < (int)lines.size(); ++i) {
const ThickLine& line = lines[i];
const coordf_t line_len = line.length();
if (line_len < SCALED_EPSILON) continue;
double thickness_delta = fabs(line.a_width - line.b_width);
if (thickness_delta > tolerance) {
const unsigned int segments = (unsigned int)ceil(thickness_delta / tolerance);
const coordf_t seg_len = line_len / segments;
Points pp;
std::vector<coordf_t> width;
{
pp.push_back(line.a);
width.push_back(line.a_width);
for (size_t j = 1; j < segments; ++j) {
pp.push_back((line.a.cast<double>() + (line.b - line.a).cast<double>().normalized() * (j * seg_len)).cast<coord_t>());
coordf_t w = line.a_width + (j*seg_len) * (line.b_width-line.a_width) / line_len;
width.push_back(w);
width.push_back(w);
}
pp.push_back(line.b);
width.push_back(line.b_width);
assert(pp.size() == segments + 1u);
assert(width.size() == segments*2);
}
// delete this line and insert new ones
lines.erase(lines.begin() + i);
for (size_t j = 0; j < segments; ++j) {
ThickLine new_line(pp[j], pp[j+1]);
new_line.a_width = width[2*j];
new_line.b_width = width[2*j+1];
lines.insert(lines.begin() + i + j, new_line);
}
-- i;
continue;
}
const double w = fmax(line.a_width, line.b_width);
if (path.polyline.points.empty()) {
path.polyline.append(line.a);
path.polyline.append(line.b);
// Convert from spacing to extrusion width based on the extrusion model
// of a square extrusion ended with semi circles.
flow.width = unscale<float>(w) + flow.height * float(1. - 0.25 * PI);
#ifdef SLIC3R_DEBUG
printf(" filling %f gap\n", flow.width);
#endif
path.mm3_per_mm = flow.mm3_per_mm();
path.width = flow.width;
path.height = flow.height;
} else {
thickness_delta = fabs(scale_(flow.width) - w);
if (thickness_delta <= tolerance) {
// the width difference between this line and the current flow width is
// within the accepted tolerance
path.polyline.append(line.b);
} else {
// we need to initialize a new line
paths.emplace_back(std::move(path));
path = ExtrusionPath(role);
-- i;
}
}
}
if (path.polyline.is_valid())
paths.emplace_back(std::move(path));
return paths;
}
static ExtrusionEntityCollection variable_width(const ThickPolylines& polylines, ExtrusionRole role, Flow flow)
{
// This value determines granularity of adaptive width, as G-code does not allow
// variable extrusion within a single move; this value shall only affect the amount
// of segments, and any pruning shall be performed before we apply this tolerance.
ExtrusionEntityCollection coll;
const float tolerance = float(scale_(0.05));
for (const ThickPolyline &p : polylines) {
ExtrusionPaths paths = thick_polyline_to_extrusion_paths(p, role, flow, tolerance);
// Append paths to collection.
if (! paths.empty()) {
if (paths.front().first_point() == paths.back().last_point())
coll.append(ExtrusionLoop(std::move(paths)));
else
coll.append(std::move(paths));
}
}
return coll;
}
// Hierarchy of perimeters.
class PerimeterGeneratorLoop {
public:
// Polygon of this contour.
Polygon polygon;
// Is it a contour or a hole?
// Contours are CCW oriented, holes are CW oriented.
bool is_contour;
// Depth in the hierarchy. External perimeter has depth = 0. An external perimeter could be both a contour and a hole.
unsigned short depth;
// Children contour, may be both CCW and CW oriented (outer contours or holes).
std::vector<PerimeterGeneratorLoop> children;
PerimeterGeneratorLoop(Polygon polygon, unsigned short depth, bool is_contour) :
polygon(polygon), is_contour(is_contour), depth(depth) {}
// External perimeter. It may be CCW or CW oriented (outer contour or hole contour).
bool is_external() const { return this->depth == 0; }
// An island, which may have holes, but it does not have another internal island.
bool is_internal_contour() const;
};
typedef std::vector<PerimeterGeneratorLoop> PerimeterGeneratorLoops;
static ExtrusionEntityCollection traverse_loops(const PerimeterGenerator &perimeter_generator, const PerimeterGeneratorLoops &loops, ThickPolylines &thin_walls)
{
// loops is an arrayref of ::Loop objects
// turn each one into an ExtrusionLoop object
ExtrusionEntityCollection coll;
for (const PerimeterGeneratorLoop &loop : loops) {
bool is_external = loop.is_external();
ExtrusionRole role;
ExtrusionLoopRole loop_role;
role = is_external ? erExternalPerimeter : erPerimeter;
if (loop.is_internal_contour()) {
// Note that we set loop role to ContourInternalPerimeter
// also when loop is both internal and external (i.e.
// there's only one contour loop).
loop_role = elrContourInternalPerimeter;
} else {
loop_role = elrDefault;
}
// detect overhanging/bridging perimeters
ExtrusionPaths paths;
if (perimeter_generator.config->overhangs && perimeter_generator.layer_id > 0
&& !(perimeter_generator.object_config->support_material && perimeter_generator.object_config->support_material_contact_distance.value == 0)) {
// get non-overhang paths by intersecting this loop with the grown lower slices
extrusion_paths_append(
paths,
intersection_pl(loop.polygon, perimeter_generator.lower_slices_polygons()),
role,
is_external ? perimeter_generator.ext_mm3_per_mm() : perimeter_generator.mm3_per_mm(),
is_external ? perimeter_generator.ext_perimeter_flow.width : perimeter_generator.perimeter_flow.width,
(float)perimeter_generator.layer_height);
// get overhang paths by checking what parts of this loop fall
// outside the grown lower slices (thus where the distance between
// the loop centerline and original lower slices is >= half nozzle diameter
extrusion_paths_append(
paths,
diff_pl(loop.polygon, perimeter_generator.lower_slices_polygons()),
erOverhangPerimeter,
perimeter_generator.mm3_per_mm_overhang(),
perimeter_generator.overhang_flow.width,
perimeter_generator.overhang_flow.height);
// reapply the nearest point search for starting point
// We allow polyline reversal because Clipper may have randomly
// reversed polylines during clipping.
paths = (ExtrusionPaths)ExtrusionEntityCollection(paths).chained_path();
} else {
ExtrusionPath path(role);
path.polyline = loop.polygon.split_at_first_point();
path.mm3_per_mm = is_external ? perimeter_generator.ext_mm3_per_mm() : perimeter_generator.mm3_per_mm();
path.width = is_external ? perimeter_generator.ext_perimeter_flow.width : perimeter_generator.perimeter_flow.width;
path.height = (float)perimeter_generator.layer_height;
paths.push_back(path);
}
coll.append(ExtrusionLoop(paths, loop_role));
}
// append thin walls to the nearest-neighbor search (only for first iteration)
if (!thin_walls.empty()) {
ExtrusionEntityCollection tw = variable_width(thin_walls, erExternalPerimeter, perimeter_generator.ext_perimeter_flow);
coll.append(tw.entities);
thin_walls.clear();
}
// sort entities into a new collection using a nearest-neighbor search,
// preserving the original indices which are useful for detecting thin walls
ExtrusionEntityCollection sorted_coll;
coll.chained_path(&sorted_coll, false, erMixed, &sorted_coll.orig_indices);
// traverse children and build the final collection
ExtrusionEntityCollection entities;
for (std::vector<size_t>::const_iterator idx = sorted_coll.orig_indices.begin();
idx != sorted_coll.orig_indices.end();
++idx) {
if (*idx >= loops.size()) {
// this is a thin wall
// let's get it from the sorted collection as it might have been reversed
size_t i = idx - sorted_coll.orig_indices.begin();
entities.append(*sorted_coll.entities[i]);
} else {
const PerimeterGeneratorLoop &loop = loops[*idx];
ExtrusionLoop eloop = *dynamic_cast<ExtrusionLoop*>(coll.entities[*idx]);
ExtrusionEntityCollection children = traverse_loops(perimeter_generator, loop.children, thin_walls);
if (loop.is_contour) {
eloop.make_counter_clockwise();
entities.append(children.entities);
entities.append(eloop);
} else {
eloop.make_clockwise();
entities.append(eloop);
entities.append(children.entities);
}
}
}
return entities;
}
void PerimeterGenerator::process()
{
// other perimeters
this->_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
m_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
coord_t perimeter_width = this->perimeter_flow.scaled_width();
coord_t perimeter_spacing = this->perimeter_flow.scaled_spacing();
// external perimeters
this->_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
m_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
coord_t ext_perimeter_width = this->ext_perimeter_flow.scaled_width();
coord_t ext_perimeter_spacing = this->ext_perimeter_flow.scaled_spacing();
coord_t ext_perimeter_spacing2 = this->ext_perimeter_flow.scaled_spacing(this->perimeter_flow);
// overhang perimeters
this->_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
m_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
// solid infill
coord_t solid_infill_spacing = this->solid_infill_flow.scaled_spacing();
@ -35,8 +260,8 @@ void PerimeterGenerator::process()
// which is the spacing between external and internal, which is not correct
// and would make the collapsing (thus the details resolution) dependent on
// internal flow which is unrelated.
coord_t min_spacing = perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE);
coord_t ext_min_spacing = ext_perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE);
coord_t min_spacing = coord_t(perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE));
coord_t ext_min_spacing = coord_t(ext_perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE));
bool has_gap_fill = this->config->gap_fill_speed.value > 0;
// prepare grown lower layer slices for overhang detection
@ -45,7 +270,7 @@ void PerimeterGenerator::process()
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
// in the current layer
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
this->_lower_slices_p = offset(*this->lower_slices, float(scale_(+nozzle_diameter/2)));
m_lower_slices_polygons = offset(*this->lower_slices, float(scale_(+nozzle_diameter/2)));
}
// we need to process each island separately because we might have different
@ -70,20 +295,20 @@ void PerimeterGenerator::process()
offsets = this->config->thin_walls ?
offset2_ex(
last,
-(ext_perimeter_width / 2 + ext_min_spacing / 2 - 1),
+(ext_min_spacing / 2 - 1)) :
offset_ex(last, - ext_perimeter_width / 2);
- float(ext_perimeter_width / 2. + ext_min_spacing / 2. - 1),
+ float(ext_min_spacing / 2. - 1)) :
offset_ex(last, - float(ext_perimeter_width / 2.));
// look for thin walls
if (this->config->thin_walls) {
// the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
// (actually, something larger than that still may exist due to mitering or other causes)
coord_t min_width = scale_(this->ext_perimeter_flow.nozzle_diameter / 3);
coord_t min_width = coord_t(scale_(this->ext_perimeter_flow.nozzle_diameter / 3));
ExPolygons expp = offset2_ex(
// medial axis requires non-overlapping geometry
diff_ex(to_polygons(last),
offset(offsets, ext_perimeter_width / 2),
offset(offsets, float(ext_perimeter_width / 2.)),
true),
- min_width / 2, min_width / 2);
- float(min_width / 2.), float(min_width / 2.));
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
for (ExPolygon &ex : expp)
ex.medial_axis(ext_perimeter_width + ext_perimeter_spacing2, min_width, &thin_walls);
@ -100,19 +325,19 @@ void PerimeterGenerator::process()
// Also the offset2(perimeter, -x, x) may sometimes lead to a perimeter, which is larger than
// the original.
offset2_ex(last,
- (distance + min_spacing / 2 - 1),
min_spacing / 2 - 1) :
- float(distance + min_spacing / 2. - 1.),
float(min_spacing / 2. - 1.)) :
// If "detect thin walls" is not enabled, this paths will be entered, which
// leads to overflows, as in prusa3d/Slic3r GH #32
offset_ex(last, - distance);
offset_ex(last, - float(distance));
// look for gaps
if (has_gap_fill)
// not using safety offset here would "detect" very narrow gaps
// (but still long enough to escape the area threshold) that gap fill
// won't be able to fill but we'd still remove from infill area
append(gaps, diff_ex(
offset(last, -0.5 * distance),
offset(offsets, 0.5 * distance + 10))); // safety offset
offset(last, - float(0.5 * distance)),
offset(offsets, float(0.5 * distance + 10)))); // safety offset
}
if (offsets.empty()) {
// Store the number of loops actually generated.
@ -125,6 +350,11 @@ void PerimeterGenerator::process()
break;
}
for (const ExPolygon &expolygon : offsets) {
// Outer contour may overlap with an inner contour,
// inner contour may overlap with another inner contour,
// outer contour may overlap with itself.
//FIXME evaluate the overlaps, annotate each point with an overlap depth,
// compensate for the depth of intersection.
contours[i].emplace_back(PerimeterGeneratorLoop(expolygon.contour, i, true));
if (! expolygon.holes.empty()) {
holes[i].reserve(holes[i].size() + expolygon.holes.size());
@ -195,7 +425,7 @@ void PerimeterGenerator::process()
}
}
// at this point, all loops should be in contours[0]
ExtrusionEntityCollection entities = this->_traverse_loops(contours.front(), thin_walls);
ExtrusionEntityCollection entities = traverse_loops(*this, contours.front(), thin_walls);
// if brim will be printed, reverse the order of perimeters so that
// we continue inwards after having finished the brim
// TODO: add test for perimeter order
@ -214,15 +444,14 @@ void PerimeterGenerator::process()
double max = 2. * perimeter_spacing;
ExPolygons gaps_ex = diff_ex(
//FIXME offset2 would be enough and cheaper.
offset2_ex(gaps, -min/2, +min/2),
offset2_ex(gaps, -max/2, +max/2),
offset2_ex(gaps, - float(min / 2.), float(min / 2.)),
offset2_ex(gaps, - float(max / 2.), float(max / 2.)),
true);
ThickPolylines polylines;
for (const ExPolygon &ex : gaps_ex)
ex.medial_axis(max, min, &polylines);
if (! polylines.empty()) {
ExtrusionEntityCollection gap_fill = this->_variable_width(polylines,
erGapFill, this->solid_infill_flow);
ExtrusionEntityCollection gap_fill = variable_width(polylines, erGapFill, this->solid_infill_flow);
this->gap_fill->append(gap_fill.entities);
/* Make sure we don't infill narrow parts that are already gap-filled
(we only consider this surface's gaps to reduce the diff() complexity).
@ -249,229 +478,23 @@ void PerimeterGenerator::process()
perimeter_spacing / 2;
// only apply infill overlap if we actually have one perimeter
if (inset > 0)
inset -= scale_(this->config->get_abs_value("infill_overlap", unscale<double>(inset + solid_infill_spacing / 2)));
inset -= coord_t(scale_(this->config->get_abs_value("infill_overlap", unscale<double>(inset + solid_infill_spacing / 2))));
// simplify infill contours according to resolution
Polygons pp;
for (ExPolygon &ex : last)
ex.simplify_p(SCALED_RESOLUTION, &pp);
// collapse too narrow infill areas
coord_t min_perimeter_infill_spacing = solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE);
coord_t min_perimeter_infill_spacing = coord_t(solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE));
// append infill areas to fill_surfaces
this->fill_surfaces->append(
offset2_ex(
union_ex(pp),
- inset - min_perimeter_infill_spacing / 2,
min_perimeter_infill_spacing / 2),
float(- inset - min_perimeter_infill_spacing / 2.),
float(min_perimeter_infill_spacing / 2.)),
stInternal);
} // for each island
}
ExtrusionEntityCollection PerimeterGenerator::_traverse_loops(
const PerimeterGeneratorLoops &loops, ThickPolylines &thin_walls) const
{
// loops is an arrayref of ::Loop objects
// turn each one into an ExtrusionLoop object
ExtrusionEntityCollection coll;
for (PerimeterGeneratorLoops::const_iterator loop = loops.begin();
loop != loops.end(); ++loop) {
bool is_external = loop->is_external();
ExtrusionRole role;
ExtrusionLoopRole loop_role;
role = is_external ? erExternalPerimeter : erPerimeter;
if (loop->is_internal_contour()) {
// Note that we set loop role to ContourInternalPerimeter
// also when loop is both internal and external (i.e.
// there's only one contour loop).
loop_role = elrContourInternalPerimeter;
} else {
loop_role = elrDefault;
}
// detect overhanging/bridging perimeters
ExtrusionPaths paths;
if (this->config->overhangs && this->layer_id > 0
&& !(this->object_config->support_material && this->object_config->support_material_contact_distance.value == 0)) {
// get non-overhang paths by intersecting this loop with the grown lower slices
extrusion_paths_append(
paths,
intersection_pl(loop->polygon, this->_lower_slices_p),
role,
is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm,
is_external ? this->ext_perimeter_flow.width : this->perimeter_flow.width,
this->layer_height);
// get overhang paths by checking what parts of this loop fall
// outside the grown lower slices (thus where the distance between
// the loop centerline and original lower slices is >= half nozzle diameter
extrusion_paths_append(
paths,
diff_pl(loop->polygon, this->_lower_slices_p),
erOverhangPerimeter,
this->_mm3_per_mm_overhang,
this->overhang_flow.width,
this->overhang_flow.height);
// reapply the nearest point search for starting point
// We allow polyline reversal because Clipper may have randomly
// reversed polylines during clipping.
paths = (ExtrusionPaths)ExtrusionEntityCollection(paths).chained_path();
} else {
ExtrusionPath path(role);
path.polyline = loop->polygon.split_at_first_point();
path.mm3_per_mm = is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm;
path.width = is_external ? this->ext_perimeter_flow.width : this->perimeter_flow.width;
path.height = this->layer_height;
paths.push_back(path);
}
coll.append(ExtrusionLoop(paths, loop_role));
}
// append thin walls to the nearest-neighbor search (only for first iteration)
if (!thin_walls.empty()) {
ExtrusionEntityCollection tw = this->_variable_width
(thin_walls, erExternalPerimeter, this->ext_perimeter_flow);
coll.append(tw.entities);
thin_walls.clear();
}
// sort entities into a new collection using a nearest-neighbor search,
// preserving the original indices which are useful for detecting thin walls
ExtrusionEntityCollection sorted_coll;
coll.chained_path(&sorted_coll, false, erMixed, &sorted_coll.orig_indices);
// traverse children and build the final collection
ExtrusionEntityCollection entities;
for (std::vector<size_t>::const_iterator idx = sorted_coll.orig_indices.begin();
idx != sorted_coll.orig_indices.end();
++idx) {
if (*idx >= loops.size()) {
// this is a thin wall
// let's get it from the sorted collection as it might have been reversed
size_t i = idx - sorted_coll.orig_indices.begin();
entities.append(*sorted_coll.entities[i]);
} else {
const PerimeterGeneratorLoop &loop = loops[*idx];
ExtrusionLoop eloop = *dynamic_cast<ExtrusionLoop*>(coll.entities[*idx]);
ExtrusionEntityCollection children = this->_traverse_loops(loop.children, thin_walls);
if (loop.is_contour) {
eloop.make_counter_clockwise();
entities.append(children.entities);
entities.append(eloop);
} else {
eloop.make_clockwise();
entities.append(eloop);
entities.append(children.entities);
}
}
}
return entities;
}
static inline ExtrusionPaths thick_polyline_to_extrusion_paths(const ThickPolyline &thick_polyline, ExtrusionRole role, Flow &flow, const float tolerance)
{
ExtrusionPaths paths;
ExtrusionPath path(role);
ThickLines lines = thick_polyline.thicklines();
for (int i = 0; i < (int)lines.size(); ++i) {
const ThickLine& line = lines[i];
const coordf_t line_len = line.length();
if (line_len < SCALED_EPSILON) continue;
double thickness_delta = fabs(line.a_width - line.b_width);
if (thickness_delta > tolerance) {
const unsigned short segments = ceil(thickness_delta / tolerance);
const coordf_t seg_len = line_len / segments;
Points pp;
std::vector<coordf_t> width;
{
pp.push_back(line.a);
width.push_back(line.a_width);
for (size_t j = 1; j < segments; ++j) {
pp.push_back((line.a.cast<double>() + (line.b - line.a).cast<double>().normalized() * (j * seg_len)).cast<coord_t>());
coordf_t w = line.a_width + (j*seg_len) * (line.b_width-line.a_width) / line_len;
width.push_back(w);
width.push_back(w);
}
pp.push_back(line.b);
width.push_back(line.b_width);
assert(pp.size() == segments + 1u);
assert(width.size() == segments*2);
}
// delete this line and insert new ones
lines.erase(lines.begin() + i);
for (size_t j = 0; j < segments; ++j) {
ThickLine new_line(pp[j], pp[j+1]);
new_line.a_width = width[2*j];
new_line.b_width = width[2*j+1];
lines.insert(lines.begin() + i + j, new_line);
}
-- i;
continue;
}
const double w = fmax(line.a_width, line.b_width);
if (path.polyline.points.empty()) {
path.polyline.append(line.a);
path.polyline.append(line.b);
// Convert from spacing to extrusion width based on the extrusion model
// of a square extrusion ended with semi circles.
flow.width = unscale<float>(w) + flow.height * (1. - 0.25 * PI);
#ifdef SLIC3R_DEBUG
printf(" filling %f gap\n", flow.width);
#endif
path.mm3_per_mm = flow.mm3_per_mm();
path.width = flow.width;
path.height = flow.height;
} else {
thickness_delta = fabs(scale_(flow.width) - w);
if (thickness_delta <= tolerance) {
// the width difference between this line and the current flow width is
// within the accepted tolerance
path.polyline.append(line.b);
} else {
// we need to initialize a new line
paths.emplace_back(std::move(path));
path = ExtrusionPath(role);
-- i;
}
}
}
if (path.polyline.is_valid())
paths.emplace_back(std::move(path));
return paths;
}
ExtrusionEntityCollection PerimeterGenerator::_variable_width(const ThickPolylines &polylines, ExtrusionRole role, Flow flow) const
{
// This value determines granularity of adaptive width, as G-code does not allow
// variable extrusion within a single move; this value shall only affect the amount
// of segments, and any pruning shall be performed before we apply this tolerance.
ExtrusionEntityCollection coll;
const double tolerance = scale_(0.05);
for (const ThickPolyline &p : polylines) {
ExtrusionPaths paths = thick_polyline_to_extrusion_paths(p, role, flow, tolerance);
// Append paths to collection.
if (! paths.empty()) {
if (paths.front().first_point() == paths.back().last_point())
coll.append(ExtrusionLoop(std::move(paths)));
else
coll.append(std::move(paths));
}
}
return coll;
}
bool PerimeterGeneratorLoop::is_internal_contour() const
{
// An internal contour is a contour containing no other contours

View file

@ -11,29 +11,6 @@
namespace Slic3r {
// Hierarchy of perimeters.
class PerimeterGeneratorLoop {
public:
// Polygon of this contour.
Polygon polygon;
// Is it a contour or a hole?
// Contours are CCW oriented, holes are CW oriented.
bool is_contour;
// Depth in the hierarchy. External perimeter has depth = 0. An external perimeter could be both a contour and a hole.
unsigned short depth;
// Children contour, may be both CCW and CW oriented (outer contours or holes).
std::vector<PerimeterGeneratorLoop> children;
PerimeterGeneratorLoop(Polygon polygon, unsigned short depth, bool is_contour) :
polygon(polygon), is_contour(is_contour), depth(depth) {}
// External perimeter. It may be CCW or CW oriented (outer contour or hole contour).
bool is_external() const { return this->depth == 0; }
// An island, which may have holes, but it does not have another internal island.
bool is_internal_contour() const;
};
typedef std::vector<PerimeterGeneratorLoop> PerimeterGeneratorLoops;
class PerimeterGenerator {
public:
// Inputs:
@ -73,18 +50,21 @@ public:
overhang_flow(flow), solid_infill_flow(flow),
config(config), object_config(object_config), print_config(print_config),
loops(loops), gap_fill(gap_fill), fill_surfaces(fill_surfaces),
_ext_mm3_per_mm(-1), _mm3_per_mm(-1), _mm3_per_mm_overhang(-1)
m_ext_mm3_per_mm(-1), m_mm3_per_mm(-1), m_mm3_per_mm_overhang(-1)
{}
void process();
void process();
double ext_mm3_per_mm() const { return m_ext_mm3_per_mm; }
double mm3_per_mm() const { return m_mm3_per_mm; }
double mm3_per_mm_overhang() const { return m_mm3_per_mm_overhang; }
Polygons lower_slices_polygons() const { return m_lower_slices_polygons; }
private:
double _ext_mm3_per_mm;
double _mm3_per_mm;
double _mm3_per_mm_overhang;
Polygons _lower_slices_p;
ExtrusionEntityCollection _traverse_loops(const PerimeterGeneratorLoops &loops, ThickPolylines &thin_walls) const;
ExtrusionEntityCollection _variable_width(const ThickPolylines &polylines, ExtrusionRole role, Flow flow) const;
double m_ext_mm3_per_mm;
double m_mm3_per_mm;
double m_mm3_per_mm_overhang;
Polygons m_lower_slices_polygons;
};
}