Merge remote-tracking branch 'origin/master' into ys_bugfixing

This commit is contained in:
YuSanka 2019-06-19 16:32:40 +02:00
commit 09f4831f4e
86 changed files with 4705 additions and 4380 deletions

View file

@ -60,7 +60,7 @@ if (MSVC)
# /bigobj (Increase Number of Sections in .Obj file)
# error C3859: virtual memory range for PCH exceeded; please recompile with a command line option of '-Zm90' or greater
# Generate symbols at every build target, even for the release.
add_compile_options(-bigobj -Zm316 /Zi)
add_compile_options(-bigobj -Zm520 /Zi)
endif ()
# Display and check CMAKE_PREFIX_PATH

Binary file not shown.

After

Width:  |  Height:  |  Size: 589 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 600 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 B

View file

@ -7,10 +7,13 @@
#include <Windows.h>
#include <wchar.h>
#ifdef SLIC3R_GUI
extern "C"
{
// Let the NVIDIA and AMD know we want to use their graphics card
// on a dual graphics card system.
__declspec(dllexport) DWORD NvOptimusEnablement = 0x00000001;
__declspec(dllexport) int AmdPowerXpressRequestHighPerformance = 1;
}
#endif /* SLIC3R_GUI */
#endif /* WIN32 */
@ -241,8 +244,7 @@ int CLI::run(int argc, char **argv)
} else if (opt_key == "cut" || opt_key == "cut_x" || opt_key == "cut_y") {
std::vector<Model> new_models;
for (auto &model : m_models) {
model.repair();
model.translate(0, 0, -model.bounding_box().min.z()); // align to z = 0
model.translate(0, 0, -model.bounding_box().min.z()); // align to z = 0
size_t num_objects = model.objects.size();
for (size_t i = 0; i < num_objects; ++ i) {
@ -301,8 +303,9 @@ int CLI::run(int argc, char **argv)
}
}
} else if (opt_key == "repair") {
for (auto &model : m_models)
model.repair();
// Models are repaired by default.
//for (auto &model : m_models)
// model.repair();
} else {
boost::nowide::cerr << "error: option not implemented yet: " << opt_key << std::endl;
return 1;

View file

@ -8,10 +8,13 @@
#include <wchar.h>
#ifdef SLIC3R_GUI
extern "C"
{
// Let the NVIDIA and AMD know we want to use their graphics card
// on a dual graphics card system.
__declspec(dllexport) DWORD NvOptimusEnablement = 0x00000001;
__declspec(dllexport) int AmdPowerXpressRequestHighPerformance = 1;
}
#endif /* SLIC3R_GUI */
#include <stdlib.h>

File diff suppressed because it is too large Load diff

View file

@ -25,271 +25,214 @@
#include <string.h>
#include <math.h>
// Boost pool: Don't use mutexes to synchronize memory allocation.
#define BOOST_POOL_NO_MT
#include <boost/pool/object_pool.hpp>
#include "stl.h"
static int stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag);
static void reverse_facet(stl_file *stl, int facet_num)
{
++ stl->stats.facets_reversed;
static void
stl_reverse_facet(stl_file *stl, int facet_num) {
stl_vertex tmp_vertex;
/* int tmp_neighbor;*/
int neighbor[3];
int vnot[3];
int neighbor[3] = { stl->neighbors_start[facet_num].neighbor[0], stl->neighbors_start[facet_num].neighbor[1], stl->neighbors_start[facet_num].neighbor[2] };
int vnot[3] = { stl->neighbors_start[facet_num].which_vertex_not[0], stl->neighbors_start[facet_num].which_vertex_not[1], stl->neighbors_start[facet_num].which_vertex_not[2] };
stl->stats.facets_reversed += 1;
// reverse the facet
stl_vertex tmp_vertex = stl->facet_start[facet_num].vertex[0];
stl->facet_start[facet_num].vertex[0] = stl->facet_start[facet_num].vertex[1];
stl->facet_start[facet_num].vertex[1] = tmp_vertex;
neighbor[0] = stl->neighbors_start[facet_num].neighbor[0];
neighbor[1] = stl->neighbors_start[facet_num].neighbor[1];
neighbor[2] = stl->neighbors_start[facet_num].neighbor[2];
vnot[0] = stl->neighbors_start[facet_num].which_vertex_not[0];
vnot[1] = stl->neighbors_start[facet_num].which_vertex_not[1];
vnot[2] = stl->neighbors_start[facet_num].which_vertex_not[2];
// fix the vnots of the neighboring facets
if (neighbor[0] != -1)
stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] = (stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] + 3) % 6;
if (neighbor[1] != -1)
stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] = (stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] + 4) % 6;
if (neighbor[2] != -1)
stl->neighbors_start[neighbor[2]].which_vertex_not[(vnot[2] + 1) % 3] = (stl->neighbors_start[neighbor[2]].which_vertex_not[(vnot[2] + 1) % 3] + 2) % 6;
/* reverse the facet */
tmp_vertex = stl->facet_start[facet_num].vertex[0];
stl->facet_start[facet_num].vertex[0] =
stl->facet_start[facet_num].vertex[1];
stl->facet_start[facet_num].vertex[1] = tmp_vertex;
// swap the neighbors of the facet that is being reversed
stl->neighbors_start[facet_num].neighbor[1] = neighbor[2];
stl->neighbors_start[facet_num].neighbor[2] = neighbor[1];
/* fix the vnots of the neighboring facets */
if(neighbor[0] != -1)
stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] =
(stl->neighbors_start[neighbor[0]].
which_vertex_not[(vnot[0] + 1) % 3] + 3) % 6;
if(neighbor[1] != -1)
stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] =
(stl->neighbors_start[neighbor[1]].
which_vertex_not[(vnot[1] + 1) % 3] + 4) % 6;
if(neighbor[2] != -1)
stl->neighbors_start[neighbor[2]].which_vertex_not[(vnot[2] + 1) % 3] =
(stl->neighbors_start[neighbor[2]].
which_vertex_not[(vnot[2] + 1) % 3] + 2) % 6;
// swap the vnots of the facet that is being reversed
stl->neighbors_start[facet_num].which_vertex_not[1] = vnot[2];
stl->neighbors_start[facet_num].which_vertex_not[2] = vnot[1];
/* swap the neighbors of the facet that is being reversed */
stl->neighbors_start[facet_num].neighbor[1] = neighbor[2];
stl->neighbors_start[facet_num].neighbor[2] = neighbor[1];
/* swap the vnots of the facet that is being reversed */
stl->neighbors_start[facet_num].which_vertex_not[1] = vnot[2];
stl->neighbors_start[facet_num].which_vertex_not[2] = vnot[1];
/* reverse the values of the vnots of the facet that is being reversed */
stl->neighbors_start[facet_num].which_vertex_not[0] =
(stl->neighbors_start[facet_num].which_vertex_not[0] + 3) % 6;
stl->neighbors_start[facet_num].which_vertex_not[1] =
(stl->neighbors_start[facet_num].which_vertex_not[1] + 3) % 6;
stl->neighbors_start[facet_num].which_vertex_not[2] =
(stl->neighbors_start[facet_num].which_vertex_not[2] + 3) % 6;
// reverse the values of the vnots of the facet that is being reversed
stl->neighbors_start[facet_num].which_vertex_not[0] = (stl->neighbors_start[facet_num].which_vertex_not[0] + 3) % 6;
stl->neighbors_start[facet_num].which_vertex_not[1] = (stl->neighbors_start[facet_num].which_vertex_not[1] + 3) % 6;
stl->neighbors_start[facet_num].which_vertex_not[2] = (stl->neighbors_start[facet_num].which_vertex_not[2] + 3) % 6;
}
void
stl_fix_normal_directions(stl_file *stl) {
char *norm_sw;
/* int edge_num;*/
/* int vnot;*/
int checked = 0;
int facet_num;
/* int next_facet;*/
int i;
int j;
struct stl_normal {
int facet_num;
struct stl_normal *next;
};
struct stl_normal *head;
struct stl_normal *tail;
struct stl_normal *newn;
struct stl_normal *temp;
// Returns true if the normal was flipped.
static bool check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag)
{
stl_facet *facet = &stl->facet_start[facet_num];
int* reversed_ids;
int reversed_count = 0;
int id;
int force_exit = 0;
stl_normal normal;
stl_calculate_normal(normal, facet);
stl_normalize_vector(normal);
stl_normal normal_dif = (normal - facet->normal).cwiseAbs();
if (stl->error) return;
const float eps = 0.001f;
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
// Normal is within tolerance. It is not really necessary to change the values here, but just for consistency, I will.
facet->normal = normal;
return false;
}
// this may happen for malformed models, see: https://github.com/prusa3d/PrusaSlicer/issues/2209
if (stl->stats.number_of_facets == 0) return;
stl_normal test_norm = facet->normal;
stl_normalize_vector(test_norm);
normal_dif = (normal - test_norm).cwiseAbs();
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
// The normal is not within tolerance, but direction is OK.
if (normal_fix_flag) {
facet->normal = normal;
++ stl->stats.normals_fixed;
}
return false;
}
/* Initialize linked list. */
head = (struct stl_normal*)malloc(sizeof(struct stl_normal));
if(head == NULL) perror("stl_fix_normal_directions");
tail = (struct stl_normal*)malloc(sizeof(struct stl_normal));
if(tail == NULL) perror("stl_fix_normal_directions");
head->next = tail;
tail->next = tail;
/* Initialize list that keeps track of already fixed facets. */
norm_sw = (char*)calloc(stl->stats.number_of_facets, sizeof(char));
if(norm_sw == NULL) perror("stl_fix_normal_directions");
/* Initialize list that keeps track of reversed facets. */
reversed_ids = (int*)calloc(stl->stats.number_of_facets, sizeof(int));
if (reversed_ids == NULL) perror("stl_fix_normal_directions reversed_ids");
facet_num = 0;
/* If normal vector is not within tolerance and backwards:
Arbitrarily starts at face 0. If this one is wrong, we're screwed. Thankfully, the chances
of it being wrong randomly are low if most of the triangles are right: */
if (stl_check_normal_vector(stl, 0, 0) == 2) {
stl_reverse_facet(stl, 0);
reversed_ids[reversed_count++] = 0;
}
/* Say that we've fixed this facet: */
norm_sw[facet_num] = 1;
checked++;
for(;;) {
/* Add neighbors_to_list.
Add unconnected neighbors to the list:a */
for(j = 0; j < 3; j++) {
/* Reverse the neighboring facets if necessary. */
if(stl->neighbors_start[facet_num].which_vertex_not[j] > 2) {
/* If the facet has a neighbor that is -1, it means that edge isn't shared by another facet */
if(stl->neighbors_start[facet_num].neighbor[j] != -1) {
if (norm_sw[stl->neighbors_start[facet_num].neighbor[j]] == 1) {
/* trying to modify a facet already marked as fixed, revert all changes made until now and exit (fixes: #716, #574, #413, #269, #262, #259, #230, #228, #206) */
for (id = reversed_count - 1; id >= 0; --id) {
stl_reverse_facet(stl, reversed_ids[id]);
}
force_exit = 1;
break;
} else {
stl_reverse_facet(stl, stl->neighbors_start[facet_num].neighbor[j]);
reversed_ids[reversed_count++] = stl->neighbors_start[facet_num].neighbor[j];
}
}
}
/* If this edge of the facet is connected: */
if(stl->neighbors_start[facet_num].neighbor[j] != -1) {
/* If we haven't fixed this facet yet, add it to the list: */
if(norm_sw[stl->neighbors_start[facet_num].neighbor[j]] != 1) {
/* Add node to beginning of list. */
newn = (struct stl_normal*)malloc(sizeof(struct stl_normal));
if(newn == NULL) perror("stl_fix_normal_directions");
newn->facet_num = stl->neighbors_start[facet_num].neighbor[j];
newn->next = head->next;
head->next = newn;
}
}
}
/* an error occourred, quit the for loop and exit */
if (force_exit) break;
/* Get next facet to fix from top of list. */
if(head->next != tail) {
facet_num = head->next->facet_num;
if(norm_sw[facet_num] != 1) { /* If facet is in list mutiple times */
norm_sw[facet_num] = 1; /* Record this one as being fixed. */
checked++;
}
temp = head->next; /* Delete this facet from the list. */
head->next = head->next->next;
free(temp);
} else { /* if we ran out of facets to fix: */
/* All of the facets in this part have been fixed. */
stl->stats.number_of_parts += 1;
if(checked >= stl->stats.number_of_facets) {
/* All of the facets have been checked. Bail out. */
break;
} else {
/* There is another part here. Find it and continue. */
for(i = 0; i < stl->stats.number_of_facets; i++) {
if(norm_sw[i] == 0) {
/* This is the first facet of the next part. */
facet_num = i;
if(stl_check_normal_vector(stl, i, 0) == 2) {
stl_reverse_facet(stl, i);
reversed_ids[reversed_count++] = i;
}
norm_sw[facet_num] = 1;
checked++;
break;
}
}
}
}
}
free(head);
free(tail);
free(reversed_ids);
free(norm_sw);
test_norm *= -1.f;
normal_dif = (normal - test_norm).cwiseAbs();
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
// The normal is not within tolerance and backwards.
if (normal_fix_flag) {
facet->normal = normal;
++ stl->stats.normals_fixed;
}
return true;
}
if (normal_fix_flag) {
facet->normal = normal;
++ stl->stats.normals_fixed;
}
// Status is unknown.
return false;
}
static int stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag) {
/* Returns 0 if the normal is within tolerance */
/* Returns 1 if the normal is not within tolerance, but direction is OK */
/* Returns 2 if the normal is not within tolerance and backwards */
/* Returns 4 if the status is unknown. */
void stl_fix_normal_directions(stl_file *stl)
{
// This may happen for malformed models, see: https://github.com/prusa3d/PrusaSlicer/issues/2209
if (stl->stats.number_of_facets == 0)
return;
stl_facet *facet;
struct stl_normal {
int facet_num;
stl_normal *next;
};
facet = &stl->facet_start[facet_num];
// Initialize linked list.
boost::object_pool<stl_normal> pool;
stl_normal *head = pool.construct();
stl_normal *tail = pool.construct();
head->next = tail;
tail->next = tail;
stl_normal normal;
stl_calculate_normal(normal, facet);
stl_normalize_vector(normal);
stl_normal normal_dif = (normal - facet->normal).cwiseAbs();
// Initialize list that keeps track of already fixed facets.
std::vector<char> norm_sw(stl->stats.number_of_facets, 0);
// Initialize list that keeps track of reversed facets.
std::vector<int> reversed_ids(stl->stats.number_of_facets, 0);
const float eps = 0.001f;
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
/* It is not really necessary to change the values here */
/* but just for consistency, I will. */
facet->normal = normal;
return 0;
}
int facet_num = 0;
int reversed_count = 0;
// If normal vector is not within tolerance and backwards:
// Arbitrarily starts at face 0. If this one is wrong, we're screwed. Thankfully, the chances
// of it being wrong randomly are low if most of the triangles are right:
if (check_normal_vector(stl, 0, 0)) {
reverse_facet(stl, 0);
reversed_ids[reversed_count ++] = 0;
}
stl_normal test_norm = facet->normal;
stl_normalize_vector(test_norm);
normal_dif = (normal - test_norm).cwiseAbs();
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
if(normal_fix_flag) {
facet->normal = normal;
stl->stats.normals_fixed += 1;
}
return 1;
}
// Say that we've fixed this facet:
norm_sw[facet_num] = 1;
int checked = 1;
test_norm *= -1.f;
normal_dif = (normal - test_norm).cwiseAbs();
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
// Facet is backwards.
if(normal_fix_flag) {
facet->normal = normal;
stl->stats.normals_fixed += 1;
}
return 2;
}
if(normal_fix_flag) {
facet->normal = normal;
stl->stats.normals_fixed += 1;
}
return 4;
for (;;) {
// Add neighbors_to_list. Add unconnected neighbors to the list.
bool force_exit = false;
for (int j = 0; j < 3; ++ j) {
// Reverse the neighboring facets if necessary.
if (stl->neighbors_start[facet_num].which_vertex_not[j] > 2) {
// If the facet has a neighbor that is -1, it means that edge isn't shared by another facet
if (stl->neighbors_start[facet_num].neighbor[j] != -1) {
if (norm_sw[stl->neighbors_start[facet_num].neighbor[j]] == 1) {
// trying to modify a facet already marked as fixed, revert all changes made until now and exit (fixes: #716, #574, #413, #269, #262, #259, #230, #228, #206)
for (int id = reversed_count - 1; id >= 0; -- id)
reverse_facet(stl, reversed_ids[id]);
force_exit = true;
break;
}
reverse_facet(stl, stl->neighbors_start[facet_num].neighbor[j]);
reversed_ids[reversed_count ++] = stl->neighbors_start[facet_num].neighbor[j];
}
}
// If this edge of the facet is connected:
if (stl->neighbors_start[facet_num].neighbor[j] != -1) {
// If we haven't fixed this facet yet, add it to the list:
if (norm_sw[stl->neighbors_start[facet_num].neighbor[j]] != 1) {
// Add node to beginning of list.
stl_normal *newn = pool.construct();
newn->facet_num = stl->neighbors_start[facet_num].neighbor[j];
newn->next = head->next;
head->next = newn;
}
}
}
// an error occourred, quit the for loop and exit
if (force_exit)
break;
// Get next facet to fix from top of list.
if (head->next != tail) {
facet_num = head->next->facet_num;
if (norm_sw[facet_num] != 1) { // If facet is in list mutiple times
norm_sw[facet_num] = 1; // Record this one as being fixed.
++ checked;
}
stl_normal *temp = head->next; // Delete this facet from the list.
head->next = head->next->next;
// pool.destroy(temp);
} else { // If we ran out of facets to fix: All of the facets in this part have been fixed.
++ stl->stats.number_of_parts;
if (checked >= stl->stats.number_of_facets)
// All of the facets have been checked. Bail out.
break;
// There is another part here. Find it and continue.
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i)
if (norm_sw[i] == 0) {
// This is the first facet of the next part.
facet_num = i;
if (check_normal_vector(stl, i, 0)) {
reverse_facet(stl, i);
reversed_ids[reversed_count++] = i;
}
norm_sw[facet_num] = 1;
++ checked;
break;
}
}
}
// pool.destroy(head);
// pool.destroy(tail);
}
void stl_fix_normal_values(stl_file *stl) {
int i;
if (stl->error) return;
for(i = 0; i < stl->stats.number_of_facets; i++) {
stl_check_normal_vector(stl, i, 1);
}
void stl_fix_normal_values(stl_file *stl)
{
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i)
check_normal_vector(stl, i, 1);
}
void stl_reverse_all_facets(stl_file *stl)
{
if (stl->error)
return;
stl_normal normal;
for(int i = 0; i < stl->stats.number_of_facets; i++) {
stl_reverse_facet(stl, i);
stl_calculate_normal(normal, &stl->facet_start[i]);
stl_normalize_vector(normal);
stl->facet_start[i].normal = normal;
}
stl_normal normal;
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
reverse_facet(stl, i);
stl_calculate_normal(normal, &stl->facet_start[i]);
stl_normalize_vector(normal);
stl->facet_start[i].normal = normal;
}
}

View file

@ -23,242 +23,237 @@
#include <stdlib.h>
#include <string.h>
#include <vector>
#include <boost/log/trivial.hpp>
#include <boost/nowide/cstdio.hpp>
#include "stl.h"
void
stl_invalidate_shared_vertices(stl_file *stl) {
if (stl->error) return;
void stl_generate_shared_vertices(stl_file *stl, indexed_triangle_set &its)
{
// 3 indices to vertex per face
its.indices.assign(stl->stats.number_of_facets, stl_triangle_vertex_indices(-1, -1, -1));
// Shared vertices (3D coordinates)
its.vertices.clear();
its.vertices.reserve(stl->stats.number_of_facets / 2);
if (stl->v_indices != NULL) {
free(stl->v_indices);
stl->v_indices = NULL;
}
if (stl->v_shared != NULL) {
free(stl->v_shared);
stl->v_shared = NULL;
}
// A degenerate mesh may contain loops: Traversing a fan will end up in an endless loop
// while never reaching the starting face. To avoid these endless loops, traversed faces at each fan traversal
// are marked with a unique fan_traversal_stamp.
unsigned int fan_traversal_stamp = 0;
std::vector<unsigned int> fan_traversal_facet_visited(stl->stats.number_of_facets, 0);
for (uint32_t facet_idx = 0; facet_idx < stl->stats.number_of_facets; ++ facet_idx) {
for (int j = 0; j < 3; ++ j) {
if (its.indices[facet_idx][j] != -1)
// Shared vertex was already assigned.
continue;
// Create a new shared vertex.
its.vertices.emplace_back(stl->facet_start[facet_idx].vertex[j]);
// Traverse the fan around the j-th vertex of the i-th face, assign the newly created shared vertex index to all the neighboring triangles in the triangle fan.
int facet_in_fan_idx = facet_idx;
bool edge_direction = false;
bool traversal_reversed = false;
int vnot = (j + 2) % 3;
// Increase the
++ fan_traversal_stamp;
for (;;) {
// Next edge on facet_in_fan_idx to be traversed. The edge is indexed by its starting vertex index.
int next_edge = 0;
// Vertex index in facet_in_fan_idx, which is being pivoted around, and which is being assigned a new shared vertex.
int pivot_vertex = 0;
if (vnot > 2) {
// The edge of facet_in_fan_idx opposite to vnot is equally oriented, therefore
// the neighboring facet is flipped.
if (! edge_direction) {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
} else {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot % 3;
}
edge_direction = ! edge_direction;
} else {
// The neighboring facet is correctly oriented.
if (! edge_direction) {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot;
} else {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
}
}
its.indices[facet_in_fan_idx][pivot_vertex] = its.vertices.size() - 1;
fan_traversal_facet_visited[facet_in_fan_idx] = fan_traversal_stamp;
// next_edge is an index of the starting vertex of the edge, not an index of the opposite vertex to the edge!
int next_facet = stl->neighbors_start[facet_in_fan_idx].neighbor[next_edge];
if (next_facet == -1) {
// No neighbor going in the current direction.
if (traversal_reversed) {
// Went to one limit, then turned back and reached the other limit. Quit the fan traversal.
break;
} else {
// Reached the first limit. Now try to reverse and traverse up to the other limit.
edge_direction = true;
vnot = (j + 1) % 3;
traversal_reversed = true;
facet_in_fan_idx = facet_idx;
}
} else if (next_facet == facet_idx) {
// Traversed a closed fan all around.
// assert(! traversal_reversed);
break;
} else if (next_facet >= (int)stl->stats.number_of_facets) {
// The mesh is not valid!
// assert(false);
break;
} else if (fan_traversal_facet_visited[next_facet] == fan_traversal_stamp) {
// Traversed a closed fan all around, but did not reach the starting face.
// This indicates an invalid geometry (non-manifold).
//assert(false);
break;
} else {
// Continue traversal.
// next_edge is an index of the starting vertex of the edge, not an index of the opposite vertex to the edge!
vnot = stl->neighbors_start[facet_in_fan_idx].which_vertex_not[next_edge];
facet_in_fan_idx = next_facet;
}
}
}
}
}
void
stl_generate_shared_vertices(stl_file *stl) {
int i;
int j;
int first_facet;
int direction;
int facet_num;
int vnot;
int next_edge;
int pivot_vertex;
int next_facet;
int reversed;
bool its_write_off(const indexed_triangle_set &its, const char *file)
{
/* Open the file */
FILE *fp = boost::nowide::fopen(file, "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "stl_write_ascii: Couldn't open " << file << " for writing";
return false;
}
if (stl->error) return;
fprintf(fp, "OFF\n");
fprintf(fp, "%d %d 0\n", (int)its.vertices.size(), (int)its.indices.size());
for (int i = 0; i < its.vertices.size(); ++ i)
fprintf(fp, "\t%f %f %f\n", its.vertices[i](0), its.vertices[i](1), its.vertices[i](2));
for (uint32_t i = 0; i < its.indices.size(); ++ i)
fprintf(fp, "\t3 %d %d %d\n", its.indices[i][0], its.indices[i][1], its.indices[i][2]);
fclose(fp);
return true;
}
/* make sure this function is idempotent and does not leak memory */
stl_invalidate_shared_vertices(stl);
bool its_write_vrml(const indexed_triangle_set &its, const char *file)
{
/* Open the file */
FILE *fp = boost::nowide::fopen(file, "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "stl_write_vrml: Couldn't open " << file << " for writing";
return false;
}
stl->v_indices = (v_indices_struct*)
calloc(stl->stats.number_of_facets, sizeof(v_indices_struct));
if(stl->v_indices == NULL) perror("stl_generate_shared_vertices");
stl->v_shared = (stl_vertex*)
calloc((stl->stats.number_of_facets / 2), sizeof(stl_vertex));
if(stl->v_shared == NULL) perror("stl_generate_shared_vertices");
stl->stats.shared_malloced = stl->stats.number_of_facets / 2;
stl->stats.shared_vertices = 0;
fprintf(fp, "#VRML V1.0 ascii\n\n");
fprintf(fp, "Separator {\n");
fprintf(fp, "\tDEF STLShape ShapeHints {\n");
fprintf(fp, "\t\tvertexOrdering COUNTERCLOCKWISE\n");
fprintf(fp, "\t\tfaceType CONVEX\n");
fprintf(fp, "\t\tshapeType SOLID\n");
fprintf(fp, "\t\tcreaseAngle 0.0\n");
fprintf(fp, "\t}\n");
fprintf(fp, "\tDEF STLModel Separator {\n");
fprintf(fp, "\t\tDEF STLColor Material {\n");
fprintf(fp, "\t\t\temissiveColor 0.700000 0.700000 0.000000\n");
fprintf(fp, "\t\t}\n");
fprintf(fp, "\t\tDEF STLVertices Coordinate3 {\n");
fprintf(fp, "\t\t\tpoint [\n");
for(i = 0; i < stl->stats.number_of_facets; i++) {
stl->v_indices[i].vertex[0] = -1;
stl->v_indices[i].vertex[1] = -1;
stl->v_indices[i].vertex[2] = -1;
}
int i = 0;
for (; i + 1 < its.vertices.size(); ++ i)
fprintf(fp, "\t\t\t\t%f %f %f,\n", its.vertices[i](0), its.vertices[i](1), its.vertices[i](2));
fprintf(fp, "\t\t\t\t%f %f %f]\n", its.vertices[i](0), its.vertices[i](1), its.vertices[i](2));
fprintf(fp, "\t\t}\n");
fprintf(fp, "\t\tDEF STLTriangles IndexedFaceSet {\n");
fprintf(fp, "\t\t\tcoordIndex [\n");
for (size_t i = 0; i + 1 < its.indices.size(); ++ i)
fprintf(fp, "\t\t\t\t%d, %d, %d, -1,\n", its.indices[i][0], its.indices[i][1], its.indices[i][2]);
fprintf(fp, "\t\t\t\t%d, %d, %d, -1]\n", its.indices[i][0], its.indices[i][1], its.indices[i][2]);
fprintf(fp, "\t\t}\n");
fprintf(fp, "\t}\n");
fprintf(fp, "}\n");
fclose(fp);
return true;
}
bool its_write_obj(const indexed_triangle_set &its, const char *file)
{
FILE *fp = boost::nowide::fopen(file, "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "stl_write_obj: Couldn't open " << file << " for writing";
return false;
}
for (size_t i = 0; i < its.vertices.size(); ++ i)
fprintf(fp, "v %f %f %f\n", its.vertices[i](0), its.vertices[i](1), its.vertices[i](2));
for (size_t i = 0; i < its.indices.size(); ++ i)
fprintf(fp, "f %d %d %d\n", its.indices[i][0]+1, its.indices[i][1]+1, its.indices[i][2]+1);
fclose(fp);
return true;
}
for(i = 0; i < stl->stats.number_of_facets; i++) {
first_facet = i;
for(j = 0; j < 3; j++) {
if(stl->v_indices[i].vertex[j] != -1) {
continue;
}
if(stl->stats.shared_vertices == stl->stats.shared_malloced) {
stl->stats.shared_malloced += 1024;
stl->v_shared = (stl_vertex*)realloc(stl->v_shared,
stl->stats.shared_malloced * sizeof(stl_vertex));
if(stl->v_shared == NULL) perror("stl_generate_shared_vertices");
}
// Check validity of the mesh, assert on error.
bool stl_validate(const stl_file *stl, const indexed_triangle_set &its)
{
assert(! stl->facet_start.empty());
assert(stl->facet_start.size() == stl->stats.number_of_facets);
assert(stl->neighbors_start.size() == stl->stats.number_of_facets);
assert(stl->facet_start.size() == stl->neighbors_start.size());
assert(! stl->neighbors_start.empty());
assert((its.indices.empty()) == (its.vertices.empty()));
assert(stl->stats.number_of_facets > 0);
assert(its.vertices.empty() || its.indices.size() == stl->stats.number_of_facets);
stl->v_shared[stl->stats.shared_vertices] =
stl->facet_start[i].vertex[j];
direction = 0;
reversed = 0;
facet_num = i;
vnot = (j + 2) % 3;
for(;;) {
if(vnot > 2) {
if(direction == 0) {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
direction = 1;
} else {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot % 3;
direction = 0;
}
} else {
if(direction == 0) {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot;
} else {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
}
#ifdef _DEBUG
// Verify validity of neighborship data.
for (int facet_idx = 0; facet_idx < (int)stl->stats.number_of_facets; ++ facet_idx) {
const stl_neighbors &nbr = stl->neighbors_start[facet_idx];
const int *vertices = its.indices.empty() ? nullptr : its.indices[facet_idx].data();
for (int nbr_idx = 0; nbr_idx < 3; ++ nbr_idx) {
int nbr_face = stl->neighbors_start[facet_idx].neighbor[nbr_idx];
assert(nbr_face < (int)stl->stats.number_of_facets);
if (nbr_face != -1) {
int nbr_vnot = nbr.which_vertex_not[nbr_idx];
assert(nbr_vnot >= 0 && nbr_vnot < 6);
// Neighbor of the neighbor is the original face.
assert(stl->neighbors_start[nbr_face].neighbor[(nbr_vnot + 1) % 3] == facet_idx);
int vnot_back = stl->neighbors_start[nbr_face].which_vertex_not[(nbr_vnot + 1) % 3];
assert(vnot_back >= 0 && vnot_back < 6);
assert((nbr_vnot < 3) == (vnot_back < 3));
assert(vnot_back % 3 == (nbr_idx + 2) % 3);
if (vertices != nullptr) {
// Has shared vertices.
if (nbr_vnot < 3) {
// Faces facet_idx and nbr_face share two vertices accross the common edge. Faces are correctly oriented.
assert((its.indices[nbr_face][(nbr_vnot + 1) % 3] == vertices[(nbr_idx + 1) % 3] && its.indices[nbr_face][(nbr_vnot + 2) % 3] == vertices[nbr_idx]));
} else {
// Faces facet_idx and nbr_face share two vertices accross the common edge. Faces are incorrectly oriented, one of them is flipped.
assert((its.indices[nbr_face][(nbr_vnot + 2) % 3] == vertices[(nbr_idx + 1) % 3] && its.indices[nbr_face][(nbr_vnot + 1) % 3] == vertices[nbr_idx]));
}
}
}
}
stl->v_indices[facet_num].vertex[pivot_vertex] =
stl->stats.shared_vertices;
next_facet = stl->neighbors_start[facet_num].neighbor[next_edge];
if(next_facet == -1) {
if(reversed) {
break;
} else {
direction = 1;
vnot = (j + 1) % 3;
reversed = 1;
facet_num = first_facet;
}
} else if(next_facet != first_facet) {
vnot = stl->neighbors_start[facet_num].
which_vertex_not[next_edge];
facet_num = next_facet;
} else {
break;
}
}
stl->stats.shared_vertices += 1;
}
}
#endif /* _DEBUG */
return true;
}
void
stl_write_off(stl_file *stl, const char *file) {
int i;
FILE *fp;
char *error_msg;
if (stl->error) return;
/* Open the file */
fp = boost::nowide::fopen(file, "w");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
fprintf(fp, "OFF\n");
fprintf(fp, "%d %d 0\n",
stl->stats.shared_vertices, stl->stats.number_of_facets);
for(i = 0; i < stl->stats.shared_vertices; i++) {
fprintf(fp, "\t%f %f %f\n",
stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
}
for(i = 0; i < stl->stats.number_of_facets; i++) {
fprintf(fp, "\t3 %d %d %d\n", stl->v_indices[i].vertex[0],
stl->v_indices[i].vertex[1], stl->v_indices[i].vertex[2]);
}
fclose(fp);
}
void
stl_write_vrml(stl_file *stl, const char *file) {
int i;
FILE *fp;
char *error_msg;
if (stl->error) return;
/* Open the file */
fp = boost::nowide::fopen(file, "w");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
fprintf(fp, "#VRML V1.0 ascii\n\n");
fprintf(fp, "Separator {\n");
fprintf(fp, "\tDEF STLShape ShapeHints {\n");
fprintf(fp, "\t\tvertexOrdering COUNTERCLOCKWISE\n");
fprintf(fp, "\t\tfaceType CONVEX\n");
fprintf(fp, "\t\tshapeType SOLID\n");
fprintf(fp, "\t\tcreaseAngle 0.0\n");
fprintf(fp, "\t}\n");
fprintf(fp, "\tDEF STLModel Separator {\n");
fprintf(fp, "\t\tDEF STLColor Material {\n");
fprintf(fp, "\t\t\temissiveColor 0.700000 0.700000 0.000000\n");
fprintf(fp, "\t\t}\n");
fprintf(fp, "\t\tDEF STLVertices Coordinate3 {\n");
fprintf(fp, "\t\t\tpoint [\n");
for(i = 0; i < (stl->stats.shared_vertices - 1); i++) {
fprintf(fp, "\t\t\t\t%f %f %f,\n",
stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
}
fprintf(fp, "\t\t\t\t%f %f %f]\n",
stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
fprintf(fp, "\t\t}\n");
fprintf(fp, "\t\tDEF STLTriangles IndexedFaceSet {\n");
fprintf(fp, "\t\t\tcoordIndex [\n");
for(i = 0; i < (stl->stats.number_of_facets - 1); i++) {
fprintf(fp, "\t\t\t\t%d, %d, %d, -1,\n", stl->v_indices[i].vertex[0],
stl->v_indices[i].vertex[1], stl->v_indices[i].vertex[2]);
}
fprintf(fp, "\t\t\t\t%d, %d, %d, -1]\n", stl->v_indices[i].vertex[0],
stl->v_indices[i].vertex[1], stl->v_indices[i].vertex[2]);
fprintf(fp, "\t\t}\n");
fprintf(fp, "\t}\n");
fprintf(fp, "}\n");
fclose(fp);
}
void stl_write_obj (stl_file *stl, const char *file) {
int i;
FILE* fp;
if (stl->error) return;
/* Open the file */
fp = boost::nowide::fopen(file, "w");
if (fp == NULL) {
char* error_msg = (char*)malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing", file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
for (i = 0; i < stl->stats.shared_vertices; i++) {
fprintf(fp, "v %f %f %f\n", stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
}
for (i = 0; i < stl->stats.number_of_facets; i++) {
fprintf(fp, "f %d %d %d\n", stl->v_indices[i].vertex[0]+1, stl->v_indices[i].vertex[1]+1, stl->v_indices[i].vertex[2]+1);
}
fclose(fp);
// Check validity of the mesh, assert on error.
bool stl_validate(const stl_file *stl)
{
indexed_triangle_set its;
return stl_validate(stl, its);
}

View file

@ -27,6 +27,7 @@
#include <stdint.h>
#include <stddef.h>
#include <vector>
#include <Eigen/Geometry>
// Size of the binary STL header, free form.
@ -40,22 +41,23 @@
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> stl_vertex;
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> stl_normal;
typedef Eigen::Matrix<int, 3, 1, Eigen::DontAlign> stl_triangle_vertex_indices;
static_assert(sizeof(stl_vertex) == 12, "size of stl_vertex incorrect");
static_assert(sizeof(stl_normal) == 12, "size of stl_normal incorrect");
struct stl_facet {
stl_normal normal;
stl_vertex vertex[3];
char extra[2];
stl_normal normal;
stl_vertex vertex[3];
char extra[2];
stl_facet rotated(const Eigen::Quaternion<float, Eigen::DontAlign> &rot) {
stl_facet out;
out.normal = rot * this->normal;
out.vertex[0] = rot * this->vertex[0];
out.vertex[1] = rot * this->vertex[1];
out.vertex[2] = rot * this->vertex[2];
return out;
}
stl_facet rotated(const Eigen::Quaternion<float, Eigen::DontAlign> &rot) const {
stl_facet out;
out.normal = rot * this->normal;
out.vertex[0] = rot * this->vertex[0];
out.vertex[1] = rot * this->vertex[1];
out.vertex[2] = rot * this->vertex[2];
return out;
}
};
#define SIZEOF_STL_FACET 50
@ -67,104 +69,94 @@ static_assert(sizeof(stl_facet) >= SIZEOF_STL_FACET, "size of stl_facet incorrec
typedef enum {binary, ascii, inmemory} stl_type;
typedef struct {
stl_vertex p1;
stl_vertex p2;
int facet_number;
} stl_edge;
struct stl_neighbors {
stl_neighbors() { reset(); }
void reset() {
neighbor[0] = -1;
neighbor[1] = -1;
neighbor[2] = -1;
which_vertex_not[0] = -1;
which_vertex_not[1] = -1;
which_vertex_not[2] = -1;
}
int num_neighbors_missing() const { return (this->neighbor[0] == -1) + (this->neighbor[1] == -1) + (this->neighbor[2] == -1); }
int num_neighbors() const { return 3 - this->num_neighbors_missing(); }
typedef struct stl_hash_edge {
// Key of a hash edge: sorted vertices of the edge.
uint32_t key[6];
// Compare two keys.
bool operator==(const stl_hash_edge &rhs) { return memcmp(key, rhs.key, sizeof(key)) == 0; }
bool operator!=(const stl_hash_edge &rhs) { return ! (*this == rhs); }
int hash(int M) const { return ((key[0] / 11 + key[1] / 7 + key[2] / 3) ^ (key[3] / 11 + key[4] / 7 + key[5] / 3)) % M; }
// Index of a facet owning this edge.
int facet_number;
// Index of this edge inside the facet with an index of facet_number.
// If this edge is stored backwards, which_edge is increased by 3.
int which_edge;
struct stl_hash_edge *next;
} stl_hash_edge;
// Index of a neighbor facet.
int neighbor[3];
// Index of an opposite vertex at the neighbor face.
char which_vertex_not[3];
};
typedef struct {
// Index of a neighbor facet.
int neighbor[3];
// Index of an opposite vertex at the neighbor face.
char which_vertex_not[3];
} stl_neighbors;
struct stl_stats {
stl_stats() { this->reset(); }
void reset() { memset(this, 0, sizeof(stl_stats)); this->volume = -1.0; }
char header[81];
stl_type type;
uint32_t number_of_facets;
stl_vertex max;
stl_vertex min;
stl_vertex size;
float bounding_diameter;
float shortest_edge;
float volume;
int connected_edges;
int connected_facets_1_edge;
int connected_facets_2_edge;
int connected_facets_3_edge;
int facets_w_1_bad_edge;
int facets_w_2_bad_edge;
int facets_w_3_bad_edge;
int original_num_facets;
int edges_fixed;
int degenerate_facets;
int facets_removed;
int facets_added;
int facets_reversed;
int backwards_edges;
int normals_fixed;
int number_of_parts;
};
typedef struct {
int vertex[3];
} v_indices_struct;
struct stl_file {
stl_file() {}
typedef struct {
char header[81];
stl_type type;
uint32_t number_of_facets;
stl_vertex max;
stl_vertex min;
stl_vertex size;
float bounding_diameter;
float shortest_edge;
float volume;
unsigned number_of_blocks;
int connected_edges;
int connected_facets_1_edge;
int connected_facets_2_edge;
int connected_facets_3_edge;
int facets_w_1_bad_edge;
int facets_w_2_bad_edge;
int facets_w_3_bad_edge;
int original_num_facets;
int edges_fixed;
int degenerate_facets;
int facets_removed;
int facets_added;
int facets_reversed;
int backwards_edges;
int normals_fixed;
int number_of_parts;
int malloced;
int freed;
int facets_malloced;
int collisions;
int shared_vertices;
int shared_malloced;
} stl_stats;
void clear() {
this->facet_start.clear();
this->neighbors_start.clear();
this->stats.reset();
}
typedef struct {
FILE *fp;
stl_facet *facet_start;
stl_hash_edge **heads;
stl_hash_edge *tail;
int M;
stl_neighbors *neighbors_start;
v_indices_struct *v_indices;
stl_vertex *v_shared;
stl_stats stats;
char error;
} stl_file;
std::vector<stl_facet> facet_start;
std::vector<stl_neighbors> neighbors_start;
// Statistics
stl_stats stats;
};
struct indexed_triangle_set
{
indexed_triangle_set() {}
extern void stl_open(stl_file *stl, const char *file);
extern void stl_close(stl_file *stl);
void clear() { indices.clear(); vertices.clear(); }
std::vector<stl_triangle_vertex_indices> indices;
std::vector<stl_vertex> vertices;
//FIXME add normals once we get rid of the stl_file from TriangleMesh completely.
//std::vector<stl_normal> normals
};
extern bool stl_open(stl_file *stl, const char *file);
extern void stl_stats_out(stl_file *stl, FILE *file, char *input_file);
extern void stl_print_neighbors(stl_file *stl, char *file);
extern void stl_put_little_int(FILE *fp, int value_in);
extern void stl_put_little_float(FILE *fp, float value_in);
extern void stl_write_ascii(stl_file *stl, const char *file, const char *label);
extern void stl_write_binary(stl_file *stl, const char *file, const char *label);
extern void stl_write_binary_block(stl_file *stl, FILE *fp);
extern bool stl_print_neighbors(stl_file *stl, char *file);
extern bool stl_write_ascii(stl_file *stl, const char *file, const char *label);
extern bool stl_write_binary(stl_file *stl, const char *file, const char *label);
extern void stl_check_facets_exact(stl_file *stl);
extern void stl_check_facets_nearby(stl_file *stl, float tolerance);
extern void stl_remove_unconnected_facets(stl_file *stl);
extern void stl_write_vertex(stl_file *stl, int facet, int vertex);
extern void stl_write_facet(stl_file *stl, char *label, int facet);
extern void stl_write_edge(stl_file *stl, char *label, stl_hash_edge edge);
extern void stl_write_neighbor(stl_file *stl, int facet);
extern void stl_write_quad_object(stl_file *stl, char *file);
extern bool stl_write_quad_object(stl_file *stl, char *file);
extern void stl_verify_neighbors(stl_file *stl);
extern void stl_fill_holes(stl_file *stl);
extern void stl_fix_normal_directions(stl_file *stl);
@ -186,36 +178,30 @@ extern void stl_get_size(stl_file *stl);
template<typename T>
extern void stl_transform(stl_file *stl, T *trafo3x4)
{
if (stl->error)
return;
for (uint32_t i_face = 0; i_face < stl->stats.number_of_facets; ++ i_face) {
stl_facet &face = stl->facet_start[i_face];
for (int i_vertex = 0; i_vertex < 3; ++ i_vertex) {
stl_vertex &v_dst = face.vertex[i_vertex];
stl_vertex v_src = v_dst;
v_dst(0) = T(trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2) + trafo3x4[3]);
v_dst(1) = T(trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2) + trafo3x4[7]);
v_dst(2) = T(trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2) + trafo3x4[11]);
}
stl_vertex &v_dst = face.normal;
stl_vertex v_src = v_dst;
v_dst(0) = T(trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2));
v_dst(1) = T(trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2));
v_dst(2) = T(trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2));
}
for (uint32_t i_face = 0; i_face < stl->stats.number_of_facets; ++ i_face) {
stl_facet &face = stl->facet_start[i_face];
for (int i_vertex = 0; i_vertex < 3; ++ i_vertex) {
stl_vertex &v_dst = face.vertex[i_vertex];
stl_vertex v_src = v_dst;
v_dst(0) = T(trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2) + trafo3x4[3]);
v_dst(1) = T(trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2) + trafo3x4[7]);
v_dst(2) = T(trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2) + trafo3x4[11]);
}
stl_vertex &v_dst = face.normal;
stl_vertex v_src = v_dst;
v_dst(0) = T(trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2));
v_dst(1) = T(trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2));
v_dst(2) = T(trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2));
}
stl_get_size(stl);
stl_get_size(stl);
}
template<typename T>
inline void stl_transform(stl_file *stl, const Eigen::Transform<T, 3, Eigen::Affine, Eigen::DontAlign>& t)
{
if (stl->error)
return;
const Eigen::Matrix<double, 3, 3, Eigen::DontAlign> r = t.matrix().template block<3, 3>(0, 0);
for (size_t i = 0; i < stl->stats.number_of_facets; ++i) {
for (size_t i = 0; i < stl->stats.number_of_facets; ++ i) {
stl_facet &f = stl->facet_start[i];
for (size_t j = 0; j < 3; ++j)
f.vertex[j] = (t * f.vertex[j].template cast<T>()).template cast<float>().eval();
@ -228,10 +214,7 @@ inline void stl_transform(stl_file *stl, const Eigen::Transform<T, 3, Eigen::Aff
template<typename T>
inline void stl_transform(stl_file *stl, const Eigen::Matrix<T, 3, 3, Eigen::DontAlign>& m)
{
if (stl->error)
return;
for (size_t i = 0; i < stl->stats.number_of_facets; ++i) {
for (size_t i = 0; i < stl->stats.number_of_facets; ++ i) {
stl_facet &f = stl->facet_start[i];
for (size_t j = 0; j < 3; ++j)
f.vertex[j] = (m * f.vertex[j].template cast<T>()).template cast<float>().eval();
@ -241,13 +224,43 @@ inline void stl_transform(stl_file *stl, const Eigen::Matrix<T, 3, 3, Eigen::Don
stl_get_size(stl);
}
extern void stl_open_merge(stl_file *stl, char *file);
extern void stl_invalidate_shared_vertices(stl_file *stl);
extern void stl_generate_shared_vertices(stl_file *stl);
extern void stl_write_obj(stl_file *stl, const char *file);
extern void stl_write_off(stl_file *stl, const char *file);
extern void stl_write_dxf(stl_file *stl, const char *file, char *label);
extern void stl_write_vrml(stl_file *stl, const char *file);
template<typename T>
extern void its_transform(indexed_triangle_set &its, T *trafo3x4)
{
for (stl_vertex &v_dst : its.vertices) {
stl_vertex v_src = v_dst;
v_dst(0) = T(trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2) + trafo3x4[3]);
v_dst(1) = T(trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2) + trafo3x4[7]);
v_dst(2) = T(trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2) + trafo3x4[11]);
}
}
template<typename T>
inline void its_transform(indexed_triangle_set &its, const Eigen::Transform<T, 3, Eigen::Affine, Eigen::DontAlign>& t)
{
const Eigen::Matrix<double, 3, 3, Eigen::DontAlign> r = t.matrix().template block<3, 3>(0, 0);
for (stl_vertex &v : its.vertices)
v = (t * v.template cast<T>()).template cast<float>().eval();
}
template<typename T>
inline void its_transform(indexed_triangle_set &its, const Eigen::Matrix<T, 3, 3, Eigen::DontAlign>& m)
{
for (stl_vertex &v : its.vertices)
v = (m * v.template cast<T>()).template cast<float>().eval();
}
extern void its_rotate_x(indexed_triangle_set &its, float angle);
extern void its_rotate_y(indexed_triangle_set &its, float angle);
extern void its_rotate_z(indexed_triangle_set &its, float angle);
extern void stl_generate_shared_vertices(stl_file *stl, indexed_triangle_set &its);
extern bool its_write_obj(const indexed_triangle_set &its, const char *file);
extern bool its_write_off(const indexed_triangle_set &its, const char *file);
extern bool its_write_vrml(const indexed_triangle_set &its, const char *file);
extern bool stl_write_dxf(stl_file *stl, const char *file, char *label);
inline void stl_calculate_normal(stl_normal &normal, stl_facet *facet) {
normal = (facet->vertex[1] - facet->vertex[0]).cross(facet->vertex[2] - facet->vertex[0]);
}
@ -258,24 +271,18 @@ inline void stl_normalize_vector(stl_normal &normal) {
else
normal *= float(1.0 / length);
}
inline bool stl_vertex_lower(const stl_vertex &a, const stl_vertex &b) {
return (a(0) != b(0)) ? (a(0) < b(0)) :
((a(1) != b(1)) ? (a(1) < b(1)) : (a(2) < b(2)));
}
extern void stl_calculate_volume(stl_file *stl);
extern void stl_repair(stl_file *stl, int fixall_flag, int exact_flag, int tolerance_flag, float tolerance, int increment_flag, float increment, int nearby_flag, int iterations, int remove_unconnected_flag, int fill_holes_flag, int normal_directions_flag, int normal_values_flag, int reverse_all_flag, int verbose_flag);
extern void stl_repair(stl_file *stl, bool fixall_flag, bool exact_flag, bool tolerance_flag, float tolerance, bool increment_flag, float increment, bool nearby_flag, int iterations, bool remove_unconnected_flag, bool fill_holes_flag, bool normal_directions_flag, bool normal_values_flag, bool reverse_all_flag, bool verbose_flag);
extern void stl_initialize(stl_file *stl);
extern void stl_count_facets(stl_file *stl, const char *file);
extern void stl_allocate(stl_file *stl);
extern void stl_read(stl_file *stl, int first_facet, bool first);
extern void stl_facet_stats(stl_file *stl, stl_facet facet, bool &first);
extern void stl_reallocate(stl_file *stl);
extern void stl_add_facet(stl_file *stl, stl_facet *new_facet);
extern void stl_add_facet(stl_file *stl, const stl_facet *new_facet);
extern void stl_clear_error(stl_file *stl);
extern int stl_get_error(stl_file *stl);
extern void stl_exit_on_error(stl_file *stl);
// Validate the mesh, assert on error.
extern bool stl_validate(const stl_file *stl);
extern bool stl_validate(const stl_file *stl, const indexed_triangle_set &its);
#endif

View file

@ -22,159 +22,86 @@
#include <stdlib.h>
#include <string.h>
#include <boost/log/trivial.hpp>
#include <boost/nowide/cstdio.hpp>
#include <boost/predef/other/endian.h>
#include "stl.h"
#include <boost/nowide/cstdio.hpp>
#include <boost/detail/endian.hpp>
#if !defined(SEEK_SET)
#define SEEK_SET 0
#define SEEK_CUR 1
#define SEEK_END 2
#endif
void
stl_stats_out(stl_file *stl, FILE *file, char *input_file) {
if (stl->error) return;
/* this is here for Slic3r, without our config.h
it won't use this part of the code anyway */
void stl_stats_out(stl_file *stl, FILE *file, char *input_file)
{
// This is here for Slic3r, without our config.h it won't use this part of the code anyway.
#ifndef VERSION
#define VERSION "unknown"
#endif
fprintf(file, "\n\
================= Results produced by ADMesh version " VERSION " ================\n");
fprintf(file, "\
Input file : %s\n", input_file);
if(stl->stats.type == binary) {
fprintf(file, "\
File type : Binary STL file\n");
} else {
fprintf(file, "\
File type : ASCII STL file\n");
}
fprintf(file, "\
Header : %s\n", stl->stats.header);
fprintf(file, "============== Size ==============\n");
fprintf(file, "Min X = % f, Max X = % f\n",
stl->stats.min(0), stl->stats.max(0));
fprintf(file, "Min Y = % f, Max Y = % f\n",
stl->stats.min(1), stl->stats.max(1));
fprintf(file, "Min Z = % f, Max Z = % f\n",
stl->stats.min(2), stl->stats.max(2));
fprintf(file, "\
========= Facet Status ========== Original ============ Final ====\n");
fprintf(file, "\
Number of facets : %5d %5d\n",
stl->stats.original_num_facets, stl->stats.number_of_facets);
fprintf(file, "\
Facets with 1 disconnected edge : %5d %5d\n",
stl->stats.facets_w_1_bad_edge, stl->stats.connected_facets_2_edge -
stl->stats.connected_facets_3_edge);
fprintf(file, "\
Facets with 2 disconnected edges : %5d %5d\n",
stl->stats.facets_w_2_bad_edge, stl->stats.connected_facets_1_edge -
stl->stats.connected_facets_2_edge);
fprintf(file, "\
Facets with 3 disconnected edges : %5d %5d\n",
stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets -
stl->stats.connected_facets_1_edge);
fprintf(file, "\
Total disconnected facets : %5d %5d\n",
stl->stats.facets_w_1_bad_edge + stl->stats.facets_w_2_bad_edge +
stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets -
stl->stats.connected_facets_3_edge);
fprintf(file,
"=== Processing Statistics === ===== Other Statistics =====\n");
fprintf(file, "\
Number of parts : %5d Volume : % f\n",
stl->stats.number_of_parts, stl->stats.volume);
fprintf(file, "\
Degenerate facets : %5d\n", stl->stats.degenerate_facets);
fprintf(file, "\
Edges fixed : %5d\n", stl->stats.edges_fixed);
fprintf(file, "\
Facets removed : %5d\n", stl->stats.facets_removed);
fprintf(file, "\
Facets added : %5d\n", stl->stats.facets_added);
fprintf(file, "\
Facets reversed : %5d\n", stl->stats.facets_reversed);
fprintf(file, "\
Backwards edges : %5d\n", stl->stats.backwards_edges);
fprintf(file, "\
Normals fixed : %5d\n", stl->stats.normals_fixed);
fprintf(file, "\n================= Results produced by ADMesh version " VERSION " ================\n");
fprintf(file, "Input file : %s\n", input_file);
if (stl->stats.type == binary)
fprintf(file, "File type : Binary STL file\n");
else
fprintf(file, "File type : ASCII STL file\n");
fprintf(file, "Header : %s\n", stl->stats.header);
fprintf(file, "============== Size ==============\n");
fprintf(file, "Min X = % f, Max X = % f\n", stl->stats.min(0), stl->stats.max(0));
fprintf(file, "Min Y = % f, Max Y = % f\n", stl->stats.min(1), stl->stats.max(1));
fprintf(file, "Min Z = % f, Max Z = % f\n", stl->stats.min(2), stl->stats.max(2));
fprintf(file, "========= Facet Status ========== Original ============ Final ====\n");
fprintf(file, "Number of facets : %5d %5d\n", stl->stats.original_num_facets, stl->stats.number_of_facets);
fprintf(file, "Facets with 1 disconnected edge : %5d %5d\n",
stl->stats.facets_w_1_bad_edge, stl->stats.connected_facets_2_edge - stl->stats.connected_facets_3_edge);
fprintf(file, "Facets with 2 disconnected edges : %5d %5d\n",
stl->stats.facets_w_2_bad_edge, stl->stats.connected_facets_1_edge - stl->stats.connected_facets_2_edge);
fprintf(file, "Facets with 3 disconnected edges : %5d %5d\n",
stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets - stl->stats.connected_facets_1_edge);
fprintf(file, "Total disconnected facets : %5d %5d\n",
stl->stats.facets_w_1_bad_edge + stl->stats.facets_w_2_bad_edge + stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets - stl->stats.connected_facets_3_edge);
fprintf(file, "=== Processing Statistics === ===== Other Statistics =====\n");
fprintf(file, "Number of parts : %5d Volume : %f\n", stl->stats.number_of_parts, stl->stats.volume);
fprintf(file, "Degenerate facets : %5d\n", stl->stats.degenerate_facets);
fprintf(file, "Edges fixed : %5d\n", stl->stats.edges_fixed);
fprintf(file, "Facets removed : %5d\n", stl->stats.facets_removed);
fprintf(file, "Facets added : %5d\n", stl->stats.facets_added);
fprintf(file, "Facets reversed : %5d\n", stl->stats.facets_reversed);
fprintf(file, "Backwards edges : %5d\n", stl->stats.backwards_edges);
fprintf(file, "Normals fixed : %5d\n", stl->stats.normals_fixed);
}
void
stl_write_ascii(stl_file *stl, const char *file, const char *label) {
int i;
char *error_msg;
bool stl_write_ascii(stl_file *stl, const char *file, const char *label)
{
FILE *fp = boost::nowide::fopen(file, "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "stl_write_ascii: Couldn't open " << file << " for writing";
return false;
}
if (stl->error) return;
fprintf(fp, "solid %s\n", label);
/* Open the file */
FILE *fp = boost::nowide::fopen(file, "w");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
fprintf(fp, " facet normal % .8E % .8E % .8E\n", stl->facet_start[i].normal(0), stl->facet_start[i].normal(1), stl->facet_start[i].normal(2));
fprintf(fp, " outer loop\n");
fprintf(fp, " vertex % .8E % .8E % .8E\n", stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1), stl->facet_start[i].vertex[0](2));
fprintf(fp, " vertex % .8E % .8E % .8E\n", stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1), stl->facet_start[i].vertex[1](2));
fprintf(fp, " vertex % .8E % .8E % .8E\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2));
fprintf(fp, " endloop\n");
fprintf(fp, " endfacet\n");
}
fprintf(fp, "solid %s\n", label);
for(i = 0; i < stl->stats.number_of_facets; i++) {
fprintf(fp, " facet normal % .8E % .8E % .8E\n",
stl->facet_start[i].normal(0), stl->facet_start[i].normal(1),
stl->facet_start[i].normal(2));
fprintf(fp, " outer loop\n");
fprintf(fp, " vertex % .8E % .8E % .8E\n",
stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1),
stl->facet_start[i].vertex[0](2));
fprintf(fp, " vertex % .8E % .8E % .8E\n",
stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1),
stl->facet_start[i].vertex[1](2));
fprintf(fp, " vertex % .8E % .8E % .8E\n",
stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1),
stl->facet_start[i].vertex[2](2));
fprintf(fp, " endloop\n");
fprintf(fp, " endfacet\n");
}
fprintf(fp, "endsolid %s\n", label);
fclose(fp);
fprintf(fp, "endsolid %s\n", label);
fclose(fp);
return true;
}
void
stl_print_neighbors(stl_file *stl, char *file) {
int i;
FILE *fp;
char *error_msg;
bool stl_print_neighbors(stl_file *stl, char *file)
{
FILE *fp = boost::nowide::fopen(file, "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "stl_print_neighbors: Couldn't open " << file << " for writing";
return false;
}
if (stl->error) return;
/* Open the file */
fp = boost::nowide::fopen(file, "w");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_print_neighbors: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
for(i = 0; i < stl->stats.number_of_facets; i++) {
fprintf(fp, "%d, %d,%d, %d,%d, %d,%d\n",
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
fprintf(fp, "%d, %d,%d, %d,%d, %d,%d\n",
i,
stl->neighbors_start[i].neighbor[0],
(int)stl->neighbors_start[i].which_vertex_not[0],
@ -182,234 +109,142 @@ stl_print_neighbors(stl_file *stl, char *file) {
(int)stl->neighbors_start[i].which_vertex_not[1],
stl->neighbors_start[i].neighbor[2],
(int)stl->neighbors_start[i].which_vertex_not[2]);
}
fclose(fp);
}
fclose(fp);
return true;
}
#ifndef BOOST_LITTLE_ENDIAN
#if BOOST_ENDIAN_BIG_BYTE
// Swap a buffer of 32bit data from little endian to big endian and vice versa.
void stl_internal_reverse_quads(char *buf, size_t cnt)
{
for (size_t i = 0; i < cnt; i += 4) {
std::swap(buf[i], buf[i+3]);
std::swap(buf[i+1], buf[i+2]);
}
for (size_t i = 0; i < cnt; i += 4) {
std::swap(buf[i], buf[i+3]);
std::swap(buf[i+1], buf[i+2]);
}
}
#endif
void
stl_write_binary(stl_file *stl, const char *file, const char *label) {
FILE *fp;
int i;
char *error_msg;
bool stl_write_binary(stl_file *stl, const char *file, const char *label)
{
FILE *fp = boost::nowide::fopen(file, "wb");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "stl_write_binary: Couldn't open " << file << " for writing";
return false;
}
if (stl->error) return;
fprintf(fp, "%s", label);
for (size_t i = strlen(label); i < LABEL_SIZE; ++ i)
putc(0, fp);
/* Open the file */
fp = boost::nowide::fopen(file, "wb");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_binary: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
fprintf(fp, "%s", label);
for(i = strlen(label); i < LABEL_SIZE; i++) putc(0, fp);
fseek(fp, LABEL_SIZE, SEEK_SET);
#ifdef BOOST_LITTLE_ENDIAN
fwrite(&stl->stats.number_of_facets, 4, 1, fp);
for (i = 0; i < stl->stats.number_of_facets; ++ i)
fwrite(stl->facet_start + i, SIZEOF_STL_FACET, 1, fp);
#else /* BOOST_LITTLE_ENDIAN */
char buffer[50];
// Convert the number of facets to little endian.
memcpy(buffer, &stl->stats.number_of_facets, 4);
stl_internal_reverse_quads(buffer, 4);
fwrite(buffer, 4, 1, fp);
for (i = 0; i < stl->stats.number_of_facets; ++ i) {
memcpy(buffer, stl->facet_start + i, 50);
// Convert to little endian.
stl_internal_reverse_quads(buffer, 48);
fwrite(buffer, SIZEOF_STL_FACET, 1, fp);
}
#endif /* BOOST_LITTLE_ENDIAN */
fclose(fp);
#if !defined(SEEK_SET)
#define SEEK_SET 0
#endif
fseek(fp, LABEL_SIZE, SEEK_SET);
#if BOOST_ENDIAN_LITTLE_BYTE
fwrite(&stl->stats.number_of_facets, 4, 1, fp);
for (const stl_facet &facet : stl->facet_start)
fwrite(&facet, SIZEOF_STL_FACET, 1, fp);
#else /* BOOST_ENDIAN_LITTLE_BYTE */
char buffer[50];
// Convert the number of facets to little endian.
memcpy(buffer, &stl->stats.number_of_facets, 4);
stl_internal_reverse_quads(buffer, 4);
fwrite(buffer, 4, 1, fp);
for (i = 0; i < stl->stats.number_of_facets; ++ i) {
memcpy(buffer, stl->facet_start + i, 50);
// Convert to little endian.
stl_internal_reverse_quads(buffer, 48);
fwrite(buffer, SIZEOF_STL_FACET, 1, fp);
}
#endif /* BOOST_ENDIAN_LITTLE_BYTE */
fclose(fp);
return true;
}
void
stl_write_vertex(stl_file *stl, int facet, int vertex) {
if (stl->error) return;
printf(" vertex %d/%d % .8E % .8E % .8E\n", vertex, facet,
void stl_write_vertex(stl_file *stl, int facet, int vertex)
{
printf(" vertex %d/%d % .8E % .8E % .8E\n", vertex, facet,
stl->facet_start[facet].vertex[vertex](0),
stl->facet_start[facet].vertex[vertex](1),
stl->facet_start[facet].vertex[vertex](2));
}
void
stl_write_facet(stl_file *stl, char *label, int facet) {
if (stl->error) return;
printf("facet (%d)/ %s\n", facet, label);
stl_write_vertex(stl, facet, 0);
stl_write_vertex(stl, facet, 1);
stl_write_vertex(stl, facet, 2);
void stl_write_facet(stl_file *stl, char *label, int facet)
{
printf("facet (%d)/ %s\n", facet, label);
stl_write_vertex(stl, facet, 0);
stl_write_vertex(stl, facet, 1);
stl_write_vertex(stl, facet, 2);
}
void
stl_write_edge(stl_file *stl, char *label, stl_hash_edge edge) {
if (stl->error) return;
printf("edge (%d)/(%d) %s\n", edge.facet_number, edge.which_edge, label);
if(edge.which_edge < 3) {
stl_write_vertex(stl, edge.facet_number, edge.which_edge % 3);
stl_write_vertex(stl, edge.facet_number, (edge.which_edge + 1) % 3);
} else {
stl_write_vertex(stl, edge.facet_number, (edge.which_edge + 1) % 3);
stl_write_vertex(stl, edge.facet_number, edge.which_edge % 3);
}
void stl_write_neighbor(stl_file *stl, int facet)
{
printf("Neighbors %d: %d, %d, %d ; %d, %d, %d\n", facet,
stl->neighbors_start[facet].neighbor[0],
stl->neighbors_start[facet].neighbor[1],
stl->neighbors_start[facet].neighbor[2],
stl->neighbors_start[facet].which_vertex_not[0],
stl->neighbors_start[facet].which_vertex_not[1],
stl->neighbors_start[facet].which_vertex_not[2]);
}
void
stl_write_neighbor(stl_file *stl, int facet) {
if (stl->error) return;
printf("Neighbors %d: %d, %d, %d ; %d, %d, %d\n", facet,
stl->neighbors_start[facet].neighbor[0],
stl->neighbors_start[facet].neighbor[1],
stl->neighbors_start[facet].neighbor[2],
stl->neighbors_start[facet].which_vertex_not[0],
stl->neighbors_start[facet].which_vertex_not[1],
stl->neighbors_start[facet].which_vertex_not[2]);
}
bool stl_write_quad_object(stl_file *stl, char *file)
{
stl_vertex connect_color = stl_vertex::Zero();
stl_vertex uncon_1_color = stl_vertex::Zero();
stl_vertex uncon_2_color = stl_vertex::Zero();
stl_vertex uncon_3_color = stl_vertex::Zero();
stl_vertex color;
void
stl_write_quad_object(stl_file *stl, char *file) {
FILE *fp;
int i;
int j;
char *error_msg;
stl_vertex connect_color = stl_vertex::Zero();
stl_vertex uncon_1_color = stl_vertex::Zero();
stl_vertex uncon_2_color = stl_vertex::Zero();
stl_vertex uncon_3_color = stl_vertex::Zero();
stl_vertex color;
FILE *fp = boost::nowide::fopen(file, "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "stl_write_quad_object: Couldn't open " << file << " for writing";
return false;
}
if (stl->error) return;
/* Open the file */
fp = boost::nowide::fopen(file, "w");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_quad_object: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
fprintf(fp, "CQUAD\n");
for(i = 0; i < stl->stats.number_of_facets; i++) {
j = ((stl->neighbors_start[i].neighbor[0] == -1) +
(stl->neighbors_start[i].neighbor[1] == -1) +
(stl->neighbors_start[i].neighbor[2] == -1));
if(j == 0) {
color = connect_color;
} else if(j == 1) {
color = uncon_1_color;
} else if(j == 2) {
color = uncon_2_color;
} else {
color = uncon_3_color;
}
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
stl->facet_start[i].vertex[0](0),
stl->facet_start[i].vertex[0](1),
stl->facet_start[i].vertex[0](2), color(0), color(1), color(2));
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
stl->facet_start[i].vertex[1](0),
stl->facet_start[i].vertex[1](1),
stl->facet_start[i].vertex[1](2), color(0), color(1), color(2));
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
stl->facet_start[i].vertex[2](0),
stl->facet_start[i].vertex[2](1),
stl->facet_start[i].vertex[2](2), color(0), color(1), color(2));
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
stl->facet_start[i].vertex[2](0),
stl->facet_start[i].vertex[2](1),
stl->facet_start[i].vertex[2](2), color(0), color(1), color(2));
fprintf(fp, "CQUAD\n");
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
switch (stl->neighbors_start[i].num_neighbors_missing()) {
case 0: color = connect_color; break;
case 1: color = uncon_1_color; break;
case 2: color = uncon_2_color; break;
default: color = uncon_3_color;
}
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1), stl->facet_start[i].vertex[0](2), color(0), color(1), color(2));
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1), stl->facet_start[i].vertex[1](2), color(0), color(1), color(2));
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2), color(0), color(1), color(2));
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2), color(0), color(1), color(2));
}
fclose(fp);
return true;
}
void
stl_write_dxf(stl_file *stl, const char *file, char *label) {
int i;
FILE *fp;
char *error_msg;
bool stl_write_dxf(stl_file *stl, const char *file, char *label)
{
FILE *fp = boost::nowide::fopen(file, "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "stl_write_quad_object: Couldn't open " << file << " for writing";
return false;
}
if (stl->error) return;
fprintf(fp, "999\n%s\n", label);
fprintf(fp, "0\nSECTION\n2\nHEADER\n0\nENDSEC\n");
fprintf(fp, "0\nSECTION\n2\nTABLES\n0\nTABLE\n2\nLAYER\n70\n1\n\
0\nLAYER\n2\n0\n70\n0\n62\n7\n6\nCONTINUOUS\n0\nENDTAB\n0\nENDSEC\n");
fprintf(fp, "0\nSECTION\n2\nBLOCKS\n0\nENDSEC\n");
/* Open the file */
fp = boost::nowide::fopen(file, "w");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
fprintf(fp, "0\nSECTION\n2\nENTITIES\n");
fprintf(fp, "999\n%s\n", label);
fprintf(fp, "0\nSECTION\n2\nHEADER\n0\nENDSEC\n");
fprintf(fp, "0\nSECTION\n2\nTABLES\n0\nTABLE\n2\nLAYER\n70\n1\n\
0\nLAYER\n2\n0\n70\n0\n62\n7\n6\nCONTINUOUS\n0\nENDTAB\n0\nENDSEC\n");
fprintf(fp, "0\nSECTION\n2\nBLOCKS\n0\nENDSEC\n");
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
fprintf(fp, "0\n3DFACE\n8\n0\n");
fprintf(fp, "10\n%f\n20\n%f\n30\n%f\n", stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1), stl->facet_start[i].vertex[0](2));
fprintf(fp, "11\n%f\n21\n%f\n31\n%f\n", stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1), stl->facet_start[i].vertex[1](2));
fprintf(fp, "12\n%f\n22\n%f\n32\n%f\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2));
fprintf(fp, "13\n%f\n23\n%f\n33\n%f\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2));
}
fprintf(fp, "0\nSECTION\n2\nENTITIES\n");
for(i = 0; i < stl->stats.number_of_facets; i++) {
fprintf(fp, "0\n3DFACE\n8\n0\n");
fprintf(fp, "10\n%f\n20\n%f\n30\n%f\n",
stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1),
stl->facet_start[i].vertex[0](2));
fprintf(fp, "11\n%f\n21\n%f\n31\n%f\n",
stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1),
stl->facet_start[i].vertex[1](2));
fprintf(fp, "12\n%f\n22\n%f\n32\n%f\n",
stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1),
stl->facet_start[i].vertex[2](2));
fprintf(fp, "13\n%f\n23\n%f\n33\n%f\n",
stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1),
stl->facet_start[i].vertex[2](2));
}
fprintf(fp, "0\nENDSEC\n0\nEOF\n");
fclose(fp);
}
void
stl_clear_error(stl_file *stl) {
stl->error = 0;
}
void
stl_exit_on_error(stl_file *stl) {
if (!stl->error) return;
stl->error = 0;
stl_close(stl);
exit(1);
}
int
stl_get_error(stl_file *stl) {
return stl->error;
fprintf(fp, "0\nENDSEC\n0\nEOF\n");
fclose(fp);
return true;
}

View file

@ -26,6 +26,7 @@
#include <math.h>
#include <assert.h>
#include <boost/log/trivial.hpp>
#include <boost/nowide/cstdio.hpp>
#include <boost/detail/endian.hpp>
@ -35,351 +36,236 @@
#error "SEEK_SET not defined"
#endif
void
stl_open(stl_file *stl, const char *file) {
stl_initialize(stl);
stl_count_facets(stl, file);
stl_allocate(stl);
stl_read(stl, 0, true);
if (stl->fp != nullptr) {
fclose(stl->fp);
stl->fp = nullptr;
}
static FILE* stl_open_count_facets(stl_file *stl, const char *file)
{
// Open the file in binary mode first.
FILE *fp = boost::nowide::fopen(file, "rb");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: Couldn't open " << file << " for reading";
return nullptr;
}
// Find size of file.
fseek(fp, 0, SEEK_END);
long file_size = ftell(fp);
// Check for binary or ASCII file.
fseek(fp, HEADER_SIZE, SEEK_SET);
unsigned char chtest[128];
if (! fread(chtest, sizeof(chtest), 1, fp)) {
BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: The input is an empty file: " << file;
fclose(fp);
return nullptr;
}
stl->stats.type = ascii;
for (size_t s = 0; s < sizeof(chtest); s++) {
if (chtest[s] > 127) {
stl->stats.type = binary;
break;
}
}
rewind(fp);
uint32_t num_facets = 0;
// Get the header and the number of facets in the .STL file.
// If the .STL file is binary, then do the following:
if (stl->stats.type == binary) {
// Test if the STL file has the right size.
if (((file_size - HEADER_SIZE) % SIZEOF_STL_FACET != 0) || (file_size < STL_MIN_FILE_SIZE)) {
BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: The file " << file << " has the wrong size.";
fclose(fp);
return nullptr;
}
num_facets = (file_size - HEADER_SIZE) / SIZEOF_STL_FACET;
// Read the header.
if (fread(stl->stats.header, LABEL_SIZE, 1, fp) > 79)
stl->stats.header[80] = '\0';
// Read the int following the header. This should contain # of facets.
uint32_t header_num_facets;
bool header_num_faces_read = fread(&header_num_facets, sizeof(uint32_t), 1, fp) != 0;
#ifndef BOOST_LITTLE_ENDIAN
// Convert from little endian to big endian.
stl_internal_reverse_quads((char*)&header_num_facets, 4);
#endif /* BOOST_LITTLE_ENDIAN */
if (! header_num_faces_read || num_facets != header_num_facets)
BOOST_LOG_TRIVIAL(info) << "stl_open_count_facets: Warning: File size doesn't match number of facets in the header: " << file;
}
// Otherwise, if the .STL file is ASCII, then do the following:
else
{
// Reopen the file in text mode (for getting correct newlines on Windows)
// fix to silence a warning about unused return value.
// obviously if it fails we have problems....
fp = boost::nowide::freopen(file, "r", fp);
// do another null check to be safe
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: Couldn't open " << file << " for reading";
fclose(fp);
return nullptr;
}
// Find the number of facets.
char linebuf[100];
int num_lines = 1;
while (fgets(linebuf, 100, fp) != nullptr) {
// Don't count short lines.
if (strlen(linebuf) <= 4)
continue;
// Skip solid/endsolid lines as broken STL file generators may put several of them.
if (strncmp(linebuf, "solid", 5) == 0 || strncmp(linebuf, "endsolid", 8) == 0)
continue;
++ num_lines;
}
rewind(fp);
// Get the header.
int i = 0;
for (; i < 80 && (stl->stats.header[i] = getc(fp)) != '\n'; ++ i) ;
stl->stats.header[i] = '\0'; // Lose the '\n'
stl->stats.header[80] = '\0';
num_facets = num_lines / ASCII_LINES_PER_FACET;
}
stl->stats.number_of_facets += num_facets;
stl->stats.original_num_facets = stl->stats.number_of_facets;
return fp;
}
void
stl_initialize(stl_file *stl) {
memset(stl, 0, sizeof(stl_file));
stl->stats.volume = -1.0;
/* Reads the contents of the file pointed to by fp into the stl structure,
starting at facet first_facet. The second argument says if it's our first
time running this for the stl and therefore we should reset our max and min stats. */
static bool stl_read(stl_file *stl, FILE *fp, int first_facet, bool first)
{
if (stl->stats.type == binary)
fseek(fp, HEADER_SIZE, SEEK_SET);
else
rewind(fp);
char normal_buf[3][32];
for (uint32_t i = first_facet; i < stl->stats.number_of_facets; ++ i) {
stl_facet facet;
if (stl->stats.type == binary) {
// Read a single facet from a binary .STL file. We assume little-endian architecture!
if (fread(&facet, 1, SIZEOF_STL_FACET, fp) != SIZEOF_STL_FACET)
return false;
#ifndef BOOST_LITTLE_ENDIAN
// Convert the loaded little endian data to big endian.
stl_internal_reverse_quads((char*)&facet, 48);
#endif /* BOOST_LITTLE_ENDIAN */
} else {
// Read a single facet from an ASCII .STL file
// skip solid/endsolid
// (in this order, otherwise it won't work when they are paired in the middle of a file)
fscanf(fp, "endsolid%*[^\n]\n");
fscanf(fp, "solid%*[^\n]\n"); // name might contain spaces so %*s doesn't work and it also can be empty (just "solid")
// Leading space in the fscanf format skips all leading white spaces including numerous new lines and tabs.
int res_normal = fscanf(fp, " facet normal %31s %31s %31s", normal_buf[0], normal_buf[1], normal_buf[2]);
assert(res_normal == 3);
int res_outer_loop = fscanf(fp, " outer loop");
assert(res_outer_loop == 0);
int res_vertex1 = fscanf(fp, " vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2));
assert(res_vertex1 == 3);
int res_vertex2 = fscanf(fp, " vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2));
assert(res_vertex2 == 3);
int res_vertex3 = fscanf(fp, " vertex %f %f %f", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2));
assert(res_vertex3 == 3);
int res_endloop = fscanf(fp, " endloop");
assert(res_endloop == 0);
// There is a leading and trailing white space around endfacet to eat up all leading and trailing white spaces including numerous tabs and new lines.
int res_endfacet = fscanf(fp, " endfacet ");
if (res_normal != 3 || res_outer_loop != 0 || res_vertex1 != 3 || res_vertex2 != 3 || res_vertex3 != 3 || res_endloop != 0 || res_endfacet != 0) {
BOOST_LOG_TRIVIAL(error) << "Something is syntactically very wrong with this ASCII STL! ";
return false;
}
// The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 ||
sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 ||
sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) {
// Normal was mangled. Maybe denormals or "not a number" were stored?
// Just reset the normal and silently ignore it.
memset(&facet.normal, 0, sizeof(facet.normal));
}
}
#if 0
// Report close to zero vertex coordinates. Due to the nature of the floating point numbers,
// close to zero values may be represented with singificantly higher precision than the rest of the vertices.
// It may be worth to round these numbers to zero during loading to reduce the number of errors reported
// during the STL import.
for (size_t j = 0; j < 3; ++ j) {
if (facet.vertex[j](0) > -1e-12f && facet.vertex[j](0) < 1e-12f)
printf("stl_read: facet %d(0) = %e\r\n", j, facet.vertex[j](0));
if (facet.vertex[j](1) > -1e-12f && facet.vertex[j](1) < 1e-12f)
printf("stl_read: facet %d(1) = %e\r\n", j, facet.vertex[j](1));
if (facet.vertex[j](2) > -1e-12f && facet.vertex[j](2) < 1e-12f)
printf("stl_read: facet %d(2) = %e\r\n", j, facet.vertex[j](2));
}
#endif
// Write the facet into memory.
stl->facet_start[i] = facet;
stl_facet_stats(stl, facet, first);
}
stl->stats.size = stl->stats.max - stl->stats.min;
stl->stats.bounding_diameter = stl->stats.size.norm();
return true;
}
bool stl_open(stl_file *stl, const char *file)
{
stl->clear();
FILE *fp = stl_open_count_facets(stl, file);
if (fp == nullptr)
return false;
stl_allocate(stl);
bool result = stl_read(stl, fp, 0, true);
fclose(fp);
return result;
}
#ifndef BOOST_LITTLE_ENDIAN
extern void stl_internal_reverse_quads(char *buf, size_t cnt);
#endif /* BOOST_LITTLE_ENDIAN */
void
stl_count_facets(stl_file *stl, const char *file) {
long file_size;
uint32_t header_num_facets;
uint32_t num_facets;
int i;
size_t s;
unsigned char chtest[128];
int num_lines = 1;
char *error_msg;
if (stl->error) return;
/* Open the file in binary mode first */
stl->fp = boost::nowide::fopen(file, "rb");
if(stl->fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_initialize: Couldn't open %s for reading",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
/* Find size of file */
fseek(stl->fp, 0, SEEK_END);
file_size = ftell(stl->fp);
/* Check for binary or ASCII file */
fseek(stl->fp, HEADER_SIZE, SEEK_SET);
if (!fread(chtest, sizeof(chtest), 1, stl->fp)) {
perror("The input is an empty file");
stl->error = 1;
return;
}
stl->stats.type = ascii;
for(s = 0; s < sizeof(chtest); s++) {
if(chtest[s] > 127) {
stl->stats.type = binary;
break;
}
}
rewind(stl->fp);
/* Get the header and the number of facets in the .STL file */
/* If the .STL file is binary, then do the following */
if(stl->stats.type == binary) {
/* Test if the STL file has the right size */
if(((file_size - HEADER_SIZE) % SIZEOF_STL_FACET != 0)
|| (file_size < STL_MIN_FILE_SIZE)) {
fprintf(stderr, "The file %s has the wrong size.\n", file);
stl->error = 1;
return;
}
num_facets = (file_size - HEADER_SIZE) / SIZEOF_STL_FACET;
/* Read the header */
if (fread(stl->stats.header, LABEL_SIZE, 1, stl->fp) > 79) {
stl->stats.header[80] = '\0';
}
/* Read the int following the header. This should contain # of facets */
bool header_num_faces_read = fread(&header_num_facets, sizeof(uint32_t), 1, stl->fp) != 0;
#ifndef BOOST_LITTLE_ENDIAN
// Convert from little endian to big endian.
stl_internal_reverse_quads((char*)&header_num_facets, 4);
#endif /* BOOST_LITTLE_ENDIAN */
if (! header_num_faces_read || num_facets != header_num_facets) {
fprintf(stderr,
"Warning: File size doesn't match number of facets in the header\n");
}
}
/* Otherwise, if the .STL file is ASCII, then do the following */
else {
/* Reopen the file in text mode (for getting correct newlines on Windows) */
// fix to silence a warning about unused return value.
// obviously if it fails we have problems....
stl->fp = boost::nowide::freopen(file, "r", stl->fp);
// do another null check to be safe
if(stl->fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_initialize: Couldn't open %s for reading",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
/* Find the number of facets */
char linebuf[100];
while (fgets(linebuf, 100, stl->fp) != NULL) {
/* don't count short lines */
if (strlen(linebuf) <= 4) continue;
/* skip solid/endsolid lines as broken STL file generators may put several of them */
if (strncmp(linebuf, "solid", 5) == 0 || strncmp(linebuf, "endsolid", 8) == 0) continue;
++num_lines;
}
rewind(stl->fp);
/* Get the header */
for(i = 0;
(i < 80) && (stl->stats.header[i] = getc(stl->fp)) != '\n'; i++);
stl->stats.header[i] = '\0'; /* Lose the '\n' */
stl->stats.header[80] = '\0';
num_facets = num_lines / ASCII_LINES_PER_FACET;
}
stl->stats.number_of_facets += num_facets;
stl->stats.original_num_facets = stl->stats.number_of_facets;
void stl_allocate(stl_file *stl)
{
// Allocate memory for the entire .STL file.
stl->facet_start.assign(stl->stats.number_of_facets, stl_facet());
// Allocate memory for the neighbors list.
stl->neighbors_start.assign(stl->stats.number_of_facets, stl_neighbors());
}
void
stl_allocate(stl_file *stl) {
if (stl->error) return;
/* Allocate memory for the entire .STL file */
stl->facet_start = (stl_facet*)calloc(stl->stats.number_of_facets,
sizeof(stl_facet));
if(stl->facet_start == NULL) perror("stl_initialize");
stl->stats.facets_malloced = stl->stats.number_of_facets;
/* Allocate memory for the neighbors list */
stl->neighbors_start = (stl_neighbors*)
calloc(stl->stats.number_of_facets, sizeof(stl_neighbors));
if(stl->facet_start == NULL) perror("stl_initialize");
}
void
stl_open_merge(stl_file *stl, char *file_to_merge) {
int num_facets_so_far;
stl_type origStlType;
FILE *origFp;
stl_file stl_to_merge;
if (stl->error) return;
/* Record how many facets we have so far from the first file. We will start putting
facets in the next position. Since we're 0-indexed, it'l be the same position. */
num_facets_so_far = stl->stats.number_of_facets;
/* Record the file type we started with: */
origStlType=stl->stats.type;
/* Record the file pointer too: */
origFp=stl->fp;
/* Initialize the sturucture with zero stats, header info and sizes: */
stl_initialize(&stl_to_merge);
stl_count_facets(&stl_to_merge, file_to_merge);
/* Copy what we need to into stl so that we can read the file_to_merge directly into it
using stl_read: Save the rest of the valuable info: */
stl->stats.type=stl_to_merge.stats.type;
stl->fp=stl_to_merge.fp;
/* Add the number of facets we already have in stl with what we we found in stl_to_merge but
haven't read yet. */
stl->stats.number_of_facets=num_facets_so_far+stl_to_merge.stats.number_of_facets;
/* Allocate enough room for stl->stats.number_of_facets facets and neighbors: */
stl_reallocate(stl);
/* Read the file to merge directly into stl, adding it to what we have already.
Start at num_facets_so_far, the index to the first unused facet. Also say
that this isn't our first time so we should augment stats like min and max
instead of erasing them. */
stl_read(stl, num_facets_so_far, false);
/* Restore the stl information we overwrote (for stl_read) so that it still accurately
reflects the subject part: */
stl->stats.type=origStlType;
stl->fp=origFp;
}
extern void
stl_reallocate(stl_file *stl) {
if (stl->error) return;
/* Reallocate more memory for the .STL file(s) */
stl->facet_start = (stl_facet*)realloc(stl->facet_start, stl->stats.number_of_facets *
sizeof(stl_facet));
if(stl->facet_start == NULL) perror("stl_initialize");
stl->stats.facets_malloced = stl->stats.number_of_facets;
/* Reallocate more memory for the neighbors list */
stl->neighbors_start = (stl_neighbors*)
realloc(stl->neighbors_start, stl->stats.number_of_facets *
sizeof(stl_neighbors));
if(stl->facet_start == NULL) perror("stl_initialize");
}
/* Reads the contents of the file pointed to by stl->fp into the stl structure,
starting at facet first_facet. The second argument says if it's our first
time running this for the stl and therefore we should reset our max and min stats. */
void stl_read(stl_file *stl, int first_facet, bool first) {
stl_facet facet;
if (stl->error) return;
if(stl->stats.type == binary) {
fseek(stl->fp, HEADER_SIZE, SEEK_SET);
} else {
rewind(stl->fp);
}
char normal_buf[3][32];
for(uint32_t i = first_facet; i < stl->stats.number_of_facets; i++) {
if(stl->stats.type == binary)
/* Read a single facet from a binary .STL file */
{
/* we assume little-endian architecture! */
if (fread(&facet, 1, SIZEOF_STL_FACET, stl->fp) != SIZEOF_STL_FACET) {
stl->error = 1;
return;
}
#ifndef BOOST_LITTLE_ENDIAN
// Convert the loaded little endian data to big endian.
stl_internal_reverse_quads((char*)&facet, 48);
#endif /* BOOST_LITTLE_ENDIAN */
} else
/* Read a single facet from an ASCII .STL file */
{
// skip solid/endsolid
// (in this order, otherwise it won't work when they are paired in the middle of a file)
fscanf(stl->fp, "endsolid%*[^\n]\n");
fscanf(stl->fp, "solid%*[^\n]\n"); // name might contain spaces so %*s doesn't work and it also can be empty (just "solid")
// Leading space in the fscanf format skips all leading white spaces including numerous new lines and tabs.
int res_normal = fscanf(stl->fp, " facet normal %31s %31s %31s", normal_buf[0], normal_buf[1], normal_buf[2]);
assert(res_normal == 3);
int res_outer_loop = fscanf(stl->fp, " outer loop");
assert(res_outer_loop == 0);
int res_vertex1 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2));
assert(res_vertex1 == 3);
int res_vertex2 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2));
assert(res_vertex2 == 3);
int res_vertex3 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2));
assert(res_vertex3 == 3);
int res_endloop = fscanf(stl->fp, " endloop");
assert(res_endloop == 0);
// There is a leading and trailing white space around endfacet to eat up all leading and trailing white spaces including numerous tabs and new lines.
int res_endfacet = fscanf(stl->fp, " endfacet ");
if (res_normal != 3 || res_outer_loop != 0 || res_vertex1 != 3 || res_vertex2 != 3 || res_vertex3 != 3 || res_endloop != 0 || res_endfacet != 0) {
perror("Something is syntactically very wrong with this ASCII STL!");
stl->error = 1;
return;
}
// The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 ||
sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 ||
sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) {
// Normal was mangled. Maybe denormals or "not a number" were stored?
// Just reset the normal and silently ignore it.
memset(&facet.normal, 0, sizeof(facet.normal));
}
}
#if 0
// Report close to zero vertex coordinates. Due to the nature of the floating point numbers,
// close to zero values may be represented with singificantly higher precision than the rest of the vertices.
// It may be worth to round these numbers to zero during loading to reduce the number of errors reported
// during the STL import.
for (size_t j = 0; j < 3; ++ j) {
if (facet.vertex[j](0) > -1e-12f && facet.vertex[j](0) < 1e-12f)
printf("stl_read: facet %d(0) = %e\r\n", j, facet.vertex[j](0));
if (facet.vertex[j](1) > -1e-12f && facet.vertex[j](1) < 1e-12f)
printf("stl_read: facet %d(1) = %e\r\n", j, facet.vertex[j](1));
if (facet.vertex[j](2) > -1e-12f && facet.vertex[j](2) < 1e-12f)
printf("stl_read: facet %d(2) = %e\r\n", j, facet.vertex[j](2));
}
#endif
/* Write the facet into memory. */
stl->facet_start[i] = facet;
stl_facet_stats(stl, facet, first);
}
stl->stats.size = stl->stats.max - stl->stats.min;
stl->stats.bounding_diameter = stl->stats.size.norm();
void stl_reallocate(stl_file *stl)
{
stl->facet_start.resize(stl->stats.number_of_facets);
stl->neighbors_start.resize(stl->stats.number_of_facets);
}
void stl_facet_stats(stl_file *stl, stl_facet facet, bool &first)
{
if (stl->error)
return;
// While we are going through all of the facets, let's find the
// maximum and minimum values for x, y, and z
// While we are going through all of the facets, let's find the
// maximum and minimum values for x, y, and z
if (first) {
// Initialize the max and min values the first time through
stl->stats.min = facet.vertex[0];
stl->stats.max = facet.vertex[0];
stl_vertex diff = (facet.vertex[1] - facet.vertex[0]).cwiseAbs();
stl->stats.shortest_edge = std::max(diff(0), std::max(diff(1), diff(2)));
first = false;
}
if (first) {
// Initialize the max and min values the first time through
stl->stats.min = facet.vertex[0];
stl->stats.max = facet.vertex[0];
stl_vertex diff = (facet.vertex[1] - facet.vertex[0]).cwiseAbs();
stl->stats.shortest_edge = std::max(diff(0), std::max(diff(1), diff(2)));
first = false;
}
// Now find the max and min values.
for (size_t i = 0; i < 3; ++ i) {
stl->stats.min = stl->stats.min.cwiseMin(facet.vertex[i]);
stl->stats.max = stl->stats.max.cwiseMax(facet.vertex[i]);
}
}
void stl_close(stl_file *stl)
{
assert(stl->fp == nullptr);
assert(stl->heads == nullptr);
assert(stl->tail == nullptr);
if (stl->facet_start != NULL)
free(stl->facet_start);
if (stl->neighbors_start != NULL)
free(stl->neighbors_start);
if (stl->v_indices != NULL)
free(stl->v_indices);
if (stl->v_shared != NULL)
free(stl->v_shared);
memset(stl, 0, sizeof(stl_file));
// Now find the max and min values.
for (size_t i = 0; i < 3; ++ i) {
stl->stats.min = stl->stats.min.cwiseMin(facet.vertex[i]);
stl->stats.max = stl->stats.max.cwiseMax(facet.vertex[i]);
}
}

View file

@ -25,435 +25,375 @@
#include <string.h>
#include <math.h>
#include <boost/log/trivial.hpp>
#include "stl.h"
static void stl_rotate(float *x, float *y, const double c, const double s);
static float get_area(stl_facet *facet);
static float get_volume(stl_file *stl);
void stl_verify_neighbors(stl_file *stl)
{
stl->stats.backwards_edges = 0;
void
stl_verify_neighbors(stl_file *stl) {
int i;
int j;
stl_edge edge_a;
stl_edge edge_b;
int neighbor;
int vnot;
if (stl->error) return;
stl->stats.backwards_edges = 0;
for(i = 0; i < stl->stats.number_of_facets; i++) {
for(j = 0; j < 3; j++) {
edge_a.p1 = stl->facet_start[i].vertex[j];
edge_a.p2 = stl->facet_start[i].vertex[(j + 1) % 3];
neighbor = stl->neighbors_start[i].neighbor[j];
vnot = stl->neighbors_start[i].which_vertex_not[j];
if(neighbor == -1)
continue; /* this edge has no neighbor... Continue. */
if(vnot < 3) {
edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3];
edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3];
} else {
stl->stats.backwards_edges += 1;
edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3];
edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3];
}
if (edge_a.p1 != edge_b.p1 || edge_a.p2 != edge_b.p2) {
/* These edges should match but they don't. Print results. */
printf("edge %d of facet %d doesn't match edge %d of facet %d\n",
j, i, vnot + 1, neighbor);
stl_write_facet(stl, (char*)"first facet", i);
stl_write_facet(stl, (char*)"second facet", neighbor);
}
}
}
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
for (int j = 0; j < 3; ++ j) {
struct stl_edge {
stl_vertex p1;
stl_vertex p2;
int facet_number;
};
stl_edge edge_a;
edge_a.p1 = stl->facet_start[i].vertex[j];
edge_a.p2 = stl->facet_start[i].vertex[(j + 1) % 3];
int neighbor = stl->neighbors_start[i].neighbor[j];
if (neighbor == -1)
continue; // this edge has no neighbor... Continue.
int vnot = stl->neighbors_start[i].which_vertex_not[j];
stl_edge edge_b;
if (vnot < 3) {
edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3];
edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3];
} else {
stl->stats.backwards_edges += 1;
edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3];
edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3];
}
if (edge_a.p1 != edge_b.p1 || edge_a.p2 != edge_b.p2) {
// These edges should match but they don't. Print results.
BOOST_LOG_TRIVIAL(info) << "edge " << j << " of facet " << i << " doesn't match edge " << (vnot + 1) << " of facet " << neighbor;
stl_write_facet(stl, (char*)"first facet", i);
stl_write_facet(stl, (char*)"second facet", neighbor);
}
}
}
}
void stl_translate(stl_file *stl, float x, float y, float z)
{
if (stl->error)
return;
stl_vertex new_min(x, y, z);
stl_vertex shift = new_min - stl->stats.min;
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
stl->facet_start[i].vertex[j] += shift;
stl->stats.min = new_min;
stl->stats.max += shift;
stl_invalidate_shared_vertices(stl);
stl_vertex new_min(x, y, z);
stl_vertex shift = new_min - stl->stats.min;
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
stl->facet_start[i].vertex[j] += shift;
stl->stats.min = new_min;
stl->stats.max += shift;
}
/* Translates the stl by x,y,z, relatively from wherever it is currently */
void stl_translate_relative(stl_file *stl, float x, float y, float z)
{
if (stl->error)
return;
stl_vertex shift(x, y, z);
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
stl->facet_start[i].vertex[j] += shift;
stl->stats.min += shift;
stl->stats.max += shift;
stl_invalidate_shared_vertices(stl);
stl_vertex shift(x, y, z);
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
stl->facet_start[i].vertex[j] += shift;
stl->stats.min += shift;
stl->stats.max += shift;
}
void stl_scale_versor(stl_file *stl, const stl_vertex &versor)
{
if (stl->error)
return;
// Scale extents.
auto s = versor.array();
stl->stats.min.array() *= s;
stl->stats.max.array() *= s;
// Scale size.
stl->stats.size.array() *= s;
// Scale volume.
if (stl->stats.volume > 0.0)
stl->stats.volume *= versor(0) * versor(1) * versor(2);
// Scale the mesh.
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
stl->facet_start[i].vertex[j].array() *= s;
stl_invalidate_shared_vertices(stl);
// Scale extents.
auto s = versor.array();
stl->stats.min.array() *= s;
stl->stats.max.array() *= s;
// Scale size.
stl->stats.size.array() *= s;
// Scale volume.
if (stl->stats.volume > 0.0)
stl->stats.volume *= versor(0) * versor(1) * versor(2);
// Scale the mesh.
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
stl->facet_start[i].vertex[j].array() *= s;
}
static void calculate_normals(stl_file *stl)
{
if (stl->error)
return;
stl_normal normal;
for(uint32_t i = 0; i < stl->stats.number_of_facets; i++) {
stl_calculate_normal(normal, &stl->facet_start[i]);
stl_normalize_vector(normal);
stl->facet_start[i].normal = normal;
}
stl_normal normal;
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
stl_calculate_normal(normal, &stl->facet_start[i]);
stl_normalize_vector(normal);
stl->facet_start[i].normal = normal;
}
}
void
stl_rotate_x(stl_file *stl, float angle) {
int i;
int j;
double radian_angle = (angle / 180.0) * M_PI;
double c = cos(radian_angle);
double s = sin(radian_angle);
if (stl->error) return;
for(i = 0; i < stl->stats.number_of_facets; i++) {
for(j = 0; j < 3; j++) {
stl_rotate(&stl->facet_start[i].vertex[j](1),
&stl->facet_start[i].vertex[j](2), c, s);
}
}
stl_get_size(stl);
calculate_normals(stl);
static inline void rotate_point_2d(float &x, float &y, const double c, const double s)
{
double xold = x;
double yold = y;
x = float(c * xold - s * yold);
y = float(s * xold + c * yold);
}
void
stl_rotate_y(stl_file *stl, float angle) {
int i;
int j;
double radian_angle = (angle / 180.0) * M_PI;
double c = cos(radian_angle);
double s = sin(radian_angle);
if (stl->error) return;
for(i = 0; i < stl->stats.number_of_facets; i++) {
for(j = 0; j < 3; j++) {
stl_rotate(&stl->facet_start[i].vertex[j](2),
&stl->facet_start[i].vertex[j](0), c, s);
}
}
stl_get_size(stl);
calculate_normals(stl);
void stl_rotate_x(stl_file *stl, float angle)
{
double radian_angle = (angle / 180.0) * M_PI;
double c = cos(radian_angle);
double s = sin(radian_angle);
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
rotate_point_2d(stl->facet_start[i].vertex[j](1), stl->facet_start[i].vertex[j](2), c, s);
stl_get_size(stl);
calculate_normals(stl);
}
void
stl_rotate_z(stl_file *stl, float angle) {
int i;
int j;
double radian_angle = (angle / 180.0) * M_PI;
double c = cos(radian_angle);
double s = sin(radian_angle);
if (stl->error) return;
for(i = 0; i < stl->stats.number_of_facets; i++) {
for(j = 0; j < 3; j++) {
stl_rotate(&stl->facet_start[i].vertex[j](0),
&stl->facet_start[i].vertex[j](1), c, s);
}
}
stl_get_size(stl);
calculate_normals(stl);
void stl_rotate_y(stl_file *stl, float angle)
{
double radian_angle = (angle / 180.0) * M_PI;
double c = cos(radian_angle);
double s = sin(radian_angle);
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
rotate_point_2d(stl->facet_start[i].vertex[j](2), stl->facet_start[i].vertex[j](0), c, s);
stl_get_size(stl);
calculate_normals(stl);
}
void stl_rotate_z(stl_file *stl, float angle)
{
double radian_angle = (angle / 180.0) * M_PI;
double c = cos(radian_angle);
double s = sin(radian_angle);
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
rotate_point_2d(stl->facet_start[i].vertex[j](0), stl->facet_start[i].vertex[j](1), c, s);
stl_get_size(stl);
calculate_normals(stl);
}
void its_rotate_x(indexed_triangle_set &its, float angle)
{
double radian_angle = (angle / 180.0) * M_PI;
double c = cos(radian_angle);
double s = sin(radian_angle);
for (stl_vertex &v : its.vertices)
rotate_point_2d(v(1), v(2), c, s);
}
static void
stl_rotate(float *x, float *y, const double c, const double s) {
double xold = *x;
double yold = *y;
*x = float(c * xold - s * yold);
*y = float(s * xold + c * yold);
void its_rotate_y(indexed_triangle_set& its, float angle)
{
double radian_angle = (angle / 180.0) * M_PI;
double c = cos(radian_angle);
double s = sin(radian_angle);
for (stl_vertex& v : its.vertices)
rotate_point_2d(v(2), v(0), c, s);
}
void its_rotate_z(indexed_triangle_set& its, float angle)
{
double radian_angle = (angle / 180.0) * M_PI;
double c = cos(radian_angle);
double s = sin(radian_angle);
for (stl_vertex& v : its.vertices)
rotate_point_2d(v(0), v(1), c, s);
}
void stl_get_size(stl_file *stl)
{
if (stl->error || stl->stats.number_of_facets == 0)
return;
stl->stats.min = stl->facet_start[0].vertex[0];
stl->stats.max = stl->stats.min;
for (int i = 0; i < stl->stats.number_of_facets; ++ i) {
const stl_facet &face = stl->facet_start[i];
for (int j = 0; j < 3; ++ j) {
stl->stats.min = stl->stats.min.cwiseMin(face.vertex[j]);
stl->stats.max = stl->stats.max.cwiseMax(face.vertex[j]);
}
}
stl->stats.size = stl->stats.max - stl->stats.min;
stl->stats.bounding_diameter = stl->stats.size.norm();
if (stl->stats.number_of_facets == 0)
return;
stl->stats.min = stl->facet_start[0].vertex[0];
stl->stats.max = stl->stats.min;
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
const stl_facet &face = stl->facet_start[i];
for (int j = 0; j < 3; ++ j) {
stl->stats.min = stl->stats.min.cwiseMin(face.vertex[j]);
stl->stats.max = stl->stats.max.cwiseMax(face.vertex[j]);
}
}
stl->stats.size = stl->stats.max - stl->stats.min;
stl->stats.bounding_diameter = stl->stats.size.norm();
}
void stl_mirror_xy(stl_file *stl)
{
if (stl->error)
return;
for(int i = 0; i < stl->stats.number_of_facets; i++) {
for(int j = 0; j < 3; j++) {
stl->facet_start[i].vertex[j](2) *= -1.0;
}
}
float temp_size = stl->stats.min(2);
stl->stats.min(2) = stl->stats.max(2);
stl->stats.max(2) = temp_size;
stl->stats.min(2) *= -1.0;
stl->stats.max(2) *= -1.0;
stl_reverse_all_facets(stl);
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
stl->facet_start[i].vertex[j](2) *= -1.0;
float temp_size = stl->stats.min(2);
stl->stats.min(2) = stl->stats.max(2);
stl->stats.max(2) = temp_size;
stl->stats.min(2) *= -1.0;
stl->stats.max(2) *= -1.0;
stl_reverse_all_facets(stl);
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
}
void stl_mirror_yz(stl_file *stl)
{
if (stl->error) return;
for (int i = 0; i < stl->stats.number_of_facets; i++) {
for (int j = 0; j < 3; j++) {
stl->facet_start[i].vertex[j](0) *= -1.0;
}
}
float temp_size = stl->stats.min(0);
stl->stats.min(0) = stl->stats.max(0);
stl->stats.max(0) = temp_size;
stl->stats.min(0) *= -1.0;
stl->stats.max(0) *= -1.0;
stl_reverse_all_facets(stl);
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; j++)
stl->facet_start[i].vertex[j](0) *= -1.0;
float temp_size = stl->stats.min(0);
stl->stats.min(0) = stl->stats.max(0);
stl->stats.max(0) = temp_size;
stl->stats.min(0) *= -1.0;
stl->stats.max(0) *= -1.0;
stl_reverse_all_facets(stl);
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
}
void stl_mirror_xz(stl_file *stl)
{
if (stl->error)
return;
for (int i = 0; i < stl->stats.number_of_facets; i++) {
for (int j = 0; j < 3; j++) {
stl->facet_start[i].vertex[j](1) *= -1.0;
}
}
float temp_size = stl->stats.min(1);
stl->stats.min(1) = stl->stats.max(1);
stl->stats.max(1) = temp_size;
stl->stats.min(1) *= -1.0;
stl->stats.max(1) *= -1.0;
stl_reverse_all_facets(stl);
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
}
static float get_volume(stl_file *stl)
{
if (stl->error)
return 0;
// Choose a point, any point as the reference.
stl_vertex p0 = stl->facet_start[0].vertex[0];
float volume = 0.f;
for(uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
// Do dot product to get distance from point to plane.
float height = stl->facet_start[i].normal.dot(stl->facet_start[i].vertex[0] - p0);
float area = get_area(&stl->facet_start[i]);
volume += (area * height) / 3.0f;
}
return volume;
}
void stl_calculate_volume(stl_file *stl)
{
if (stl->error) return;
stl->stats.volume = get_volume(stl);
if(stl->stats.volume < 0.0) {
stl_reverse_all_facets(stl);
stl->stats.volume = -stl->stats.volume;
}
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
stl->facet_start[i].vertex[j](1) *= -1.0;
float temp_size = stl->stats.min(1);
stl->stats.min(1) = stl->stats.max(1);
stl->stats.max(1) = temp_size;
stl->stats.min(1) *= -1.0;
stl->stats.max(1) *= -1.0;
stl_reverse_all_facets(stl);
stl->stats.facets_reversed -= stl->stats.number_of_facets; // for not altering stats
}
static float get_area(stl_facet *facet)
{
/* cast to double before calculating cross product because large coordinates
can result in overflowing product
(bad area is responsible for bad volume and bad facets reversal) */
double cross[3][3];
for (int i = 0; i < 3; i++) {
cross[i][0]=(((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](2)) -
((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](1)));
cross[i][1]=(((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](0)) -
((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](2)));
cross[i][2]=(((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](1)) -
((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](0)));
}
/* cast to double before calculating cross product because large coordinates
can result in overflowing product
(bad area is responsible for bad volume and bad facets reversal) */
double cross[3][3];
for (int i = 0; i < 3; i++) {
cross[i][0]=(((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](2)) -
((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](1)));
cross[i][1]=(((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](0)) -
((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](2)));
cross[i][2]=(((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](1)) -
((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](0)));
}
stl_normal sum;
sum(0) = cross[0][0] + cross[1][0] + cross[2][0];
sum(1) = cross[0][1] + cross[1][1] + cross[2][1];
sum(2) = cross[0][2] + cross[1][2] + cross[2][2];
stl_normal sum;
sum(0) = cross[0][0] + cross[1][0] + cross[2][0];
sum(1) = cross[0][1] + cross[1][1] + cross[2][1];
sum(2) = cross[0][2] + cross[1][2] + cross[2][2];
// This should already be done. But just in case, let's do it again.
//FIXME this is questionable. the "sum" normal should be accurate, while the normal "n" may be calculated with a low accuracy.
stl_normal n;
stl_calculate_normal(n, facet);
stl_normalize_vector(n);
return 0.5f * n.dot(sum);
// This should already be done. But just in case, let's do it again.
//FIXME this is questionable. the "sum" normal should be accurate, while the normal "n" may be calculated with a low accuracy.
stl_normal n;
stl_calculate_normal(n, facet);
stl_normalize_vector(n);
return 0.5f * n.dot(sum);
}
void stl_repair(stl_file *stl,
int fixall_flag,
int exact_flag,
int tolerance_flag,
float tolerance,
int increment_flag,
float increment,
int nearby_flag,
int iterations,
int remove_unconnected_flag,
int fill_holes_flag,
int normal_directions_flag,
int normal_values_flag,
int reverse_all_flag,
int verbose_flag) {
int i;
int last_edges_fixed = 0;
if (stl->error) return;
if(exact_flag || fixall_flag || nearby_flag || remove_unconnected_flag
|| fill_holes_flag || normal_directions_flag) {
if (verbose_flag)
printf("Checking exact...\n");
exact_flag = 1;
stl_check_facets_exact(stl);
stl->stats.facets_w_1_bad_edge =
(stl->stats.connected_facets_2_edge -
stl->stats.connected_facets_3_edge);
stl->stats.facets_w_2_bad_edge =
(stl->stats.connected_facets_1_edge -
stl->stats.connected_facets_2_edge);
stl->stats.facets_w_3_bad_edge =
(stl->stats.number_of_facets -
stl->stats.connected_facets_1_edge);
}
if(nearby_flag || fixall_flag) {
if(!tolerance_flag) {
tolerance = stl->stats.shortest_edge;
}
if(!increment_flag) {
increment = stl->stats.bounding_diameter / 10000.0;
}
if(stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) {
for(i = 0; i < iterations; i++) {
if(stl->stats.connected_facets_3_edge <
stl->stats.number_of_facets) {
if (verbose_flag)
printf("\
Checking nearby. Tolerance= %f Iteration=%d of %d...",
tolerance, i + 1, iterations);
stl_check_facets_nearby(stl, tolerance);
if (verbose_flag)
printf(" Fixed %d edges.\n",
stl->stats.edges_fixed - last_edges_fixed);
last_edges_fixed = stl->stats.edges_fixed;
tolerance += increment;
} else {
if (verbose_flag)
printf("\
All facets connected. No further nearby check necessary.\n");
break;
}
}
} else {
if (verbose_flag)
printf("All facets connected. No nearby check necessary.\n");
}
}
if(remove_unconnected_flag || fixall_flag || fill_holes_flag) {
if(stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) {
if (verbose_flag)
printf("Removing unconnected facets...\n");
stl_remove_unconnected_facets(stl);
} else
if (verbose_flag)
printf("No unconnected need to be removed.\n");
}
if(fill_holes_flag || fixall_flag) {
if(stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) {
if (verbose_flag)
printf("Filling holes...\n");
stl_fill_holes(stl);
} else
if (verbose_flag)
printf("No holes need to be filled.\n");
}
if(reverse_all_flag) {
if (verbose_flag)
printf("Reversing all facets...\n");
stl_reverse_all_facets(stl);
}
if(normal_directions_flag || fixall_flag) {
if (verbose_flag)
printf("Checking normal directions...\n");
stl_fix_normal_directions(stl);
}
if(normal_values_flag || fixall_flag) {
if (verbose_flag)
printf("Checking normal values...\n");
stl_fix_normal_values(stl);
}
/* Always calculate the volume. It shouldn't take too long */
if (verbose_flag)
printf("Calculating volume...\n");
stl_calculate_volume(stl);
if(exact_flag) {
if (verbose_flag)
printf("Verifying neighbors...\n");
stl_verify_neighbors(stl);
}
static float get_volume(stl_file *stl)
{
// Choose a point, any point as the reference.
stl_vertex p0 = stl->facet_start[0].vertex[0];
float volume = 0.f;
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
// Do dot product to get distance from point to plane.
float height = stl->facet_start[i].normal.dot(stl->facet_start[i].vertex[0] - p0);
float area = get_area(&stl->facet_start[i]);
volume += (area * height) / 3.0f;
}
return volume;
}
void stl_calculate_volume(stl_file *stl)
{
stl->stats.volume = get_volume(stl);
if (stl->stats.volume < 0.0) {
stl_reverse_all_facets(stl);
stl->stats.volume = -stl->stats.volume;
}
}
void stl_repair(
stl_file *stl,
bool fixall_flag,
bool exact_flag,
bool tolerance_flag,
float tolerance,
bool increment_flag,
float increment,
bool nearby_flag,
int iterations,
bool remove_unconnected_flag,
bool fill_holes_flag,
bool normal_directions_flag,
bool normal_values_flag,
bool reverse_all_flag,
bool verbose_flag)
{
if (exact_flag || fixall_flag || nearby_flag || remove_unconnected_flag || fill_holes_flag || normal_directions_flag) {
if (verbose_flag)
printf("Checking exact...\n");
exact_flag = true;
stl_check_facets_exact(stl);
stl->stats.facets_w_1_bad_edge = (stl->stats.connected_facets_2_edge - stl->stats.connected_facets_3_edge);
stl->stats.facets_w_2_bad_edge = (stl->stats.connected_facets_1_edge - stl->stats.connected_facets_2_edge);
stl->stats.facets_w_3_bad_edge = (stl->stats.number_of_facets - stl->stats.connected_facets_1_edge);
}
if (nearby_flag || fixall_flag) {
if (! tolerance_flag)
tolerance = stl->stats.shortest_edge;
if (! increment_flag)
increment = stl->stats.bounding_diameter / 10000.0;
}
if (stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) {
int last_edges_fixed = 0;
for (int i = 0; i < iterations; ++ i) {
if (stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) {
if (verbose_flag)
printf("Checking nearby. Tolerance= %f Iteration=%d of %d...", tolerance, i + 1, iterations);
stl_check_facets_nearby(stl, tolerance);
if (verbose_flag)
printf(" Fixed %d edges.\n", stl->stats.edges_fixed - last_edges_fixed);
last_edges_fixed = stl->stats.edges_fixed;
tolerance += increment;
} else {
if (verbose_flag)
printf("All facets connected. No further nearby check necessary.\n");
break;
}
}
} else if (verbose_flag)
printf("All facets connected. No nearby check necessary.\n");
if (remove_unconnected_flag || fixall_flag || fill_holes_flag) {
if (stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) {
if (verbose_flag)
printf("Removing unconnected facets...\n");
stl_remove_unconnected_facets(stl);
} else if (verbose_flag)
printf("No unconnected need to be removed.\n");
}
if (fill_holes_flag || fixall_flag) {
if (stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) {
if (verbose_flag)
printf("Filling holes...\n");
stl_fill_holes(stl);
} else if (verbose_flag)
printf("No holes need to be filled.\n");
}
if (reverse_all_flag) {
if (verbose_flag)
printf("Reversing all facets...\n");
stl_reverse_all_facets(stl);
}
if (normal_directions_flag || fixall_flag) {
if (verbose_flag)
printf("Checking normal directions...\n");
stl_fix_normal_directions(stl);
}
if (normal_values_flag || fixall_flag) {
if (verbose_flag)
printf("Checking normal values...\n");
stl_fix_normal_values(stl);
}
// Always calculate the volume. It shouldn't take too long.
if (verbose_flag)
printf("Calculating volume...\n");
stl_calculate_volume(stl);
if (exact_flag) {
if (verbose_flag)
printf("Verifying neighbors...\n");
stl_verify_neighbors(stl);
}
}

View file

@ -48,6 +48,9 @@ set(LIBNEST2D_SRCFILES
${SRC_DIR}/libnest2d/optimizer.hpp
${SRC_DIR}/libnest2d/utils/metaloop.hpp
${SRC_DIR}/libnest2d/utils/rotfinder.hpp
${SRC_DIR}/libnest2d/utils/rotcalipers.hpp
${SRC_DIR}/libnest2d/utils/bigint.hpp
${SRC_DIR}/libnest2d/utils/rational.hpp
${SRC_DIR}/libnest2d/placers/placer_boilerplate.hpp
${SRC_DIR}/libnest2d/placers/bottomleftplacer.hpp
${SRC_DIR}/libnest2d/placers/nfpplacer.hpp
@ -70,12 +73,13 @@ if(TBB_FOUND)
# The Intel TBB library will use the std::exception_ptr feature of C++11.
target_compile_definitions(libnest2d INTERFACE -DTBB_USE_CAPTURED_EXCEPTION=0)
target_link_libraries(libnest2d INTERFACE tbb)
# The following breaks compilation on Visual Studio in Debug mode.
#find_package(Threads REQUIRED)
#target_link_libraries(libnest2d INTERFACE ${TBB_LIBRARIES} ${CMAKE_DL_LIBS}
# Threads::Threads
# )
find_package(Threads REQUIRED)
target_link_libraries(libnest2d INTERFACE
tbb # VS debug mode needs linking this way:
# ${TBB_LIBRARIES}
${CMAKE_DL_LIBS}
Threads::Threads
)
else()
find_package(OpenMP QUIET)
@ -92,10 +96,11 @@ endif()
add_subdirectory(${SRC_DIR}/libnest2d/backends/${LIBNEST2D_GEOMETRIES})
target_link_libraries(libnest2d INTERFACE ${LIBNEST2D_GEOMETRIES}Backend)
add_subdirectory(${SRC_DIR}/libnest2d/optimizers/${LIBNEST2D_OPTIMIZER})
target_link_libraries(libnest2d INTERFACE ${LIBNEST2D_OPTIMIZER}Optimizer)
#target_sources(libnest2d INTERFACE ${LIBNEST2D_SRCFILES})
# target_sources(libnest2d INTERFACE ${LIBNEST2D_SRCFILES})
target_include_directories(libnest2d INTERFACE ${SRC_DIR})
if(NOT LIBNEST2D_HEADER_ONLY)

View file

@ -47,6 +47,17 @@ using NfpPlacer = _NfpPlacer<Box>;
// This supports only box shaped bins
using BottomLeftPlacer = placers::_BottomLeftPlacer<PolygonImpl>;
#ifdef LIBNEST2D_STATIC
extern template class Nester<NfpPlacer, FirstFitSelection>;
extern template class Nester<BottomLeftPlacer, FirstFitSelection>;
extern template PackGroup Nester<NfpPlacer, FirstFitSelection>::execute(
std::vector<Item>::iterator, std::vector<Item>::iterator);
extern template PackGroup Nester<BottomLeftPlacer, FirstFitSelection>::execute(
std::vector<Item>::iterator, std::vector<Item>::iterator);
#endif
template<class Placer = NfpPlacer,
class Selector = FirstFitSelection,
class Iterator = std::vector<Item>::iterator>
@ -60,19 +71,6 @@ PackGroup nest(Iterator from, Iterator to,
return nester.execute(from, to);
}
template<class Placer = NfpPlacer,
class Selector = FirstFitSelection,
class Container = std::vector<Item>>
PackGroup nest(Container&& cont,
const typename Placer::BinType& bin,
Coord dist = 0,
const typename Placer::Config& pconf = {},
const typename Selector::Config& sconf = {})
{
return nest<Placer, Selector>(cont.begin(), cont.end(),
bin, dist, pconf, sconf);
}
template<class Placer = NfpPlacer,
class Selector = FirstFitSelection,
class Iterator = std::vector<Item>::iterator>
@ -90,6 +88,42 @@ PackGroup nest(Iterator from, Iterator to,
return nester.execute(from, to);
}
#ifdef LIBNEST2D_STATIC
extern template class Nester<NfpPlacer, FirstFitSelection>;
extern template class Nester<BottomLeftPlacer, FirstFitSelection>;
extern template PackGroup nest(std::vector<Item>::iterator from,
std::vector<Item>::iterator to,
const Box& bin,
Coord dist = 0,
const NfpPlacer::Config& pconf,
const FirstFitSelection::Config& sconf);
extern template PackGroup nest(std::vector<Item>::iterator from,
std::vector<Item>::iterator to,
const Box& bin,
ProgressFunction prg,
StopCondition scond,
Coord dist = 0,
const NfpPlacer::Config& pconf,
const FirstFitSelection::Config& sconf);
#endif
template<class Placer = NfpPlacer,
class Selector = FirstFitSelection,
class Container = std::vector<Item>>
PackGroup nest(Container&& cont,
const typename Placer::BinType& bin,
Coord dist = 0,
const typename Placer::Config& pconf = {},
const typename Selector::Config& sconf = {})
{
return nest<Placer, Selector>(cont.begin(), cont.end(),
bin, dist, pconf, sconf);
}
template<class Placer = NfpPlacer,
class Selector = FirstFitSelection,
class Container = std::vector<Item>>
@ -105,71 +139,6 @@ PackGroup nest(Container&& cont,
bin, prg, scond, dist, pconf, sconf);
}
#ifdef LIBNEST2D_STATIC
extern template
PackGroup nest<NfpPlacer, FirstFitSelection, std::vector<Item>&>(
std::vector<Item>& cont,
const Box& bin,
Coord dist,
const NfpPlacer::Config& pcfg,
const FirstFitSelection::Config& scfg
);
extern template
PackGroup nest<NfpPlacer, FirstFitSelection, std::vector<Item>&>(
std::vector<Item>& cont,
const Box& bin,
ProgressFunction prg,
StopCondition scond,
Coord dist,
const NfpPlacer::Config& pcfg,
const FirstFitSelection::Config& scfg
);
extern template
PackGroup nest<NfpPlacer, FirstFitSelection, std::vector<Item>>(
std::vector<Item>&& cont,
const Box& bin,
Coord dist,
const NfpPlacer::Config& pcfg,
const FirstFitSelection::Config& scfg
);
extern template
PackGroup nest<NfpPlacer, FirstFitSelection, std::vector<Item>>(
std::vector<Item>&& cont,
const Box& bin,
ProgressFunction prg,
StopCondition scond,
Coord dist,
const NfpPlacer::Config& pcfg,
const FirstFitSelection::Config& scfg
);
extern template
PackGroup nest<NfpPlacer, FirstFitSelection, std::vector<Item>::iterator>(
std::vector<Item>::iterator from,
std::vector<Item>::iterator to,
const Box& bin,
Coord dist,
const NfpPlacer::Config& pcfg,
const FirstFitSelection::Config& scfg
);
extern template
PackGroup nest<NfpPlacer, FirstFitSelection, std::vector<Item>::iterator>(
std::vector<Item>::iterator from,
std::vector<Item>::iterator to,
const Box& bin,
ProgressFunction prg,
StopCondition scond,
Coord dist,
const NfpPlacer::Config& pcfg,
const FirstFitSelection::Config& scfg
);
#endif
}
#endif // LIBNEST2D_H

View file

@ -33,19 +33,18 @@ if(NOT TARGET clipper) # If there is a clipper target in the parent project we a
# ${clipper_library_BINARY_DIR}
# )
add_library(ClipperBackend STATIC
add_library(clipperBackend STATIC
${clipper_library_SOURCE_DIR}/clipper.cpp
${clipper_library_SOURCE_DIR}/clipper.hpp)
target_include_directories(ClipperBackend INTERFACE
${clipper_library_SOURCE_DIR})
target_include_directories(clipperBackend INTERFACE ${clipper_library_SOURCE_DIR})
else()
message(FATAL_ERROR "Can't find clipper library and no SVN client found to download.
You can download the clipper sources and define a clipper target in your project, that will work for libnest2d.")
endif()
else()
add_library(ClipperBackend INTERFACE)
target_link_libraries(ClipperBackend INTERFACE Clipper::Clipper)
add_library(clipperBackend INTERFACE)
target_link_libraries(clipperBackend INTERFACE Clipper::Clipper)
endif()
else()
# set(CLIPPER_INCLUDE_DIRS "" PARENT_SCOPE)
@ -69,6 +68,6 @@ target_link_libraries(clipperBackend INTERFACE Boost::boost )
target_compile_definitions(clipperBackend INTERFACE LIBNEST2D_BACKEND_CLIPPER)
# And finally plug the ClipperBackend into libnest2d
#target_link_libraries(libnest2d INTERFACE ClipperBackend)
# And finally plug the clipperBackend into libnest2d
# target_link_libraries(libnest2d INTERFACE clipperBackend)

View file

@ -12,13 +12,13 @@ struct Polygon {
inline Polygon() = default;
inline explicit Polygon(const Path& cont): Contour(cont) {}
inline explicit Polygon(const Paths& holes):
Holes(holes) {}
// inline explicit Polygon(const Paths& holes):
// Holes(holes) {}
inline Polygon(const Path& cont, const Paths& holes):
Contour(cont), Holes(holes) {}
inline explicit Polygon(Path&& cont): Contour(std::move(cont)) {}
inline explicit Polygon(Paths&& holes): Holes(std::move(holes)) {}
// inline explicit Polygon(Paths&& holes): Holes(std::move(holes)) {}
inline Polygon(Path&& cont, Paths&& holes):
Contour(std::move(cont)), Holes(std::move(holes)) {}
};
@ -42,7 +42,7 @@ inline IntPoint& operator -=(IntPoint& p, const IntPoint& pa ) {
return p;
}
inline IntPoint operator -(IntPoint& p ) {
inline IntPoint operator -(const IntPoint& p ) {
IntPoint ret = p;
ret.X = -ret.X;
ret.Y = -ret.Y;

View file

@ -20,43 +20,23 @@ using PathImpl = ClipperLib::Path;
using HoleStore = ClipperLib::Paths;
using PolygonImpl = ClipperLib::Polygon;
// Type of coordinate units used by Clipper
template<> struct CoordType<PointImpl> {
using Type = ClipperLib::cInt;
};
// Type of point used by Clipper
template<> struct PointType<PolygonImpl> {
using Type = PointImpl;
};
template<> struct PointType<PathImpl> {
using Type = PointImpl;
};
template<> struct PointType<PointImpl> {
using Type = PointImpl;
};
template<> struct CountourType<PolygonImpl> {
using Type = PathImpl;
};
template<> struct ShapeTag<PolygonImpl> { using Type = PolygonTag; };
template<> struct ShapeTag<PathImpl> { using Type = PathTag; };
template<> struct ShapeTag<PointImpl> { using Type = PointTag; };
template<> struct ShapeTag<PathImpl> { using Type = PathTag; };
template<> struct ShapeTag<PointImpl> { using Type = PointTag; };
template<> struct ShapeTag<TMultiShape<PolygonImpl>> {
using Type = MultiPolygonTag;
};
// Type of coordinate units used by Clipper. Enough to specialize for point,
// the rest of the types will work (Path, Polygon)
template<> struct CoordType<PointImpl> { using Type = ClipperLib::cInt; };
template<> struct PointType<TMultiShape<PolygonImpl>> {
using Type = PointImpl;
};
// Enough to specialize for path, it will work for multishape and Polygon
template<> struct PointType<PathImpl> { using Type = PointImpl; };
template<> struct HolesContainer<PolygonImpl> {
using Type = ClipperLib::Paths;
};
// This is crucial. CountourType refers to itself by default, so we don't have
// to secialize for clipper Path. ContourType<PathImpl>::Type is PathImpl.
template<> struct ContourType<PolygonImpl> { using Type = PathImpl; };
// The holes are contained in Clipper::Paths
template<> struct HolesContainer<PolygonImpl> { using Type = ClipperLib::Paths; };
namespace pointlike {
@ -86,39 +66,11 @@ template<> inline TCoord<PointImpl>& y(PointImpl& p)
}
// Using the libnest2d default area implementation
#define DISABLE_BOOST_AREA
namespace _smartarea {
template<Orientation o>
inline double area(const PolygonImpl& /*sh*/) {
return std::nan("");
}
template<>
inline double area<Orientation::COUNTER_CLOCKWISE>(const PolygonImpl& sh) {
return std::accumulate(sh.Holes.begin(), sh.Holes.end(),
ClipperLib::Area(sh.Contour),
[](double a, const ClipperLib::Path& pt){
return a + ClipperLib::Area(pt);
});
}
template<>
inline double area<Orientation::CLOCKWISE>(const PolygonImpl& sh) {
return -area<Orientation::COUNTER_CLOCKWISE>(sh);
}
}
namespace shapelike {
// Tell libnest2d how to make string out of a ClipperPolygon object
template<> inline double area(const PolygonImpl& sh, const PolygonTag&)
{
return _smartarea::area<OrientationType<PolygonImpl>::Value>(sh);
}
template<> inline void offset(PolygonImpl& sh, TCoord<PointImpl> distance)
{
#define DISABLE_BOOST_OFFSET
@ -200,43 +152,16 @@ inline PolygonImpl create(const PathImpl& path, const HoleStore& holes)
{
PolygonImpl p;
p.Contour = path;
// Expecting that the coordinate system Y axis is positive in upwards
// direction
if(ClipperLib::Orientation(p.Contour)) {
// Not clockwise then reverse the b*tch
ClipperLib::ReversePath(p.Contour);
}
p.Holes = holes;
for(auto& h : p.Holes) {
if(!ClipperLib::Orientation(h)) {
ClipperLib::ReversePath(h);
}
}
return p;
}
template<> inline PolygonImpl create( PathImpl&& path, HoleStore&& holes) {
PolygonImpl p;
p.Contour.swap(path);
// Expecting that the coordinate system Y axis is positive in upwards
// direction
if(ClipperLib::Orientation(p.Contour)) {
// Not clockwise then reverse the b*tch
ClipperLib::ReversePath(p.Contour);
}
p.Holes.swap(holes);
for(auto& h : p.Holes) {
if(!ClipperLib::Orientation(h)) {
ClipperLib::ReversePath(h);
}
}
return p;
}
@ -314,13 +239,13 @@ inline void rotate(PolygonImpl& sh, const Radians& rads)
} // namespace shapelike
#define DISABLE_BOOST_NFP_MERGE
inline std::vector<PolygonImpl> clipper_execute(
inline TMultiShape<PolygonImpl> clipper_execute(
ClipperLib::Clipper& clipper,
ClipperLib::ClipType clipType,
ClipperLib::PolyFillType subjFillType = ClipperLib::pftEvenOdd,
ClipperLib::PolyFillType clipFillType = ClipperLib::pftEvenOdd)
{
shapelike::Shapes<PolygonImpl> retv;
TMultiShape<PolygonImpl> retv;
ClipperLib::PolyTree result;
clipper.Execute(clipType, result, subjFillType, clipFillType);
@ -370,8 +295,8 @@ inline std::vector<PolygonImpl> clipper_execute(
namespace nfp {
template<> inline std::vector<PolygonImpl>
merge(const std::vector<PolygonImpl>& shapes)
template<> inline TMultiShape<PolygonImpl>
merge(const TMultiShape<PolygonImpl>& shapes)
{
ClipperLib::Clipper clipper(ClipperLib::ioReverseSolution);
@ -394,6 +319,8 @@ merge(const std::vector<PolygonImpl>& shapes)
}
#define DISABLE_BOOST_CONVEX_HULL
//#define DISABLE_BOOST_SERIALIZE
//#define DISABLE_BOOST_UNSERIALIZE

View file

@ -9,6 +9,7 @@
#include <string>
#include <cmath>
#include <type_traits>
#include <limits>
#if defined(_MSC_VER) && _MSC_VER <= 1800 || __cplusplus < 201103L
#define BP2D_NOEXCEPT
@ -197,6 +198,33 @@ public:
}
};
struct ScalarTag {};
struct BigIntTag {};
struct RationalTag {};
template<class T> struct _NumTag {
using Type =
enable_if_t<std::is_arithmetic<T>::value, ScalarTag>;
};
template<class T> using NumTag = typename _NumTag<remove_cvref_t<T>>::Type;
/// A local version for abs that is garanteed to work with libnest2d types
template <class T> inline T abs(const T& v, ScalarTag)
{
return std::abs(v);
}
template<class T> inline T abs(const T& v) { return abs(v, NumTag<T>()); }
template<class T2, class T1> inline T2 cast(const T1& v, ScalarTag, ScalarTag)
{
return static_cast<T2>(v);
}
template<class T2, class T1> inline T2 cast(const T1& v) {
return cast<T2, T1>(v, NumTag<T1>(), NumTag<T2>());
}
}
#endif // LIBNEST2D_CONFIG_HPP

View file

@ -7,45 +7,125 @@
#include <array>
#include <vector>
#include <numeric>
#include <limits>
#include <iterator>
#include <cmath>
#include <cstdint>
#include "common.hpp"
#include <libnest2d/common.hpp>
namespace libnest2d {
// Meta tags for different geometry concepts.
struct PointTag {};
struct PolygonTag {};
struct PathTag {};
struct MultiPolygonTag {};
struct BoxTag {};
struct CircleTag {};
/// Meta-function to derive the tag of a shape type.
template<class Shape> struct ShapeTag { using Type = typename Shape::Tag; };
/// Tag<S> will be used instead of `typename ShapeTag<S>::Type`
template<class S> using Tag = typename ShapeTag<remove_cvref_t<S>>::Type;
/// Meta function to derive the contour type for a polygon which could be itself
template<class RawShape> struct ContourType { using Type = RawShape; };
/// TContour<RawShape> instead of `typename ContourType<RawShape>::type`
template<class RawShape>
using TContour = typename ContourType<remove_cvref_t<RawShape>>::Type;
/// Getting the type of point structure used by a shape.
template<class Sh> struct PointType {
using Type = typename PointType<TContour<Sh>>::Type;
};
/// TPoint<ShapeClass> as shorthand for `typename PointType<ShapeClass>::Type`.
template<class Shape>
using TPoint = typename PointType<remove_cvref_t<Shape>>::Type;
/// Getting the coordinate data type for a geometry class.
template<class GeomClass> struct CoordType { using Type = long; };
template<class GeomClass> struct CoordType {
using Type = typename CoordType<TPoint<GeomClass>>::Type;
};
/// TCoord<GeomType> as shorthand for typename `CoordType<GeomType>::Type`.
template<class GeomType>
using TCoord = typename CoordType<remove_cvref_t<GeomType>>::Type;
/// Getting the type of point structure used by a shape.
template<class Sh> struct PointType { using Type = typename Sh::PointType; };
/// Getting the computation type for a certain geometry type.
/// It is the coordinate type by default but it is advised that a type with
/// larger precision and (or) range is specified.
template<class T, bool = std::is_arithmetic<T>::value> struct ComputeType {};
/// TPoint<ShapeClass> as shorthand for `typename PointType<ShapeClass>::Type`.
template<class Shape>
using TPoint = typename PointType<remove_cvref_t<Shape>>::Type;
/// A compute type is introduced to hold the results of computations on
/// coordinates and points. It should be larger in range than the coordinate
/// type or the range of coordinates should be limited to not loose precision.
template<class GeomClass> struct ComputeType<GeomClass, false> {
using Type = typename ComputeType<TCoord<GeomClass>>::Type;
};
/// libnest2d will choose a default compute type for various coordinate types
/// if the backend has not specified anything.
template<class T> struct DoublePrecision { using Type = T; };
template<> struct DoublePrecision<int8_t> { using Type = int16_t; };
template<> struct DoublePrecision<int16_t> { using Type = int32_t; };
template<> struct DoublePrecision<int32_t> { using Type = int64_t; };
template<> struct DoublePrecision<float> { using Type = double; };
template<> struct DoublePrecision<double> { using Type = long double; };
template<class I> struct ComputeType<I, true> {
using Type = typename DoublePrecision<I>::Type;
};
template<class RawShape> struct CountourType { using Type = RawShape; };
template<class RawShape>
using TContour = typename CountourType<remove_cvref_t<RawShape>>::Type;
/// TCompute<T> shorthand for `typename ComputeType<T>::Type`
template<class T> using TCompute = typename ComputeType<remove_cvref_t<T>>::Type;
/// A meta function to derive a container type for holes in a polygon
template<class RawShape>
struct HolesContainer { using Type = std::vector<TContour<RawShape>>; };
/// Shorthand for `typename HolesContainer<RawShape>::Type`
template<class RawShape>
using THolesContainer = typename HolesContainer<remove_cvref_t<RawShape>>::Type;
/*
* TContour, TPoint, TCoord and TCompute should be usable for any type for which
* it makes sense. For example, the point type could be derived from the contour,
* the polygon and (or) the multishape as well. The coordinate type also and
* including the point type. TCoord<Polygon>, TCoord<Path>, TCoord<Point> are
* all valid types and derives the coordinate type of template argument Polygon,
* Path and Point. This is also true for TCompute, but it can also take the
* coordinate type as argument.
*/
template<class RawShape>
struct LastPointIsFirst { static const bool Value = true; };
/*
* A Multi shape concept is also introduced. A multi shape is something that
* can contain the result of an operation where the input is one polygon and
* the result could be many polygons or path -> paths. The MultiShape should be
* a container type. If the backend does not specialize the MultiShape template,
* a default multi shape container will be used.
*/
/// The default multi shape container.
template<class S> struct DefaultMultiShape: public std::vector<S> {
using Tag = MultiPolygonTag;
template<class...Args> DefaultMultiShape(Args&&...args):
std::vector<S>(std::forward<Args>(args)...) {}
};
/// The MultiShape Type trait which gets the container type for a geometry type.
template<class S> struct MultiShape { using Type = DefaultMultiShape<S>; };
/// use TMultiShape<S> instead of `typename MultiShape<S>::Type`
template<class S>
using TMultiShape = typename MultiShape<remove_cvref_t<S>>::Type;
// A specialization of ContourType to work with the default multishape type
template<class S> struct ContourType<DefaultMultiShape<S>> {
using Type = typename ContourType<S>::Type;
};
enum class Orientation {
CLOCKWISE,
@ -59,6 +139,11 @@ struct OrientationType {
static const Orientation Value = Orientation::CLOCKWISE;
};
template<class T> inline /*constexpr*/ bool is_clockwise() {
return OrientationType<TContour<T>>::Value == Orientation::CLOCKWISE;
}
/**
* \brief A point pair base class for other point pairs (segment, box, ...).
* \tparam RawPoint The actual point type to use.
@ -69,21 +154,6 @@ struct PointPair {
RawPoint p2;
};
struct PointTag {};
struct PolygonTag {};
struct PathTag {};
struct MultiPolygonTag {};
struct BoxTag {};
struct CircleTag {};
/// Meta-functions to derive the tags
template<class Shape> struct ShapeTag { using Type = typename Shape::Tag; };
template<class S> using Tag = typename ShapeTag<remove_cvref_t<S>>::Type;
template<class S> struct MultiShape { using Type = std::vector<S>; };
template<class S>
using TMultiShape =typename MultiShape<remove_cvref_t<S>>::Type;
/**
* \brief An abstraction of a box;
*/
@ -114,11 +184,16 @@ public:
inline RawPoint center() const BP2D_NOEXCEPT;
inline double area() const BP2D_NOEXCEPT {
return double(width()*height());
template<class Unit = TCompute<RawPoint>>
inline Unit area() const BP2D_NOEXCEPT {
return Unit(width())*height();
}
};
template<class S> struct PointType<_Box<S>> {
using Type = typename _Box<S>::PointType;
};
template<class RawPoint>
class _Circle {
RawPoint center_;
@ -129,7 +204,6 @@ public:
using PointType = RawPoint;
_Circle() = default;
_Circle(const RawPoint& center, double r): center_(center), radius_(r) {}
inline const RawPoint& center() const BP2D_NOEXCEPT { return center_; }
@ -137,12 +211,16 @@ public:
inline double radius() const BP2D_NOEXCEPT { return radius_; }
inline void radius(double r) { radius_ = r; }
inline double area() const BP2D_NOEXCEPT {
return 2.0*Pi*radius_*radius_;
return Pi_2 * radius_ * radius_;
}
};
template<class S> struct PointType<_Circle<S>> {
using Type = typename _Circle<S>::PointType;
};
/**
* \brief An abstraction of a directed line segment with two points.
*/
@ -185,7 +263,12 @@ public:
inline Radians angleToXaxis() const;
/// The length of the segment in the measure of the coordinate system.
inline double length();
template<class Unit = TCompute<RawPoint>> inline Unit sqlength() const;
};
template<class S> struct PointType<_Segment<S>> {
using Type = typename _Circle<S>::PointType;
};
// This struct serves almost as a namespace. The only difference is that is can
@ -216,33 +299,56 @@ inline TCoord<RawPoint>& y(RawPoint& p)
return p.y();
}
template<class RawPoint>
inline double distance(const RawPoint& /*p1*/, const RawPoint& /*p2*/)
template<class RawPoint, class Unit = TCompute<RawPoint>>
inline Unit squaredDistance(const RawPoint& p1, const RawPoint& p2)
{
static_assert(always_false<RawPoint>::value,
"PointLike::distance(point, point) unimplemented!");
return 0;
auto x1 = Unit(x(p1)), y1 = Unit(y(p1)), x2 = Unit(x(p2)), y2 = Unit(y(p2));
Unit a = (x2 - x1), b = (y2 - y1);
return a * a + b * b;
}
template<class RawPoint>
inline double distance(const RawPoint& /*p1*/,
const _Segment<RawPoint>& /*s*/)
inline double distance(const RawPoint& p1, const RawPoint& p2)
{
static_assert(always_false<RawPoint>::value,
"PointLike::distance(point, segment) unimplemented!");
return 0;
return std::sqrt(squaredDistance<RawPoint, double>(p1, p2));
}
template<class RawPoint>
inline std::pair<TCoord<RawPoint>, bool> horizontalDistance(
// create perpendicular vector
template<class Pt> inline Pt perp(const Pt& p)
{
return Pt(y(p), -x(p));
}
template<class Pt, class Unit = TCompute<Pt>>
inline Unit dotperp(const Pt& a, const Pt& b)
{
return Unit(x(a)) * Unit(y(b)) - Unit(y(a)) * Unit(x(b));
}
// dot product
template<class Pt, class Unit = TCompute<Pt>>
inline Unit dot(const Pt& a, const Pt& b)
{
return Unit(x(a)) * x(b) + Unit(y(a)) * y(b);
}
// squared vector magnitude
template<class Pt, class Unit = TCompute<Pt>>
inline Unit magnsq(const Pt& p)
{
return Unit(x(p)) * x(p) + Unit(y(p)) * y(p);
}
template<class RawPoint, class Unit = TCompute<RawPoint>>
inline std::pair<Unit, bool> horizontalDistance(
const RawPoint& p, const _Segment<RawPoint>& s)
{
using Unit = TCoord<RawPoint>;
auto x = pointlike::x(p), y = pointlike::y(p);
auto x1 = pointlike::x(s.first()), y1 = pointlike::y(s.first());
auto x2 = pointlike::x(s.second()), y2 = pointlike::y(s.second());
namespace pl = pointlike;
auto x = Unit(pl::x(p)), y = Unit(pl::y(p));
auto x1 = Unit(pl::x(s.first())), y1 = Unit(pl::y(s.first()));
auto x2 = Unit(pl::x(s.second())), y2 = Unit(pl::y(s.second()));
TCoord<RawPoint> ret;
Unit ret;
if( (y < y1 && y < y2) || (y > y1 && y > y2) )
return {0, false};
@ -250,8 +356,7 @@ inline std::pair<TCoord<RawPoint>, bool> horizontalDistance(
ret = std::min( x-x1, x -x2);
else if( (y == y1 && y == y2) && (x < x1 && x < x2))
ret = -std::min(x1 - x, x2 - x);
else if(std::abs(y - y1) <= std::numeric_limits<Unit>::epsilon() &&
std::abs(y - y2) <= std::numeric_limits<Unit>::epsilon())
else if(y == y1 && y == y2)
ret = 0;
else
ret = x - x1 + (x1 - x2)*(y1 - y)/(y1 - y2);
@ -259,16 +364,16 @@ inline std::pair<TCoord<RawPoint>, bool> horizontalDistance(
return {ret, true};
}
template<class RawPoint>
inline std::pair<TCoord<RawPoint>, bool> verticalDistance(
template<class RawPoint, class Unit = TCompute<RawPoint>>
inline std::pair<Unit, bool> verticalDistance(
const RawPoint& p, const _Segment<RawPoint>& s)
{
using Unit = TCoord<RawPoint>;
auto x = pointlike::x(p), y = pointlike::y(p);
auto x1 = pointlike::x(s.first()), y1 = pointlike::y(s.first());
auto x2 = pointlike::x(s.second()), y2 = pointlike::y(s.second());
namespace pl = pointlike;
auto x = Unit(pl::x(p)), y = Unit(pl::y(p));
auto x1 = Unit(pl::x(s.first())), y1 = Unit(pl::y(s.first()));
auto x2 = Unit(pl::x(s.second())), y2 = Unit(pl::y(s.second()));
TCoord<RawPoint> ret;
Unit ret;
if( (x < x1 && x < x2) || (x > x1 && x > x2) )
return {0, false};
@ -276,8 +381,7 @@ inline std::pair<TCoord<RawPoint>, bool> verticalDistance(
ret = std::min( y-y1, y -y2);
else if( (x == x1 && x == x2) && (y < y1 && y < y2))
ret = -std::min(y1 - y, y2 - y);
else if(std::abs(x - x1) <= std::numeric_limits<Unit>::epsilon() &&
std::abs(x - x2) <= std::numeric_limits<Unit>::epsilon())
else if(x == x1 && x == x2)
ret = 0;
else
ret = y - y1 + (y1 - y2)*(x1 - x)/(x1 - x2);
@ -333,9 +437,10 @@ inline Radians _Segment<RawPoint>::angleToXaxis() const
}
template<class RawPoint>
inline double _Segment<RawPoint>::length()
template<class Unit>
inline Unit _Segment<RawPoint>::sqlength() const
{
return pointlike::distance(first(), second());
return pointlike::squaredDistance<RawPoint, Unit>(first(), second());
}
template<class RawPoint>
@ -346,8 +451,8 @@ inline RawPoint _Box<RawPoint>::center() const BP2D_NOEXCEPT {
using Coord = TCoord<RawPoint>;
RawPoint ret = { // No rounding here, we dont know if these are int coords
static_cast<Coord>( (getX(minc) + getX(maxc))/2.0 ),
static_cast<Coord>( (getY(minc) + getY(maxc))/2.0 )
Coord( (getX(minc) + getX(maxc)) / Coord(2) ),
Coord( (getY(minc) + getY(maxc)) / Coord(2) )
};
return ret;
@ -362,9 +467,6 @@ enum class Formats {
// used in friend declarations and can be aliased at class scope.
namespace shapelike {
template<class RawShape>
using Shapes = TMultiShape<RawShape>;
template<class RawShape>
inline RawShape create(const TContour<RawShape>& contour,
const THolesContainer<RawShape>& holes)
@ -449,7 +551,7 @@ inline void reserve(RawPath& p, size_t vertex_capacity, const PathTag&)
template<class RawShape, class...Args>
inline void addVertex(RawShape& sh, const PathTag&, Args...args)
{
return sh.emplace_back(std::forward<Args>(args)...);
sh.emplace_back(std::forward<Args>(args)...);
}
template<class RawShape, class Fn>
@ -504,13 +606,8 @@ inline void unserialize(RawShape& /*sh*/, const std::string& /*str*/)
"shapelike::unserialize() unimplemented!");
}
template<class RawShape>
inline double area(const RawShape& /*sh*/, const PolygonTag&)
{
static_assert(always_false<RawShape>::value,
"shapelike::area() unimplemented!");
return 0;
}
template<class Cntr, class Unit = double>
inline Unit area(const Cntr& poly, const PathTag& );
template<class RawShape>
inline bool intersects(const RawShape& /*sh*/, const RawShape& /*sh*/)
@ -556,14 +653,14 @@ inline bool touches( const TPoint<RawShape>& /*point*/,
template<class RawShape>
inline _Box<TPoint<RawShape>> boundingBox(const RawShape& /*sh*/,
const PolygonTag&)
const PathTag&)
{
static_assert(always_false<RawShape>::value,
"shapelike::boundingBox(shape) unimplemented!");
}
template<class RawShapes>
inline _Box<TPoint<typename RawShapes::value_type>>
inline _Box<TPoint<RawShapes>>
boundingBox(const RawShapes& /*sh*/, const MultiPolygonTag&)
{
static_assert(always_false<RawShapes>::value,
@ -571,21 +668,10 @@ boundingBox(const RawShapes& /*sh*/, const MultiPolygonTag&)
}
template<class RawShape>
inline RawShape convexHull(const RawShape& /*sh*/, const PolygonTag&)
{
static_assert(always_false<RawShape>::value,
"shapelike::convexHull(shape) unimplemented!");
return RawShape();
}
inline RawShape convexHull(const RawShape& sh, const PathTag&);
template<class RawShapes>
inline typename RawShapes::value_type
convexHull(const RawShapes& /*sh*/, const MultiPolygonTag&)
{
static_assert(always_false<RawShapes>::value,
"shapelike::convexHull(shapes) unimplemented!");
return typename RawShapes::value_type();
}
template<class RawShapes, class S = typename RawShapes::value_type>
inline S convexHull(const RawShapes& sh, const MultiPolygonTag&);
template<class RawShape>
inline void rotate(RawShape& /*sh*/, const Radians& /*rads*/)
@ -745,13 +831,19 @@ inline void reserve(T& sh, size_t vertex_capacity) {
template<class RawShape, class...Args>
inline void addVertex(RawShape& sh, const PolygonTag&, Args...args)
{
return addVertex(contour(sh), PathTag(), std::forward<Args>(args)...);
addVertex(contour(sh), PathTag(), std::forward<Args>(args)...);
}
template<class RawShape, class...Args> // Tag dispatcher
inline void addVertex(RawShape& sh, Args...args)
{
return addVertex(sh, Tag<RawShape>(), std::forward<Args>(args)...);
addVertex(sh, Tag<RawShape>(), std::forward<Args>(args)...);
}
template<class RawShape>
inline _Box<TPoint<RawShape>> boundingBox(const RawShape& poly, const PolygonTag&)
{
return boundingBox(contour(poly), PathTag());
}
template<class Box>
@ -786,7 +878,7 @@ inline _Box<TPoint<S>> boundingBox(const S& sh)
template<class Box>
inline double area(const Box& box, const BoxTag& )
{
return box.area();
return box.template area<double>();
}
template<class Circle>
@ -795,6 +887,35 @@ inline double area(const Circle& circ, const CircleTag& )
return circ.area();
}
template<class Cntr, class Unit>
inline Unit area(const Cntr& poly, const PathTag& )
{
namespace sl = shapelike;
if (sl::cend(poly) - sl::cbegin(poly) < 3) return 0.0;
Unit a = 0;
for (auto i = sl::cbegin(poly), j = std::prev(sl::cend(poly));
i < sl::cend(poly); ++i)
{
auto xj = Unit(getX(*j)), yj = Unit(getY(*j));
auto xi = Unit(getX(*i)), yi = Unit(getY(*i));
a += (xj + xi) * (yj - yi);
j = i;
}
a /= 2;
return is_clockwise<Cntr>() ? a : -a;
}
template<class S> inline double area(const S& poly, const PolygonTag& )
{
auto hls = holes(poly);
return std::accumulate(hls.begin(), hls.end(),
area(contour(poly), PathTag()),
[](double a, const TContour<S> &h){
return a + area(h, PathTag());
});
}
template<class RawShape> // Dispatching function
inline double area(const RawShape& sh)
{
@ -811,6 +932,12 @@ inline double area(const RawShapes& shapes, const MultiPolygonTag&)
});
}
template<class RawShape>
inline RawShape convexHull(const RawShape& sh, const PolygonTag&)
{
return create<RawShape>(convexHull(contour(sh), PathTag()));
}
template<class RawShape>
inline auto convexHull(const RawShape& sh)
-> decltype(convexHull(sh, Tag<RawShape>())) // TODO: C++14 could deduce
@ -818,11 +945,91 @@ inline auto convexHull(const RawShape& sh)
return convexHull(sh, Tag<RawShape>());
}
template<class RawShape>
inline RawShape convexHull(const RawShape& sh, const PathTag&)
{
using Unit = TCompute<RawShape>;
using Point = TPoint<RawShape>;
namespace sl = shapelike;
size_t edges = sl::cend(sh) - sl::cbegin(sh);
if(edges <= 3) return {};
bool closed = false;
std::vector<Point> U, L;
U.reserve(1 + edges / 2); L.reserve(1 + edges / 2);
std::vector<Point> pts; pts.reserve(edges);
std::copy(sl::cbegin(sh), sl::cend(sh), std::back_inserter(pts));
auto fpt = pts.front(), lpt = pts.back();
if(getX(fpt) == getX(lpt) && getY(fpt) == getY(lpt)) {
closed = true; pts.pop_back();
}
std::sort(pts.begin(), pts.end(),
[](const Point& v1, const Point& v2)
{
Unit x1 = getX(v1), x2 = getX(v2), y1 = getY(v1), y2 = getY(v2);
return x1 == x2 ? y1 < y2 : x1 < x2;
});
auto dir = [](const Point& p, const Point& q, const Point& r) {
return (Unit(getY(q)) - getY(p)) * (Unit(getX(r)) - getX(p)) -
(Unit(getX(q)) - getX(p)) * (Unit(getY(r)) - getY(p));
};
auto ik = pts.begin();
while(ik != pts.end()) {
while(U.size() > 1 && dir(U[U.size() - 2], U.back(), *ik) <= 0)
U.pop_back();
while(L.size() > 1 && dir(L[L.size() - 2], L.back(), *ik) >= 0)
L.pop_back();
U.emplace_back(*ik);
L.emplace_back(*ik);
++ik;
}
RawShape ret; reserve(ret, U.size() + L.size());
if(is_clockwise<RawShape>()) {
for(auto it = U.begin(); it != std::prev(U.end()); ++it)
addVertex(ret, *it);
for(auto it = L.rbegin(); it != std::prev(L.rend()); ++it)
addVertex(ret, *it);
if(closed) addVertex(ret, *std::prev(L.rend()));
} else {
for(auto it = L.begin(); it != std::prev(L.end()); ++it)
addVertex(ret, *it);
for(auto it = U.rbegin(); it != std::prev(U.rend()); ++it)
addVertex(ret, *it);
if(closed) addVertex(ret, *std::prev(U.rend()));
}
return ret;
}
template<class RawShapes, class S>
inline S convexHull(const RawShapes& sh, const MultiPolygonTag&)
{
namespace sl = shapelike;
S cntr;
for(auto& poly : sh)
for(auto it = sl::cbegin(poly); it != sl::cend(poly); ++it)
addVertex(cntr, *it);
return convexHull(cntr, Tag<S>());
}
template<class TP, class TC>
inline bool isInside(const TP& point, const TC& circ,
const PointTag&, const CircleTag&)
{
return pointlike::distance(point, circ.center()) < circ.radius();
auto r = circ.radius();
return pointlike::squaredDistance(point, circ.center()) < r * r;
}
template<class TP, class TB>
@ -972,6 +1179,9 @@ template<class RawShape> inline bool isConvex(const RawShape& sh) // dispatch
using Segment = _Segment<Point>; \
using Polygons = TMultiShape<T>
namespace sl = shapelike;
namespace pl = pointlike;
}
#endif // GEOMETRY_TRAITS_HPP

View file

@ -1,26 +1,22 @@
#ifndef GEOMETRIES_NOFITPOLYGON_HPP
#define GEOMETRIES_NOFITPOLYGON_HPP
#include "geometry_traits.hpp"
#include <algorithm>
#include <functional>
#include <vector>
#include <iterator>
#include <libnest2d/geometry_traits.hpp>
namespace libnest2d {
namespace __nfp {
// Do not specialize this...
template<class RawShape>
template<class RawShape, class Unit = TCompute<RawShape>>
inline bool _vsort(const TPoint<RawShape>& v1, const TPoint<RawShape>& v2)
{
using Coord = TCoord<TPoint<RawShape>>;
Coord &&x1 = getX(v1), &&x2 = getX(v2), &&y1 = getY(v1), &&y2 = getY(v2);
auto diff = y1 - y2;
if(std::abs(diff) <= std::numeric_limits<Coord>::epsilon())
return x1 < x2;
return diff < 0;
Unit x1 = getX(v1), x2 = getX(v2), y1 = getY(v1), y2 = getY(v2);
return y1 == y2 ? x1 < x2 : y1 < y2;
}
template<class EdgeList, class RawShape, class Vertex = TPoint<RawShape>>
@ -202,7 +198,7 @@ inline TPoint<RawShape> referenceVertex(const RawShape& sh)
* convex as well in this case.
*
*/
template<class RawShape>
template<class RawShape, class Ratio = double>
inline NfpResult<RawShape> nfpConvexOnly(const RawShape& sh,
const RawShape& other)
{
@ -238,12 +234,62 @@ inline NfpResult<RawShape> nfpConvexOnly(const RawShape& sh,
++first; ++next;
}
}
// Sort the edges by angle to X axis.
std::sort(edgelist.begin(), edgelist.end(),
[](const Edge& e1, const Edge& e2)
std::sort(edgelist.begin(), edgelist.end(),
[](const Edge& e1, const Edge& e2)
{
return e1.angleToXaxis() > e2.angleToXaxis();
Vertex ax(1, 0); // Unit vector for the X axis
// get cectors from the edges
Vertex p1 = e1.second() - e1.first();
Vertex p2 = e2.second() - e2.first();
// Quadrant mapping array. The quadrant of a vector can be determined
// from the dot product of the vector and its perpendicular pair
// with the unit vector X axis. The products will carry the values
// lcos = dot(p, ax) = l * cos(phi) and
// lsin = -dotperp(p, ax) = l * sin(phi) where
// l is the length of vector p. From the signs of these values we can
// construct an index which has the sign of lcos as MSB and the
// sign of lsin as LSB. This index can be used to retrieve the actual
// quadrant where vector p resides using the following map:
// (+ is 0, - is 1)
// cos | sin | decimal | quadrant
// + | + | 0 | 0
// + | - | 1 | 3
// - | + | 2 | 1
// - | - | 3 | 2
std::array<int, 4> quadrants {0, 3, 1, 2 };
std::array<int, 2> q {0, 0}; // Quadrant indices for p1 and p2
using TDots = std::array<TCompute<Vertex>, 2>;
TDots lcos { pl::dot(p1, ax), pl::dot(p2, ax) };
TDots lsin { -pl::dotperp(p1, ax), -pl::dotperp(p2, ax) };
// Construct the quadrant indices for p1 and p2
for(size_t i = 0; i < 2; ++i)
if(lcos[i] == 0) q[i] = lsin[i] > 0 ? 1 : 3;
else if(lsin[i] == 0) q[i] = lcos[i] > 0 ? 0 : 2;
else q[i] = quadrants[((lcos[i] < 0) << 1) + (lsin[i] < 0)];
if(q[0] == q[1]) { // only bother if p1 and p2 are in the same quadrant
auto lsq1 = pl::magnsq(p1); // squared magnitudes, avoid sqrt
auto lsq2 = pl::magnsq(p2); // squared magnitudes, avoid sqrt
// We will actually compare l^2 * cos^2(phi) which saturates the
// cos function. But with the quadrant info we can get the sign back
int sign = q[0] == 1 || q[0] == 2 ? -1 : 1;
// If Ratio is an actual rational type, there is no precision loss
auto pcos1 = Ratio(lcos[0]) / lsq1 * sign * lcos[0];
auto pcos2 = Ratio(lcos[1]) / lsq2 * sign * lcos[1];
return q[0] < 2 ? pcos1 < pcos2 : pcos1 > pcos2;
}
// If in different quadrants, compare the quadrant indices only.
return q[0] > q[1];
});
__nfp::buildPolygon(edgelist, rsh, top_nfp);
@ -253,456 +299,9 @@ inline NfpResult<RawShape> nfpConvexOnly(const RawShape& sh,
template<class RawShape>
NfpResult<RawShape> nfpSimpleSimple(const RawShape& cstationary,
const RawShape& cother)
const RawShape& cother)
{
// Algorithms are from the original algorithm proposed in paper:
// https://eprints.soton.ac.uk/36850/1/CORMSIS-05-05.pdf
// /////////////////////////////////////////////////////////////////////////
// Algorithm 1: Obtaining the minkowski sum
// /////////////////////////////////////////////////////////////////////////
// I guess this is not a full minkowski sum of the two input polygons by
// definition. This yields a subset that is compatible with the next 2
// algorithms.
using Result = NfpResult<RawShape>;
using Vertex = TPoint<RawShape>;
using Coord = TCoord<Vertex>;
using Edge = _Segment<Vertex>;
namespace sl = shapelike;
using std::signbit;
using std::sort;
using std::vector;
using std::ref;
using std::reference_wrapper;
// TODO The original algorithms expects the stationary polygon in
// counter clockwise and the orbiter in clockwise order.
// So for preventing any further complication, I will make the input
// the way it should be, than make my way around the orientations.
// Reverse the stationary contour to counter clockwise
auto stcont = sl::contour(cstationary);
{
std::reverse(sl::begin(stcont), sl::end(stcont));
stcont.pop_back();
auto it = std::min_element(sl::begin(stcont), sl::end(stcont),
[](const Vertex& v1, const Vertex& v2) {
return getY(v1) < getY(v2);
});
std::rotate(sl::begin(stcont), it, sl::end(stcont));
sl::addVertex(stcont, sl::front(stcont));
}
RawShape stationary;
sl::contour(stationary) = stcont;
// Reverse the orbiter contour to counter clockwise
auto orbcont = sl::contour(cother);
{
std::reverse(orbcont.begin(), orbcont.end());
// Step 1: Make the orbiter reverse oriented
orbcont.pop_back();
auto it = std::min_element(orbcont.begin(), orbcont.end(),
[](const Vertex& v1, const Vertex& v2) {
return getY(v1) < getY(v2);
});
std::rotate(orbcont.begin(), it, orbcont.end());
orbcont.emplace_back(orbcont.front());
for(auto &v : orbcont) v = -v;
}
// Copy the orbiter (contour only), we will have to work on it
RawShape orbiter;
sl::contour(orbiter) = orbcont;
// An edge with additional data for marking it
struct MarkedEdge {
Edge e; Radians turn_angle = 0; bool is_turning_point = false;
MarkedEdge() = default;
MarkedEdge(const Edge& ed, Radians ta, bool tp):
e(ed), turn_angle(ta), is_turning_point(tp) {}
// debug
std::string label;
};
// Container for marked edges
using EdgeList = vector<MarkedEdge>;
EdgeList A, B;
// This is how an edge list is created from the polygons
auto fillEdgeList = [](EdgeList& L, const RawShape& ppoly, int dir) {
auto& poly = sl::contour(ppoly);
L.reserve(sl::contourVertexCount(poly));
if(dir > 0) {
auto it = poly.begin();
auto nextit = std::next(it);
double turn_angle = 0;
bool is_turn_point = false;
while(nextit != poly.end()) {
L.emplace_back(Edge(*it, *nextit), turn_angle, is_turn_point);
it++; nextit++;
}
} else {
auto it = sl::rbegin(poly);
auto nextit = std::next(it);
double turn_angle = 0;
bool is_turn_point = false;
while(nextit != sl::rend(poly)) {
L.emplace_back(Edge(*it, *nextit), turn_angle, is_turn_point);
it++; nextit++;
}
}
auto getTurnAngle = [](const Edge& e1, const Edge& e2) {
auto phi = e1.angleToXaxis();
auto phi_prev = e2.angleToXaxis();
auto turn_angle = phi-phi_prev;
if(turn_angle > Pi) turn_angle -= TwoPi;
if(turn_angle < -Pi) turn_angle += TwoPi;
return turn_angle;
};
auto eit = L.begin();
auto enext = std::next(eit);
eit->turn_angle = getTurnAngle(L.front().e, L.back().e);
while(enext != L.end()) {
enext->turn_angle = getTurnAngle( enext->e, eit->e);
eit->is_turning_point =
signbit(enext->turn_angle) != signbit(eit->turn_angle);
++eit; ++enext;
}
L.back().is_turning_point = signbit(L.back().turn_angle) !=
signbit(L.front().turn_angle);
};
// Step 2: Fill the edgelists
fillEdgeList(A, stationary, 1);
fillEdgeList(B, orbiter, 1);
int i = 1;
for(MarkedEdge& me : A) {
std::cout << "a" << i << ":\n\t"
<< getX(me.e.first()) << " " << getY(me.e.first()) << "\n\t"
<< getX(me.e.second()) << " " << getY(me.e.second()) << "\n\t"
<< "Turning point: " << (me.is_turning_point ? "yes" : "no")
<< std::endl;
me.label = "a"; me.label += std::to_string(i);
i++;
}
i = 1;
for(MarkedEdge& me : B) {
std::cout << "b" << i << ":\n\t"
<< getX(me.e.first()) << " " << getY(me.e.first()) << "\n\t"
<< getX(me.e.second()) << " " << getY(me.e.second()) << "\n\t"
<< "Turning point: " << (me.is_turning_point ? "yes" : "no")
<< std::endl;
me.label = "b"; me.label += std::to_string(i);
i++;
}
// A reference to a marked edge that also knows its container
struct MarkedEdgeRef {
reference_wrapper<MarkedEdge> eref;
reference_wrapper<vector<MarkedEdgeRef>> container;
Coord dir = 1; // Direction modifier
inline Radians angleX() const { return eref.get().e.angleToXaxis(); }
inline const Edge& edge() const { return eref.get().e; }
inline Edge& edge() { return eref.get().e; }
inline bool isTurningPoint() const {
return eref.get().is_turning_point;
}
inline bool isFrom(const vector<MarkedEdgeRef>& cont ) {
return &(container.get()) == &cont;
}
inline bool eq(const MarkedEdgeRef& mr) {
return &(eref.get()) == &(mr.eref.get());
}
MarkedEdgeRef(reference_wrapper<MarkedEdge> er,
reference_wrapper<vector<MarkedEdgeRef>> ec):
eref(er), container(ec), dir(1) {}
MarkedEdgeRef(reference_wrapper<MarkedEdge> er,
reference_wrapper<vector<MarkedEdgeRef>> ec,
Coord d):
eref(er), container(ec), dir(d) {}
};
using EdgeRefList = vector<MarkedEdgeRef>;
// Comparing two marked edges
auto sortfn = [](const MarkedEdgeRef& e1, const MarkedEdgeRef& e2) {
return e1.angleX() < e2.angleX();
};
EdgeRefList Aref, Bref; // We create containers for the references
Aref.reserve(A.size()); Bref.reserve(B.size());
// Fill reference container for the stationary polygon
std::for_each(A.begin(), A.end(), [&Aref](MarkedEdge& me) {
Aref.emplace_back( ref(me), ref(Aref) );
});
// Fill reference container for the orbiting polygon
std::for_each(B.begin(), B.end(), [&Bref](MarkedEdge& me) {
Bref.emplace_back( ref(me), ref(Bref) );
});
auto mink = [sortfn] // the Mink(Q, R, direction) sub-procedure
(const EdgeRefList& Q, const EdgeRefList& R, bool positive)
{
// Step 1 "merge sort_list(Q) and sort_list(R) to form merge_list(Q,R)"
// Sort the containers of edge references and merge them.
// Q could be sorted only once and be reused here but we would still
// need to merge it with sorted(R).
EdgeRefList merged;
EdgeRefList S, seq;
merged.reserve(Q.size() + R.size());
merged.insert(merged.end(), R.begin(), R.end());
std::stable_sort(merged.begin(), merged.end(), sortfn);
merged.insert(merged.end(), Q.begin(), Q.end());
std::stable_sort(merged.begin(), merged.end(), sortfn);
// Step 2 "set i = 1, k = 1, direction = 1, s1 = q1"
// we don't use i, instead, q is an iterator into Q. k would be an index
// into the merged sequence but we use "it" as an iterator for that
// here we obtain references for the containers for later comparisons
const auto& Rcont = R.begin()->container.get();
const auto& Qcont = Q.begin()->container.get();
// Set the initial direction
Coord dir = 1;
// roughly i = 1 (so q = Q.begin()) and s1 = q1 so S[0] = q;
if(positive) {
auto q = Q.begin();
S.emplace_back(*q);
// Roughly step 3
std::cout << "merged size: " << merged.size() << std::endl;
auto mit = merged.begin();
for(bool finish = false; !finish && q != Q.end();) {
++q; // "Set i = i + 1"
while(!finish && mit != merged.end()) {
if(mit->isFrom(Rcont)) {
auto s = *mit;
s.dir = dir;
S.emplace_back(s);
}
if(mit->eq(*q)) {
S.emplace_back(*q);
if(mit->isTurningPoint()) dir = -dir;
if(q == Q.begin()) finish = true;
break;
}
mit += dir;
// __nfp::advance(mit, merged, dir > 0);
}
}
} else {
auto q = Q.rbegin();
S.emplace_back(*q);
// Roughly step 3
std::cout << "merged size: " << merged.size() << std::endl;
auto mit = merged.begin();
for(bool finish = false; !finish && q != Q.rend();) {
++q; // "Set i = i + 1"
while(!finish && mit != merged.end()) {
if(mit->isFrom(Rcont)) {
auto s = *mit;
s.dir = dir;
S.emplace_back(s);
}
if(mit->eq(*q)) {
S.emplace_back(*q);
S.back().dir = -1;
if(mit->isTurningPoint()) dir = -dir;
if(q == Q.rbegin()) finish = true;
break;
}
mit += dir;
// __nfp::advance(mit, merged, dir > 0);
}
}
}
// Step 4:
// "Let starting edge r1 be in position si in sequence"
// whaaat? I guess this means the following:
auto it = S.begin();
while(!it->eq(*R.begin())) ++it;
// "Set j = 1, next = 2, direction = 1, seq1 = si"
// we don't use j, seq is expanded dynamically.
dir = 1;
auto next = std::next(R.begin()); seq.emplace_back(*it);
// Step 5:
// "If all si edges have been allocated to seqj" should mean that
// we loop until seq has equal size with S
auto send = it; //it == S.begin() ? it : std::prev(it);
while(it != S.end()) {
++it; if(it == S.end()) it = S.begin();
if(it == send) break;
if(it->isFrom(Qcont)) {
seq.emplace_back(*it); // "If si is from Q, j = j + 1, seqj = si"
// "If si is a turning point in Q,
// direction = - direction, next = next + direction"
if(it->isTurningPoint()) {
dir = -dir;
next += dir;
// __nfp::advance(next, R, dir > 0);
}
}
if(it->eq(*next) /*&& dir == next->dir*/) { // "If si = direction.rnext"
// "j = j + 1, seqj = si, next = next + direction"
seq.emplace_back(*it);
next += dir;
// __nfp::advance(next, R, dir > 0);
}
}
return seq;
};
std::vector<EdgeRefList> seqlist;
seqlist.reserve(Bref.size());
EdgeRefList Bslope = Bref; // copy Bref, we will make a slope diagram
// make the slope diagram of B
std::sort(Bslope.begin(), Bslope.end(), sortfn);
auto slopeit = Bslope.begin(); // search for the first turning point
while(!slopeit->isTurningPoint() && slopeit != Bslope.end()) slopeit++;
if(slopeit == Bslope.end()) {
// no turning point means convex polygon.
seqlist.emplace_back(mink(Aref, Bref, true));
} else {
int dir = 1;
auto firstturn = Bref.begin();
while(!firstturn->eq(*slopeit)) ++firstturn;
assert(firstturn != Bref.end());
EdgeRefList bgroup; bgroup.reserve(Bref.size());
bgroup.emplace_back(*slopeit);
auto b_it = std::next(firstturn);
while(b_it != firstturn) {
if(b_it == Bref.end()) b_it = Bref.begin();
while(!slopeit->eq(*b_it)) {
__nfp::advance(slopeit, Bslope, dir > 0);
}
if(!slopeit->isTurningPoint()) {
bgroup.emplace_back(*slopeit);
} else {
if(!bgroup.empty()) {
if(dir > 0) bgroup.emplace_back(*slopeit);
for(auto& me : bgroup) {
std::cout << me.eref.get().label << ", ";
}
std::cout << std::endl;
seqlist.emplace_back(mink(Aref, bgroup, dir == 1 ? true : false));
bgroup.clear();
if(dir < 0) bgroup.emplace_back(*slopeit);
} else {
bgroup.emplace_back(*slopeit);
}
dir *= -1;
}
++b_it;
}
}
// while(it != Bref.end()) // This is step 3 and step 4 in one loop
// if(it->isTurningPoint()) {
// R = {R.last, it++};
// auto seq = mink(Q, R, orientation);
// // TODO step 6 (should be 5 shouldn't it?): linking edges from A
// // I don't get this step
// seqlist.insert(seqlist.end(), seq.begin(), seq.end());
// orientation = !orientation;
// } else ++it;
// if(seqlist.empty()) seqlist = mink(Q, {Bref.begin(), Bref.end()}, true);
// /////////////////////////////////////////////////////////////////////////
// Algorithm 2: breaking Minkowski sums into track line trips
// /////////////////////////////////////////////////////////////////////////
// /////////////////////////////////////////////////////////////////////////
// Algorithm 3: finding the boundary of the NFP from track line trips
// /////////////////////////////////////////////////////////////////////////
for(auto& seq : seqlist) {
std::cout << "seqlist size: " << seq.size() << std::endl;
for(auto& s : seq) {
std::cout << (s.dir > 0 ? "" : "-") << s.eref.get().label << ", ";
}
std::cout << std::endl;
}
auto& seq = seqlist.front();
RawShape rsh;
Vertex top_nfp;
std::vector<Edge> edgelist; edgelist.reserve(seq.size());
for(auto& s : seq) {
edgelist.emplace_back(s.eref.get().e);
}
__nfp::buildPolygon(edgelist, rsh, top_nfp);
return Result(rsh, top_nfp);
return {};
}
// Specializable NFP implementation class. Specialize it if you have a faster

View file

@ -8,13 +8,10 @@
#include <algorithm>
#include <functional>
#include "geometry_traits.hpp"
#include <libnest2d/geometry_traits.hpp>
namespace libnest2d {
namespace sl = shapelike;
namespace pl = pointlike;
/**
* \brief An item to be placed on a bin.
*
@ -422,13 +419,9 @@ private:
static inline bool vsort(const Vertex& v1, const Vertex& v2)
{
Coord &&x1 = getX(v1), &&x2 = getX(v2);
Coord &&y1 = getY(v1), &&y2 = getY(v2);
auto diff = y1 - y2;
if(std::abs(diff) <= std::numeric_limits<Coord>::epsilon())
return x1 < x2;
return diff < 0;
TCompute<Vertex> x1 = getX(v1), x2 = getX(v2);
TCompute<Vertex> y1 = getY(v1), y2 = getY(v2);
return y1 == y2 ? x1 < x2 : y1 < y2;
}
};

View file

@ -4,7 +4,8 @@
#include <tuple>
#include <functional>
#include <limits>
#include "common.hpp"
#include <libnest2d/common.hpp>
namespace libnest2d { namespace opt {
@ -60,6 +61,7 @@ enum class Method {
L_SIMPLEX,
L_SUBPLEX,
G_GENETIC,
G_PARTICLE_SWARM
//...
};

View file

@ -48,7 +48,7 @@ else()
target_link_libraries(nloptOptimizer INTERFACE Nlopt::Nlopt)
endif()
#target_sources( NloptOptimizer INTERFACE
#target_sources( nloptOptimizer INTERFACE
#${CMAKE_CURRENT_SOURCE_DIR}/simplex.hpp
#${CMAKE_CURRENT_SOURCE_DIR}/subplex.hpp
#${CMAKE_CURRENT_SOURCE_DIR}/genetic.hpp
@ -57,5 +57,5 @@ endif()
target_compile_definitions(nloptOptimizer INTERFACE LIBNEST2D_OPTIMIZER_NLOPT)
# And finally plug the NloptOptimizer into libnest2d
#target_link_libraries(libnest2d INTERFACE NloptOptimizer)
# And finally plug the nloptOptimizer into libnest2d
#target_link_libraries(libnest2d INTERFACE nloptOptimizer)

View file

@ -1,5 +0,0 @@
find_package(Armadillo REQUIRED)
add_library(OptimlibOptimizer INTERFACE)
target_include_directories(OptimlibOptimizer INTERFACE ${ARMADILLO_INCLUDE_DIRS})
target_link_libraries(OptimlibOptimizer INTERFACE ${ARMADILLO_LIBRARIES})

View file

@ -7,15 +7,15 @@
namespace libnest2d { namespace placers {
template<class T, class = T> struct Epsilon {};
template<class T, class = T> struct DefaultEpsilon {};
template<class T>
struct Epsilon<T, enable_if_t<std::is_integral<T>::value, T> > {
struct DefaultEpsilon<T, enable_if_t<std::is_integral<T>::value, T> > {
static const T Value = 1;
};
template<class T>
struct Epsilon<T, enable_if_t<std::is_floating_point<T>::value, T> > {
struct DefaultEpsilon<T, enable_if_t<std::is_floating_point<T>::value, T> > {
static const T Value = 1e-3;
};
@ -24,7 +24,7 @@ struct BLConfig {
DECLARE_MAIN_TYPES(RawShape);
Coord min_obj_distance = 0;
Coord epsilon = Epsilon<Coord>::Value;
Coord epsilon = DefaultEpsilon<Coord>::Value;
bool allow_rotations = false;
};

View file

@ -103,14 +103,14 @@ Key hash(const _Item<S>& item) {
while(deg > N) { ms++; deg -= N; }
ls += int(deg);
ret.push_back(char(ms)); ret.push_back(char(ls));
circ += seg.length();
circ += std::sqrt(seg.template sqlength<double>());
}
it = ctr.begin(); nx = std::next(it);
while(nx != ctr.end()) {
Segment seg(*it++, *nx++);
auto l = int(M * seg.length() / circ);
auto l = int(M * std::sqrt(seg.template sqlength<double>()) / circ);
int ms = 'A', ls = 'A';
while(l > N) { ms++; l -= N; }
ls += l;
@ -249,6 +249,11 @@ template<class RawShape> class EdgeCache {
std::vector<ContourCache> holes_;
double accuracy_ = 1.0;
static double length(const Edge &e)
{
return std::sqrt(e.template sqlength<double>());
}
void createCache(const RawShape& sh) {
{ // For the contour
@ -260,7 +265,7 @@ template<class RawShape> class EdgeCache {
while(next != endit) {
contour_.emap.emplace_back(*(first++), *(next++));
contour_.full_distance += contour_.emap.back().length();
contour_.full_distance += length(contour_.emap.back());
contour_.distances.emplace_back(contour_.full_distance);
}
}
@ -275,7 +280,7 @@ template<class RawShape> class EdgeCache {
while(next != endit) {
hc.emap.emplace_back(*(first++), *(next++));
hc.full_distance += hc.emap.back().length();
hc.full_distance += length(hc.emap.back());
hc.distances.emplace_back(hc.full_distance);
}

View file

@ -311,19 +311,19 @@ struct range_value<bp2d::Shapes> {
namespace libnest2d { // Now the algorithms that boost can provide...
namespace pointlike {
template<>
inline double distance(const PointImpl& p1, const PointImpl& p2 )
{
return boost::geometry::distance(p1, p2);
}
//namespace pointlike {
//template<>
//inline double distance(const PointImpl& p1, const PointImpl& p2 )
//{
// return boost::geometry::distance(p1, p2);
//}
template<>
inline double distance(const PointImpl& p, const bp2d::Segment& seg )
{
return boost::geometry::distance(p, seg);
}
}
//template<>
//inline double distance(const PointImpl& p, const bp2d::Segment& seg )
//{
// return boost::geometry::distance(p, seg);
//}
//}
namespace shapelike {
// Tell libnest2d how to make string out of a ClipperPolygon object
@ -382,16 +382,9 @@ inline bool touches( const PointImpl& point, const PolygonImpl& shape)
}
#ifndef DISABLE_BOOST_BOUNDING_BOX
template<>
inline bp2d::Box boundingBox(const PolygonImpl& sh, const PolygonTag&)
{
bp2d::Box b;
boost::geometry::envelope(sh, b);
return b;
}
template<>
inline bp2d::Box boundingBox(const PathImpl& sh, const PolygonTag&)
inline bp2d::Box boundingBox(const PathImpl& sh, const PathTag&)
{
bp2d::Box b;
boost::geometry::envelope(sh, b);
@ -410,9 +403,9 @@ inline bp2d::Box boundingBox<bp2d::Shapes>(const bp2d::Shapes& shapes,
#ifndef DISABLE_BOOST_CONVEX_HULL
template<>
inline PolygonImpl convexHull(const PolygonImpl& sh, const PolygonTag&)
inline PathImpl convexHull(const PathImpl& sh, const PathTag&)
{
PolygonImpl ret;
PathImpl ret;
boost::geometry::convex_hull(sh, ret);
return ret;
}

View file

@ -0,0 +1,268 @@
#ifndef ROTCALIPERS_HPP
#define ROTCALIPERS_HPP
#include <numeric>
#include <functional>
#include <array>
#include <cmath>
#include <libnest2d/geometry_traits.hpp>
namespace libnest2d {
template<class Pt, class Unit = TCompute<Pt>> class RotatedBox {
Pt axis_;
Unit bottom_ = Unit(0), right_ = Unit(0);
public:
RotatedBox() = default;
RotatedBox(const Pt& axis, Unit b, Unit r):
axis_(axis), bottom_(b), right_(r) {}
inline long double area() const {
long double asq = pl::magnsq<Pt, long double>(axis_);
return cast<long double>(bottom_) * cast<long double>(right_) / asq;
}
inline long double width() const {
return abs(bottom_) / std::sqrt(pl::magnsq<Pt, long double>(axis_));
}
inline long double height() const {
return abs(right_) / std::sqrt(pl::magnsq<Pt, long double>(axis_));
}
inline Unit bottom_extent() const { return bottom_; }
inline Unit right_extent() const { return right_; }
inline const Pt& axis() const { return axis_; }
inline Radians angleToX() const {
double ret = std::atan2(getY(axis_), getX(axis_));
auto s = std::signbit(ret);
if(s) ret += Pi_2;
return -ret;
}
};
template <class Poly, class Pt = TPoint<Poly>, class Unit = TCompute<Pt>>
Poly removeCollinearPoints(const Poly& sh, Unit eps = Unit(0))
{
Poly ret; sl::reserve(ret, sl::contourVertexCount(sh));
Pt eprev = *sl::cbegin(sh) - *std::prev(sl::cend(sh));
auto it = sl::cbegin(sh);
auto itx = std::next(it);
if(itx != sl::cend(sh)) while (it != sl::cend(sh))
{
Pt enext = *itx - *it;
auto dp = pl::dotperp<Pt, Unit>(eprev, enext);
if(abs(dp) > eps) sl::addVertex(ret, *it);
eprev = enext;
if (++itx == sl::cend(sh)) itx = sl::cbegin(sh);
++it;
}
return ret;
}
// The area of the bounding rectangle with the axis dir and support vertices
template<class Pt, class Unit = TCompute<Pt>, class R = TCompute<Pt>>
inline R rectarea(const Pt& w, // the axis
const Pt& vb, const Pt& vr,
const Pt& vt, const Pt& vl)
{
Unit a = pl::dot<Pt, Unit>(w, vr - vl);
Unit b = pl::dot<Pt, Unit>(-pl::perp(w), vt - vb);
R m = R(a) / pl::magnsq<Pt, Unit>(w);
m = m * b;
return m;
};
template<class Pt,
class Unit = TCompute<Pt>,
class R = TCompute<Pt>,
class It = typename std::vector<Pt>::const_iterator>
inline R rectarea(const Pt& w, const std::array<It, 4>& rect)
{
return rectarea<Pt, Unit, R>(w, *rect[0], *rect[1], *rect[2], *rect[3]);
}
// This function is only applicable to counter-clockwise oriented convex
// polygons where only two points can be collinear witch each other.
template <class RawShape,
class Unit = TCompute<RawShape>,
class Ratio = TCompute<RawShape>>
RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh)
{
using Point = TPoint<RawShape>;
using Iterator = typename TContour<RawShape>::const_iterator;
using pointlike::dot; using pointlike::magnsq; using pointlike::perp;
// Get the first and the last vertex iterator
auto first = sl::cbegin(sh);
auto last = std::prev(sl::cend(sh));
// Check conditions and return undefined box if input is not sane.
if(last == first) return {};
if(getX(*first) == getX(*last) && getY(*first) == getY(*last)) --last;
if(last - first < 2) return {};
RawShape shcpy; // empty at this point
{
Point p = *first, q = *std::next(first), r = *last;
// Determine orientation from first 3 vertex (should be consistent)
Unit d = (Unit(getY(q)) - getY(p)) * (Unit(getX(r)) - getX(p)) -
(Unit(getX(q)) - getX(p)) * (Unit(getY(r)) - getY(p));
if(d > 0) {
// The polygon is clockwise. A flip is needed (for now)
sl::reserve(shcpy, last - first);
auto it = last; while(it != first) sl::addVertex(shcpy, *it--);
sl::addVertex(shcpy, *first);
first = sl::cbegin(shcpy); last = std::prev(sl::cend(shcpy));
}
}
// Cyclic iterator increment
auto inc = [&first, &last](Iterator& it) {
if(it == last) it = first; else ++it;
};
// Cyclic previous iterator
auto prev = [&first, &last](Iterator it) {
return it == first ? last : std::prev(it);
};
// Cyclic next iterator
auto next = [&first, &last](Iterator it) {
return it == last ? first : std::next(it);
};
// Establish initial (axis aligned) rectangle support verices by determining
// polygon extremes:
auto it = first;
Iterator minX = it, maxX = it, minY = it, maxY = it;
do { // Linear walk through the vertices and save the extreme positions
Point v = *it, d = v - *minX;
if(getX(d) < 0 || (getX(d) == 0 && getY(d) < 0)) minX = it;
d = v - *maxX;
if(getX(d) > 0 || (getX(d) == 0 && getY(d) > 0)) maxX = it;
d = v - *minY;
if(getY(d) < 0 || (getY(d) == 0 && getX(d) > 0)) minY = it;
d = v - *maxY;
if(getY(d) > 0 || (getY(d) == 0 && getX(d) < 0)) maxY = it;
} while(++it != std::next(last));
// Update the vertices defining the bounding rectangle. The rectangle with
// the smallest rotation is selected and the supporting vertices are
// returned in the 'rect' argument.
auto update = [&next, &inc]
(const Point& w, std::array<Iterator, 4>& rect)
{
Iterator B = rect[0], Bn = next(B);
Iterator R = rect[1], Rn = next(R);
Iterator T = rect[2], Tn = next(T);
Iterator L = rect[3], Ln = next(L);
Point b = *Bn - *B, r = *Rn - *R, t = *Tn - *T, l = *Ln - *L;
Point pw = perp(w);
using Pt = Point;
Unit dotwpb = dot<Pt, Unit>( w, b), dotwpr = dot<Pt, Unit>(-pw, r);
Unit dotwpt = dot<Pt, Unit>(-w, t), dotwpl = dot<Pt, Unit>( pw, l);
Unit dw = magnsq<Pt, Unit>(w);
std::array<Ratio, 4> angles;
angles[0] = (Ratio(dotwpb) / magnsq<Pt, Unit>(b)) * dotwpb;
angles[1] = (Ratio(dotwpr) / magnsq<Pt, Unit>(r)) * dotwpr;
angles[2] = (Ratio(dotwpt) / magnsq<Pt, Unit>(t)) * dotwpt;
angles[3] = (Ratio(dotwpl) / magnsq<Pt, Unit>(l)) * dotwpl;
using AngleIndex = std::pair<Ratio, size_t>;
std::vector<AngleIndex> A; A.reserve(4);
for (size_t i = 3, j = 0; j < 4; i = j++) {
if(rect[i] != rect[j] && angles[i] < dw) {
auto iv = std::make_pair(angles[i], i);
auto it = std::lower_bound(A.begin(), A.end(), iv,
[](const AngleIndex& ai,
const AngleIndex& aj)
{
return ai.first > aj.first;
});
A.insert(it, iv);
}
}
// The polygon is supposed to be a rectangle.
if(A.empty()) return false;
auto amin = A.front().first;
auto imin = A.front().second;
for(auto& a : A) if(a.first == amin) inc(rect[a.second]);
std::rotate(rect.begin(), rect.begin() + imin, rect.end());
return true;
};
Point w(1, 0);
Point w_min = w;
Ratio minarea((Unit(getX(*maxX)) - getX(*minX)) *
(Unit(getY(*maxY)) - getY(*minY)));
std::array<Iterator, 4> rect = {minY, maxX, maxY, minX};
std::array<Iterator, 4> minrect = rect;
// An edge might be examined twice in which case the algorithm terminates.
size_t c = 0, count = last - first + 1;
std::vector<bool> edgemask(count, false);
while(c++ < count)
{
// Update the support vertices, if cannot be updated, break the cycle.
if(! update(w, rect)) break;
size_t eidx = size_t(rect[0] - first);
if(edgemask[eidx]) break;
edgemask[eidx] = true;
// get the unnormalized direction vector
w = *rect[0] - *prev(rect[0]);
// get the area of the rotated rectangle
Ratio rarea = rectarea<Point, Unit, Ratio>(w, rect);
// Update min area and the direction of the min bounding box;
if(rarea <= minarea) { w_min = w; minarea = rarea; minrect = rect; }
}
Unit a = dot<Point, Unit>(w_min, *minrect[1] - *minrect[3]);
Unit b = dot<Point, Unit>(-perp(w_min), *minrect[2] - *minrect[0]);
RotatedBox<Point, Unit> bb(w_min, a, b);
return bb;
}
template <class RawShape> Radians minAreaBoundingBoxRotation(const RawShape& sh)
{
return minAreaBoundingBox(sh).angleToX();
}
}
#endif // ROTCALIPERS_HPP

View file

@ -0,0 +1,23 @@
#include <libnest2d.h>
namespace libnest2d {
template class Nester<NfpPlacer, FirstFitSelection>;
template class Nester<BottomLeftPlacer, FirstFitSelection>;
template PackGroup nest(std::vector<Item>::iterator from,
std::vector<Item>::iterator to,
const Box& bin,
Coord dist = 0,
const NfpPlacer::Config& pconf,
const FirstFitSelection::Config& sconf);
template PackGroup nest(std::vector<Item>::iterator from,
std::vector<Item>::iterator to,
const Box& bin,
ProgressFunction prg,
StopCondition scond,
Coord dist = 0,
const NfpPlacer::Config& pconf,
const FirstFitSelection::Config& sconf);
}

View file

@ -49,7 +49,12 @@ add_executable(tests_clipper_nlopt
target_link_libraries(tests_clipper_nlopt libnest2d ${GTEST_LIBS_TO_LINK} )
target_include_directories(tests_clipper_nlopt PRIVATE BEFORE
${GTEST_INCLUDE_DIRS})
target_include_directories(tests_clipper_nlopt PRIVATE BEFORE ${GTEST_INCLUDE_DIRS})
if(NOT LIBNEST2D_HEADER_ONLY)
target_link_libraries(tests_clipper_nlopt ${LIBNAME})
else()
target_link_libraries(tests_clipper_nlopt libnest2d)
endif()
add_test(libnest2d_tests tests_clipper_nlopt)

View file

@ -3,11 +3,43 @@
#include <libnest2d.h>
#include "printer_parts.h"
#include <libnest2d/geometry_traits_nfp.hpp>
//#include <libnest2d/geometry_traits_nfp.hpp>
#include "../tools/svgtools.hpp"
#include <libnest2d/utils/rotcalipers.hpp>
#include "boost/multiprecision/integer.hpp"
#include "boost/rational.hpp"
//#include "../tools/Int128.hpp"
//#include "gte/Mathematics/GteMinimumAreaBox2.h"
//#include "../tools/libnfpglue.hpp"
//#include "../tools/nfp_svgnest_glue.hpp"
namespace libnest2d {
#if !defined(_MSC_VER) && defined(__SIZEOF_INT128__) && !defined(__APPLE__)
using LargeInt = __int128;
#else
using LargeInt = boost::multiprecision::int128_t;
template<> struct _NumTag<LargeInt> { using Type = ScalarTag; };
#endif
template<class T> struct _NumTag<boost::rational<T>> { using Type = RationalTag; };
namespace nfp {
template<class S>
struct NfpImpl<S, NfpLevel::CONVEX_ONLY>
{
NfpResult<S> operator()(const S &sh, const S &other)
{
return nfpConvexOnly<S, boost::rational<LargeInt>>(sh, other);
}
};
}
}
std::vector<libnest2d::Item>& prusaParts() {
static std::vector<libnest2d::Item> ret;
@ -31,8 +63,8 @@ TEST(BasicFunctionality, Angles)
ASSERT_DOUBLE_EQ(rad, Pi);
ASSERT_DOUBLE_EQ(deg, 180);
ASSERT_DOUBLE_EQ(deg2, 180);
ASSERT_DOUBLE_EQ(rad, (Radians) deg);
ASSERT_DOUBLE_EQ( (Degrees) rad, deg);
ASSERT_DOUBLE_EQ(rad, Radians(deg));
ASSERT_DOUBLE_EQ( Degrees(rad), deg);
ASSERT_TRUE(rad == deg);
@ -151,12 +183,12 @@ TEST(GeometryAlgorithms, Distance) {
Segment seg(p1, p3);
ASSERT_DOUBLE_EQ(pointlike::distance(p2, seg), 7.0710678118654755);
// ASSERT_DOUBLE_EQ(pointlike::distance(p2, seg), 7.0710678118654755);
auto result = pointlike::horizontalDistance(p2, seg);
auto check = [](Coord val, Coord expected) {
if(std::is_floating_point<Coord>::value)
auto check = [](TCompute<Coord> val, TCompute<Coord> expected) {
if(std::is_floating_point<TCompute<Coord>>::value)
ASSERT_DOUBLE_EQ(static_cast<double>(val),
static_cast<double>(expected));
else
@ -415,7 +447,7 @@ TEST(GeometryAlgorithms, ArrangeRectanglesLoose)
namespace {
using namespace libnest2d;
template<unsigned long SCALE = 1, class Bin>
template<long long SCALE = 1, class Bin>
void exportSVG(std::vector<std::reference_wrapper<Item>>& result, const Bin& bin, int idx = 0) {
@ -500,6 +532,41 @@ TEST(GeometryAlgorithms, BottomLeftStressTest) {
}
}
TEST(GeometryAlgorithms, convexHull) {
using namespace libnest2d;
ClipperLib::Path poly = PRINTER_PART_POLYGONS[0];
auto chull = sl::convexHull(poly);
ASSERT_EQ(chull.size(), poly.size());
}
TEST(GeometryAlgorithms, NestTest) {
std::vector<Item> input = prusaParts();
PackGroup result = libnest2d::nest(input,
Box(250000000, 210000000),
[](unsigned cnt) {
std::cout
<< "parts left: " << cnt
<< std::endl;
});
ASSERT_LE(result.size(), 2);
int partsum = std::accumulate(result.begin(),
result.end(),
0,
[](int s,
const decltype(result)::value_type &bin) {
return s += bin.size();
});
ASSERT_EQ(input.size(), partsum);
}
namespace {
struct ItemPair {
@ -713,7 +780,7 @@ void testNfp(const std::vector<ItemPair>& testdata) {
auto& exportfun = exportSVG<SCALE, Box>;
auto onetest = [&](Item& orbiter, Item& stationary, unsigned testidx){
auto onetest = [&](Item& orbiter, Item& stationary, unsigned /*testidx*/){
testcase++;
orbiter.translate({210*SCALE, 0});
@ -820,7 +887,7 @@ TEST(GeometryAlgorithms, mergePileWithPolygon) {
rect2.translate({10, 0});
rect3.translate({25, 0});
shapelike::Shapes<PolygonImpl> pile;
TMultiShape<PolygonImpl> pile;
pile.push_back(rect1.transformedShape());
pile.push_back(rect2.transformedShape());
@ -833,6 +900,126 @@ TEST(GeometryAlgorithms, mergePileWithPolygon) {
ASSERT_EQ(shapelike::area(result.front()), ref.area());
}
namespace {
long double refMinAreaBox(const PolygonImpl& p) {
auto it = sl::cbegin(p), itx = std::next(it);
long double min_area = std::numeric_limits<long double>::max();
auto update_min = [&min_area, &it, &itx, &p]() {
Segment s(*it, *itx);
PolygonImpl rotated = p;
sl::rotate(rotated, -s.angleToXaxis());
auto bb = sl::boundingBox(rotated);
auto area = cast<long double>(sl::area(bb));
if(min_area > area) min_area = area;
};
while(itx != sl::cend(p)) {
update_min();
++it; ++itx;
}
it = std::prev(sl::cend(p)); itx = sl::cbegin(p);
update_min();
return min_area;
}
template<class T> struct BoostGCD {
T operator()(const T &a, const T &b) { return boost::gcd(a, b); }
};
using Unit = int64_t;
using Ratio = boost::rational<boost::multiprecision::int128_t>;// Rational<boost::multiprecision::int256_t>;
//double gteMinAreaBox(const PolygonImpl& p) {
// using GteCoord = ClipperLib::cInt;
// using GtePoint = gte::Vector2<GteCoord>;
// gte::MinimumAreaBox2<GteCoord, Ratio> mb;
// std::vector<GtePoint> points;
// points.reserve(p.Contour.size());
// for(auto& pt : p.Contour) points.emplace_back(GtePoint{GteCoord(pt.X), GteCoord(pt.Y)});
// mb(int(points.size()), points.data(), 0, nullptr, true);
// auto min_area = double(mb.GetArea());
// return min_area;
//}
}
TEST(RotatingCalipers, MinAreaBBCClk) {
// PolygonImpl poly({{-50, 30}, {-50, -50}, {50, -50}, {50, 50}, {-40, 50}});
// PolygonImpl poly({{-50, 0}, {50, 0}, {0, 100}});
auto u = [](ClipperLib::cInt n) { return n*1000000; };
PolygonImpl poly({ {u(0), u(0)}, {u(4), u(1)}, {u(2), u(4)}});
long double arearef = refMinAreaBox(poly);
long double area = minAreaBoundingBox<PolygonImpl, Unit, Ratio>(poly).area();
// double gtearea = gteMinAreaBox(poly);
ASSERT_LE(std::abs(area - arearef), 500e6 );
// ASSERT_LE(std::abs(gtearea - arearef), 500 );
// ASSERT_DOUBLE_EQ(gtearea, arearef);
}
TEST(RotatingCalipers, AllPrusaMinBB) {
size_t idx = 0;
long double err_epsilon = 500e6l;
for(ClipperLib::Path rinput : PRINTER_PART_POLYGONS) {
// ClipperLib::Path rinput = PRINTER_PART_POLYGONS[idx];
// rinput.pop_back();
// std::reverse(rinput.begin(), rinput.end());
// PolygonImpl poly(removeCollinearPoints<PathImpl, PointImpl, Unit>(rinput, 1000000));
PolygonImpl poly(rinput);
long double arearef = refMinAreaBox(poly);
auto bb = minAreaBoundingBox<PathImpl, Unit, Ratio>(rinput);
long double area = cast<long double>(bb.area());
// double area = gteMinAreaBox(poly);
bool succ = std::abs(arearef - area) < err_epsilon;
std::cout << idx++ << " " << (succ? "ok" : "failed") << " ref: "
<< arearef << " actual: " << area << std::endl;
ASSERT_TRUE(succ);
}
for(ClipperLib::Path rinput : STEGOSAUR_POLYGONS) {
rinput.pop_back();
std::reverse(rinput.begin(), rinput.end());
PolygonImpl poly(removeCollinearPoints<PathImpl, PointImpl, Unit>(rinput, 1000000));
long double arearef = refMinAreaBox(poly);
auto bb = minAreaBoundingBox<PolygonImpl, Unit, Ratio>(poly);
long double area = cast<long double>(bb.area());
// double area = gteMinAreaBox(poly);
bool succ = std::abs(arearef - area) < err_epsilon;
std::cout << idx++ << " " << (succ? "ok" : "failed") << " ref: "
<< arearef << " actual: " << area << std::endl;
ASSERT_TRUE(succ);
}
}
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

View file

@ -130,13 +130,10 @@ add_library(libslic3r STATIC
Print.hpp
PrintBase.cpp
PrintBase.hpp
PrintExport.hpp
PrintConfig.cpp
PrintConfig.hpp
PrintObject.cpp
PrintRegion.cpp
Rasterizer/Rasterizer.hpp
Rasterizer/Rasterizer.cpp
SLAPrint.cpp
SLAPrint.hpp
SLA/SLAAutoSupports.hpp
@ -163,6 +160,8 @@ add_library(libslic3r STATIC
MTUtils.hpp
Zipper.hpp
Zipper.cpp
MinAreaBoundingBox.hpp
MinAreaBoundingBox.cpp
miniz_extension.hpp
miniz_extension.cpp
SLA/SLABoilerPlate.hpp
@ -175,6 +174,10 @@ add_library(libslic3r STATIC
SLA/SLARotfinder.cpp
SLA/SLABoostAdapter.hpp
SLA/SLASpatIndex.hpp
SLA/SLARaster.hpp
SLA/SLARaster.cpp
SLA/SLARasterWriter.hpp
SLA/SLARasterWriter.cpp
)
if (SLIC3R_PCH AND NOT SLIC3R_SYNTAXONLY)

View file

@ -15,7 +15,7 @@
#include "FillRectilinear3.hpp"
#define SLIC3R_DEBUG
// #define SLIC3R_DEBUG
// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG

View file

@ -1489,10 +1489,10 @@ namespace Slic3r {
}
// splits volume out of imported geometry
unsigned int triangles_count = volume_data.last_triangle_id - volume_data.first_triangle_id + 1;
ModelVolume* volume = object.add_volume(TriangleMesh());
stl_file& stl = volume->mesh.stl;
stl.stats.type = inmemory;
TriangleMesh triangle_mesh;
stl_file &stl = triangle_mesh.stl;
unsigned int triangles_count = volume_data.last_triangle_id - volume_data.first_triangle_id + 1;
stl.stats.type = inmemory;
stl.stats.number_of_facets = (uint32_t)triangles_count;
stl.stats.original_num_facets = (int)stl.stats.number_of_facets;
stl_allocate(&stl);
@ -1509,9 +1509,11 @@ namespace Slic3r {
}
}
stl_get_size(&stl);
volume->mesh.repair();
volume->center_geometry();
stl_get_size(&stl);
triangle_mesh.repair();
ModelVolume* volume = object.add_volume(std::move(triangle_mesh));
volume->center_geometry_after_creation();
volume->calculate_convex_hull();
// apply volume's name and config data
@ -1879,29 +1881,28 @@ namespace Slic3r {
if (volume == nullptr)
continue;
if (!volume->mesh().repaired)
throw std::runtime_error("store_3mf() requires repair()");
if (!volume->mesh().has_shared_vertices())
throw std::runtime_error("store_3mf() requires shared vertices");
volumes_offsets.insert(VolumeToOffsetsMap::value_type(volume, Offsets(vertices_count))).first;
if (!volume->mesh.repaired)
volume->mesh.repair();
stl_file& stl = volume->mesh.stl;
if (stl.v_shared == nullptr)
stl_generate_shared_vertices(&stl);
if (stl.stats.shared_vertices == 0)
const indexed_triangle_set &its = volume->mesh().its;
if (its.vertices.empty())
{
add_error("Found invalid mesh");
return false;
}
vertices_count += stl.stats.shared_vertices;
vertices_count += its.vertices.size();
const Transform3d& matrix = volume->get_matrix();
for (int i = 0; i < stl.stats.shared_vertices; ++i)
for (size_t i = 0; i < its.vertices.size(); ++i)
{
stream << " <" << VERTEX_TAG << " ";
Vec3f v = (matrix * stl.v_shared[i].cast<double>()).cast<float>();
Vec3f v = (matrix * its.vertices[i].cast<double>()).cast<float>();
stream << "x=\"" << v(0) << "\" ";
stream << "y=\"" << v(1) << "\" ";
stream << "z=\"" << v(2) << "\" />\n";
@ -1920,19 +1921,19 @@ namespace Slic3r {
VolumeToOffsetsMap::iterator volume_it = volumes_offsets.find(volume);
assert(volume_it != volumes_offsets.end());
stl_file& stl = volume->mesh.stl;
const indexed_triangle_set &its = volume->mesh().its;
// updates triangle offsets
volume_it->second.first_triangle_id = triangles_count;
triangles_count += stl.stats.number_of_facets;
triangles_count += its.indices.size();
volume_it->second.last_triangle_id = triangles_count - 1;
for (uint32_t i = 0; i < stl.stats.number_of_facets; ++i)
for (size_t i = 0; i < its.indices.size(); ++ i)
{
stream << " <" << TRIANGLE_TAG << " ";
for (int j = 0; j < 3; ++j)
{
stream << "v" << j + 1 << "=\"" << stl.v_indices[i].vertex[j] + volume_it->second.first_vertex_id << "\" ";
stream << "v" << j + 1 << "=\"" << its.indices[i][j] + volume_it->second.first_vertex_id << "\" ";
}
stream << "/>\n";
}

View file

@ -522,7 +522,8 @@ void AMFParserContext::endElement(const char * /* name */)
case NODE_TYPE_VOLUME:
{
assert(m_object && m_volume);
stl_file &stl = m_volume->mesh.stl;
TriangleMesh mesh;
stl_file &stl = mesh.stl;
stl.stats.type = inmemory;
stl.stats.number_of_facets = int(m_volume_facets.size() / 3);
stl.stats.original_num_facets = stl.stats.number_of_facets;
@ -533,8 +534,9 @@ void AMFParserContext::endElement(const char * /* name */)
memcpy(facet.vertex[v].data(), &m_object_vertices[m_volume_facets[i ++] * 3], 3 * sizeof(float));
}
stl_get_size(&stl);
m_volume->mesh.repair();
m_volume->center_geometry();
mesh.repair();
m_volume->set_mesh(std::move(mesh));
m_volume->center_geometry_after_creation();
m_volume->calculate_convex_hull();
m_volume_facets.clear();
m_volume = nullptr;
@ -923,23 +925,23 @@ bool store_amf(const char *path, Model *model, const DynamicPrintConfig *config)
int num_vertices = 0;
for (ModelVolume *volume : object->volumes) {
vertices_offsets.push_back(num_vertices);
if (! volume->mesh.repaired)
if (! volume->mesh().repaired)
throw std::runtime_error("store_amf() requires repair()");
auto &stl = volume->mesh.stl;
if (stl.v_shared == nullptr)
stl_generate_shared_vertices(&stl);
if (! volume->mesh().has_shared_vertices())
throw std::runtime_error("store_amf() requires shared vertices");
const indexed_triangle_set &its = volume->mesh().its;
const Transform3d& matrix = volume->get_matrix();
for (size_t i = 0; i < stl.stats.shared_vertices; ++i) {
for (size_t i = 0; i < its.vertices.size(); ++i) {
stream << " <vertex>\n";
stream << " <coordinates>\n";
Vec3f v = (matrix * stl.v_shared[i].cast<double>()).cast<float>();
Vec3f v = (matrix * its.vertices[i].cast<double>()).cast<float>();
stream << " <x>" << v(0) << "</x>\n";
stream << " <y>" << v(1) << "</y>\n";
stream << " <z>" << v(2) << "</z>\n";
stream << " </coordinates>\n";
stream << " </vertex>\n";
}
num_vertices += stl.stats.shared_vertices;
num_vertices += its.vertices.size();
}
stream << " </vertices>\n";
for (size_t i_volume = 0; i_volume < object->volumes.size(); ++i_volume) {
@ -956,10 +958,11 @@ bool store_amf(const char *path, Model *model, const DynamicPrintConfig *config)
if (volume->is_modifier())
stream << " <metadata type=\"slic3r.modifier\">1</metadata>\n";
stream << " <metadata type=\"slic3r.volume_type\">" << ModelVolume::type_to_string(volume->type()) << "</metadata>\n";
for (int i = 0; i < (int)volume->mesh.stl.stats.number_of_facets; ++i) {
const indexed_triangle_set &its = volume->mesh().its;
for (size_t i = 0; i < (int)its.indices.size(); ++i) {
stream << " <triangle>\n";
for (int j = 0; j < 3; ++j)
stream << " <v" << j + 1 << ">" << volume->mesh.stl.v_indices[i].vertex[j] + vertices_offset << "</v" << j + 1 << ">\n";
stream << " <v" << j + 1 << ">" << its.indices[i][j] + vertices_offset << "</v" << j + 1 << ">\n";
stream << " </triangle>\n";
}
stream << " </volume>\n";

View file

@ -161,16 +161,15 @@ static void extract_model_from_archive(
else {
// Header has been extracted. Now read the faces.
stl_file &stl = mesh.stl;
stl.error = 0;
stl.stats.type = inmemory;
stl.stats.number_of_facets = header.nTriangles;
stl.stats.original_num_facets = header.nTriangles;
stl_allocate(&stl);
if (header.nTriangles > 0 && data.size() == 50 * header.nTriangles + sizeof(StlHeader)) {
memcpy((char*)stl.facet_start, data.data() + sizeof(StlHeader), 50 * header.nTriangles);
memcpy((char*)stl.facet_start.data(), data.data() + sizeof(StlHeader), 50 * header.nTriangles);
if (sizeof(stl_facet) > SIZEOF_STL_FACET) {
// The stl.facet_start is not packed tightly. Unpack the array of stl_facets.
unsigned char *data = (unsigned char*)stl.facet_start;
unsigned char *data = (unsigned char*)stl.facet_start.data();
for (size_t i = header.nTriangles - 1; i > 0; -- i)
memmove(data + i * sizeof(stl_facet), data + i * SIZEOF_STL_FACET, SIZEOF_STL_FACET);
}
@ -257,7 +256,7 @@ static void extract_model_from_archive(
stl.stats.number_of_facets = (uint32_t)facets.size();
stl.stats.original_num_facets = (int)facets.size();
stl_allocate(&stl);
memcpy((void*)stl.facet_start, facets.data(), facets.size() * 50);
memcpy((void*)stl.facet_start.data(), facets.data(), facets.size() * 50);
stl_get_size(&stl);
mesh.repair();
// Add a mesh to a model.

View file

@ -17,8 +17,7 @@ namespace Slic3r {
bool load_stl(const char *path, Model *model, const char *object_name_in)
{
TriangleMesh mesh;
mesh.ReadSTLFile(path);
if (mesh.stl.error) {
if (! mesh.ReadSTLFile(path)) {
// die "Failed to open $file\n" if !-e $path;
return false;
}

View file

@ -37,6 +37,8 @@
* *
*******************************************************************************/
#ifndef SLIC3R_INT128_HPP
#define SLIC3R_INT128_HPP
// #define SLIC3R_DEBUG
// Make assert active if SLIC3R_DEBUG
@ -48,6 +50,8 @@
#endif
#include <cassert>
#include <cstdint>
#include <cmath>
#if ! defined(_MSC_VER) && defined(__SIZEOF_INT128__)
#define HAS_INTRINSIC_128_TYPE
@ -293,3 +297,5 @@ public:
return sign_determinant_2x2(p1, q1, p2, q2) * invert;
}
};
#endif // SLIC3R_INT128_HPP

View file

@ -5,6 +5,7 @@
#include <mutex> // for std::lock_guard
#include <functional> // for std::function
#include <utility> // for std::forward
#include <algorithm>
namespace Slic3r {
@ -182,6 +183,14 @@ public:
inline bool empty() const { return size() == 0; }
};
template<class C> bool all_of(const C &container) {
return std::all_of(container.begin(),
container.end(),
[](const typename C::value_type &v) {
return static_cast<bool>(v);
});
}
}
#endif // MTUTILS_HPP

View file

@ -0,0 +1,142 @@
#include "MinAreaBoundingBox.hpp"
#include <libslic3r/ExPolygon.hpp>
#include <boost/rational.hpp>
#include <libslic3r/Int128.hpp>
#if !defined(HAS_INTRINSIC_128_TYPE) || defined(__APPLE__)
#include <boost/multiprecision/integer.hpp>
#endif
#include <libnest2d/geometry_traits.hpp>
#include <libnest2d/utils/rotcalipers.hpp>
namespace libnest2d {
template<> struct PointType<Slic3r::Points> { using Type = Slic3r::Point; };
template<> struct CoordType<Slic3r::Point> { using Type = coord_t; };
template<> struct ShapeTag<Slic3r::ExPolygon> { using Type = PolygonTag; };
template<> struct ShapeTag<Slic3r::Polygon> { using Type = PolygonTag; };
template<> struct ShapeTag<Slic3r::Points> { using Type = PathTag; };
template<> struct ShapeTag<Slic3r::Point> { using Type = PointTag; };
template<> struct ContourType<Slic3r::ExPolygon> { using Type = Slic3r::Points; };
template<> struct ContourType<Slic3r::Polygon> { using Type = Slic3r::Points; };
namespace pointlike {
template<> inline coord_t x(const Slic3r::Point& p) { return p.x(); }
template<> inline coord_t y(const Slic3r::Point& p) { return p.y(); }
template<> inline coord_t& x(Slic3r::Point& p) { return p.x(); }
template<> inline coord_t& y(Slic3r::Point& p) { return p.y(); }
} // pointlike
namespace shapelike {
template<> inline Slic3r::Points& contour(Slic3r::ExPolygon& sh) { return sh.contour.points; }
template<> inline const Slic3r::Points& contour(const Slic3r::ExPolygon& sh) { return sh.contour.points; }
template<> inline Slic3r::Points& contour(Slic3r::Polygon& sh) { return sh.points; }
template<> inline const Slic3r::Points& contour(const Slic3r::Polygon& sh) { return sh.points; }
template<> Slic3r::Points::iterator begin(Slic3r::Points& pts, const PathTag&) { return pts.begin();}
template<> Slic3r::Points::const_iterator cbegin(const Slic3r::Points& pts, const PathTag&) { return pts.begin(); }
template<> Slic3r::Points::iterator end(Slic3r::Points& pts, const PathTag&) { return pts.end();}
template<> Slic3r::Points::const_iterator cend(const Slic3r::Points& pts, const PathTag&) { return pts.cend(); }
template<> inline Slic3r::ExPolygon create<Slic3r::ExPolygon>(Slic3r::Points&& contour)
{
Slic3r::ExPolygon expoly; expoly.contour.points.swap(contour);
return expoly;
}
template<> inline Slic3r::Polygon create<Slic3r::Polygon>(Slic3r::Points&& contour)
{
Slic3r::Polygon poly; poly.points.swap(contour);
return poly;
}
} // shapelike
} // libnest2d
namespace Slic3r {
// Used as compute type.
using Unit = int64_t;
#if !defined(HAS_INTRINSIC_128_TYPE) || defined(__APPLE__)
using Rational = boost::rational<boost::multiprecision::int128_t>;
#else
using Rational = boost::rational<__int128>;
#endif
MinAreaBoundigBox::MinAreaBoundigBox(const Polygon &p, PolygonLevel pc)
{
const Polygon& chull = pc == pcConvex ? p : libnest2d::sl::convexHull(p);
libnest2d::RotatedBox<Point, Unit> box =
libnest2d::minAreaBoundingBox<Polygon, Unit, Rational>(chull);
m_right = box.right_extent();
m_bottom = box.bottom_extent();
m_axis = box.axis();
}
MinAreaBoundigBox::MinAreaBoundigBox(const ExPolygon &p, PolygonLevel pc)
{
const ExPolygon& chull = pc == pcConvex ? p : libnest2d::sl::convexHull(p);
libnest2d::RotatedBox<Point, Unit> box =
libnest2d::minAreaBoundingBox<ExPolygon, Unit, Rational>(chull);
m_right = box.right_extent();
m_bottom = box.bottom_extent();
m_axis = box.axis();
}
MinAreaBoundigBox::MinAreaBoundigBox(const Points &pts, PolygonLevel pc)
{
const Points& chull = pc == pcConvex ? pts : libnest2d::sl::convexHull(pts);
libnest2d::RotatedBox<Point, Unit> box =
libnest2d::minAreaBoundingBox<Points, Unit, Rational>(chull);
m_right = box.right_extent();
m_bottom = box.bottom_extent();
m_axis = box.axis();
}
double MinAreaBoundigBox::angle_to_X() const
{
double ret = std::atan2(m_axis.y(), m_axis.x());
auto s = std::signbit(ret);
if(s) ret += 2 * PI;
return -ret;
}
long double MinAreaBoundigBox::width() const
{
return std::abs(m_bottom) / std::sqrt(libnest2d::pl::magnsq<Point, long double>(m_axis));
}
long double MinAreaBoundigBox::height() const
{
return std::abs(m_right) / std::sqrt(libnest2d::pl::magnsq<Point, long double>(m_axis));
}
long double MinAreaBoundigBox::area() const
{
long double asq = libnest2d::pl::magnsq<Point, long double>(m_axis);
return m_bottom * m_right / asq;
}
void remove_collinear_points(Polygon &p)
{
p = libnest2d::removeCollinearPoints<Polygon>(p, Unit(0));
}
void remove_collinear_points(ExPolygon &p)
{
p = libnest2d::removeCollinearPoints<ExPolygon>(p, Unit(0));
}
}

View file

@ -0,0 +1,59 @@
#ifndef MINAREABOUNDINGBOX_HPP
#define MINAREABOUNDINGBOX_HPP
#include "libslic3r/Point.hpp"
namespace Slic3r {
class Polygon;
class ExPolygon;
void remove_collinear_points(Polygon& p);
void remove_collinear_points(ExPolygon& p);
/// A class that holds a rotated bounding box. If instantiated with a polygon
/// type it will hold the minimum area bounding box for the given polygon.
/// If the input polygon is convex, the complexity is linear to the number of
/// points. Otherwise a convex hull of O(n*log(n)) has to be performed.
class MinAreaBoundigBox {
Point m_axis;
long double m_bottom = 0.0l, m_right = 0.0l;
public:
// Polygons can be convex or simple (convex or concave with possible holes)
enum PolygonLevel {
pcConvex, pcSimple
};
// Constructors with various types of geometry data used in Slic3r.
// If the convexity is known apriory, pcConvex can be used to skip
// convex hull calculation. It is very important that the input polygons
// do NOT have any collinear points (except for the first and the last
// vertex being the same -- meaning a closed polygon for boost)
// To make sure this constraint is satisfied, you can call
// remove_collinear_points on the input polygon before handing over here)
explicit MinAreaBoundigBox(const Polygon&, PolygonLevel = pcSimple);
explicit MinAreaBoundigBox(const ExPolygon&, PolygonLevel = pcSimple);
explicit MinAreaBoundigBox(const Points&, PolygonLevel = pcSimple);
// Returns the angle in radians needed for the box to be aligned with the
// X axis. Rotate the polygon by this angle and it will be aligned.
double angle_to_X() const;
// The box width
long double width() const;
// The box height
long double height() const;
// The box area
long double area() const;
// The axis of the rotated box. If the angle_to_X is not sufficiently
// precise, use this unnormalized direction vector.
const Point& axis() const { return m_axis; }
};
}
#endif // MINAREABOUNDINGBOX_HPP

View file

@ -160,12 +160,6 @@ Model Model::read_from_archive(const std::string &input_file, DynamicPrintConfig
return model;
}
void Model::repair()
{
for (ModelObject *o : this->objects)
o->repair();
}
ModelObject* Model::add_object()
{
this->objects.emplace_back(new ModelObject(this));
@ -472,7 +466,7 @@ bool Model::looks_like_multipart_object() const
if (obj->volumes.size() > 1 || obj->config.keys().size() > 1)
return false;
for (const ModelVolume *vol : obj->volumes) {
double zmin_this = vol->mesh.bounding_box().min(2);
double zmin_this = vol->mesh().bounding_box().min(2);
if (zmin == std::numeric_limits<double>::max())
zmin = zmin_this;
else if (std::abs(zmin - zmin_this) > EPSILON)
@ -679,7 +673,7 @@ ModelVolume* ModelObject::add_volume(const TriangleMesh &mesh)
{
ModelVolume* v = new ModelVolume(this, mesh);
this->volumes.push_back(v);
v->center_geometry();
v->center_geometry_after_creation();
this->invalidate_bounding_box();
return v;
}
@ -688,7 +682,7 @@ ModelVolume* ModelObject::add_volume(TriangleMesh &&mesh)
{
ModelVolume* v = new ModelVolume(this, std::move(mesh));
this->volumes.push_back(v);
v->center_geometry();
v->center_geometry_after_creation();
this->invalidate_bounding_box();
return v;
}
@ -697,8 +691,9 @@ ModelVolume* ModelObject::add_volume(const ModelVolume &other)
{
ModelVolume* v = new ModelVolume(this, other);
this->volumes.push_back(v);
v->center_geometry();
this->invalidate_bounding_box();
// The volume should already be centered at this point of time when copying shared pointers of the triangle mesh and convex hull.
// v->center_geometry_after_creation();
// this->invalidate_bounding_box();
return v;
}
@ -706,7 +701,7 @@ ModelVolume* ModelObject::add_volume(const ModelVolume &other, TriangleMesh &&me
{
ModelVolume* v = new ModelVolume(this, other, std::move(mesh));
this->volumes.push_back(v);
v->center_geometry();
v->center_geometry_after_creation();
this->invalidate_bounding_box();
return v;
}
@ -827,7 +822,7 @@ TriangleMesh ModelObject::raw_mesh() const
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
{
TriangleMesh vol_mesh(v->mesh);
TriangleMesh vol_mesh(v->mesh());
vol_mesh.transform(v->get_matrix());
mesh.merge(vol_mesh);
}
@ -840,7 +835,7 @@ TriangleMesh ModelObject::full_raw_mesh() const
TriangleMesh mesh;
for (const ModelVolume *v : this->volumes)
{
TriangleMesh vol_mesh(v->mesh);
TriangleMesh vol_mesh(v->mesh());
vol_mesh.transform(v->get_matrix());
mesh.merge(vol_mesh);
}
@ -854,7 +849,7 @@ const BoundingBoxf3& ModelObject::raw_mesh_bounding_box() const
m_raw_mesh_bounding_box.reset();
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
m_raw_mesh_bounding_box.merge(v->mesh.transformed_bounding_box(v->get_matrix()));
m_raw_mesh_bounding_box.merge(v->mesh().transformed_bounding_box(v->get_matrix()));
}
return m_raw_mesh_bounding_box;
}
@ -863,7 +858,7 @@ BoundingBoxf3 ModelObject::full_raw_mesh_bounding_box() const
{
BoundingBoxf3 bb;
for (const ModelVolume *v : this->volumes)
bb.merge(v->mesh.transformed_bounding_box(v->get_matrix()));
bb.merge(v->mesh().transformed_bounding_box(v->get_matrix()));
return bb;
}
@ -881,7 +876,7 @@ const BoundingBoxf3& ModelObject::raw_bounding_box() const
for (const ModelVolume *v : this->volumes)
{
if (v->is_model_part())
m_raw_bounding_box.merge(v->mesh.transformed_bounding_box(inst_matrix * v->get_matrix()));
m_raw_bounding_box.merge(v->mesh().transformed_bounding_box(inst_matrix * v->get_matrix()));
}
}
return m_raw_bounding_box;
@ -895,7 +890,7 @@ BoundingBoxf3 ModelObject::instance_bounding_box(size_t instance_idx, bool dont_
for (ModelVolume *v : this->volumes)
{
if (v->is_model_part())
bb.merge(v->mesh.transformed_bounding_box(inst_matrix * v->get_matrix()));
bb.merge(v->mesh().transformed_bounding_box(inst_matrix * v->get_matrix()));
}
return bb;
}
@ -908,21 +903,20 @@ Polygon ModelObject::convex_hull_2d(const Transform3d &trafo_instance) const
Points pts;
for (const ModelVolume *v : this->volumes)
if (v->is_model_part()) {
const stl_file &stl = v->mesh.stl;
Transform3d trafo = trafo_instance * v->get_matrix();
if (stl.v_shared == nullptr) {
const indexed_triangle_set &its = v->mesh().its;
if (its.vertices.empty()) {
// Using the STL faces.
for (unsigned int i = 0; i < stl.stats.number_of_facets; ++ i) {
const stl_facet &facet = stl.facet_start[i];
const stl_file& stl = v->mesh().stl;
for (const stl_facet &facet : stl.facet_start)
for (size_t j = 0; j < 3; ++ j) {
Vec3d p = trafo * facet.vertex[j].cast<double>();
pts.emplace_back(coord_t(scale_(p.x())), coord_t(scale_(p.y())));
}
}
} else {
// Using the shared vertices should be a bit quicker than using the STL faces.
for (int i = 0; i < stl.stats.shared_vertices; ++ i) {
Vec3d p = trafo * stl.v_shared[i].cast<double>();
for (size_t i = 0; i < its.vertices.size(); ++ i) {
Vec3d p = trafo * its.vertices[i].cast<double>();
pts.emplace_back(coord_t(scale_(p.x())), coord_t(scale_(p.y())));
}
}
@ -1039,6 +1033,7 @@ void ModelObject::mirror(Axis axis)
this->invalidate_bounding_box();
}
// This method could only be called before the meshes of this ModelVolumes are not shared!
void ModelObject::scale_mesh(const Vec3d &versor)
{
for (ModelVolume *v : this->volumes)
@ -1062,14 +1057,14 @@ size_t ModelObject::facets_count() const
size_t num = 0;
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
num += v->mesh.stl.stats.number_of_facets;
num += v->mesh().stl.stats.number_of_facets;
return num;
}
bool ModelObject::needed_repair() const
{
for (const ModelVolume *v : this->volumes)
if (v->is_model_part() && v->mesh.needed_repair())
if (v->is_model_part() && v->mesh().needed_repair())
return true;
return false;
}
@ -1135,11 +1130,12 @@ ModelObjectPtrs ModelObject::cut(size_t instance, coordf_t z, bool keep_upper, b
// Transform the mesh by the combined transformation matrix.
// Flip the triangles in case the composite transformation is left handed.
volume->mesh.transform(instance_matrix * volume_matrix, true);
TriangleMesh mesh(volume->mesh());
mesh.transform(instance_matrix * volume_matrix, true);
volume->reset_mesh();
// Perform cut
volume->mesh.require_shared_vertices(); // TriangleMeshSlicer needs this
TriangleMeshSlicer tms(&volume->mesh);
TriangleMeshSlicer tms(&mesh);
tms.cut(float(z), &upper_mesh, &lower_mesh);
// Reset volume transformation except for offset
@ -1158,14 +1154,14 @@ ModelObjectPtrs ModelObject::cut(size_t instance, coordf_t z, bool keep_upper, b
if (keep_upper && upper_mesh.facets_count() > 0) {
ModelVolume* vol = upper->add_volume(upper_mesh);
vol->name = volume->name;
vol->config = volume->config;
vol->name = volume->name;
vol->config = volume->config;
vol->set_material(volume->material_id(), *volume->material());
}
if (keep_lower && lower_mesh.facets_count() > 0) {
ModelVolume* vol = lower->add_volume(lower_mesh);
vol->name = volume->name;
vol->config = volume->config;
vol->name = volume->name;
vol->config = volume->config;
vol->set_material(volume->material_id(), *volume->material());
// Compute the lower part instances' bounding boxes to figure out where to place
@ -1233,7 +1229,7 @@ void ModelObject::split(ModelObjectPtrs* new_objects)
}
ModelVolume* volume = this->volumes.front();
TriangleMeshPtrs meshptrs = volume->mesh.split();
TriangleMeshPtrs meshptrs = volume->mesh().split();
for (TriangleMesh *mesh : meshptrs) {
mesh->repair();
@ -1260,12 +1256,6 @@ void ModelObject::split(ModelObjectPtrs* new_objects)
return;
}
void ModelObject::repair()
{
for (ModelVolume *v : this->volumes)
v->mesh.repair();
}
// Support for non-uniform scaling of instances. If an instance is rotated by angles, which are not multiples of ninety degrees,
// then the scaling in world coordinate system is not representable by the Geometry::Transformation structure.
// This situation is solved by baking in the instance transformation into the mesh vertices.
@ -1295,8 +1285,8 @@ void ModelObject::bake_xy_rotation_into_meshes(size_t instance_idx)
// Adjust the meshes.
// Transformation to be applied to the meshes.
Eigen::Matrix3d mesh_trafo_3x3 = reference_trafo.get_matrix(true, false, uniform_scaling, ! has_mirrorring).matrix().block<3, 3>(0, 0);
Transform3d volume_offset_correction = this->instances[instance_idx]->get_transformation().get_matrix().inverse() * reference_trafo.get_matrix();
Eigen::Matrix3d mesh_trafo_3x3 = reference_trafo.get_matrix(true, false, uniform_scaling, ! has_mirrorring).matrix().block<3, 3>(0, 0);
Transform3d volume_offset_correction = this->instances[instance_idx]->get_transformation().get_matrix().inverse() * reference_trafo.get_matrix();
for (ModelVolume *model_volume : this->volumes) {
const Geometry::Transformation volume_trafo = model_volume->get_transformation();
bool volume_left_handed = volume_trafo.is_left_handed();
@ -1306,7 +1296,8 @@ void ModelObject::bake_xy_rotation_into_meshes(size_t instance_idx)
double volume_new_scaling_factor = volume_uniform_scaling ? volume_trafo.get_scaling_factor().x() : 1.;
// Transform the mesh.
Matrix3d volume_trafo_3x3 = volume_trafo.get_matrix(true, false, volume_uniform_scaling, !volume_has_mirrorring).matrix().block<3, 3>(0, 0);
model_volume->transform_mesh(mesh_trafo_3x3 * volume_trafo_3x3, left_handed != volume_left_handed);
// Following method creates a new shared_ptr<TriangleMesh>
model_volume->transform_this_mesh(mesh_trafo_3x3 * volume_trafo_3x3, left_handed != volume_left_handed);
// Reset the rotation, scaling and mirroring.
model_volume->set_rotation(Vec3d(0., 0., 0.));
model_volume->set_scaling_factor(Vec3d(volume_new_scaling_factor, volume_new_scaling_factor, volume_new_scaling_factor));
@ -1347,13 +1338,9 @@ double ModelObject::get_instance_min_z(size_t instance_idx) const
Transform3d mv = mi * v->get_matrix();
const TriangleMesh& hull = v->get_convex_hull();
for (uint32_t f = 0; f < hull.stl.stats.number_of_facets; ++f)
{
const stl_facet* facet = hull.stl.facet_start + f;
min_z = std::min(min_z, Vec3d::UnitZ().dot(mv * facet->vertex[0].cast<double>()));
min_z = std::min(min_z, Vec3d::UnitZ().dot(mv * facet->vertex[1].cast<double>()));
min_z = std::min(min_z, Vec3d::UnitZ().dot(mv * facet->vertex[2].cast<double>()));
}
for (const stl_facet &facet : hull.stl.facet_start)
for (int i = 0; i < 3; ++ i)
min_z = std::min(min_z, (mv * facet.vertex[i].cast<double>()).z());
}
return min_z + inst->get_offset(Z);
@ -1452,7 +1439,7 @@ std::string ModelObject::get_export_filename() const
stl_stats ModelObject::get_object_stl_stats() const
{
if (this->volumes.size() == 1)
return this->volumes[0]->mesh.stl.stats;
return this->volumes[0]->mesh().stl.stats;
stl_stats full_stats;
memset(&full_stats, 0, sizeof(stl_stats));
@ -1463,7 +1450,7 @@ stl_stats ModelObject::get_object_stl_stats() const
if (volume->id() == this->volumes[0]->id())
continue;
const stl_stats& stats = volume->mesh.stl.stats;
const stl_stats& stats = volume->mesh().stl.stats;
// initialize full_stats (for repaired errors)
full_stats.degenerate_facets += stats.degenerate_facets;
@ -1531,30 +1518,30 @@ bool ModelVolume::is_splittable() const
{
// the call mesh.is_splittable() is expensive, so cache the value to calculate it only once
if (m_is_splittable == -1)
m_is_splittable = (int)mesh.is_splittable();
m_is_splittable = (int)this->mesh().is_splittable();
return m_is_splittable == 1;
}
void ModelVolume::center_geometry()
void ModelVolume::center_geometry_after_creation()
{
Vec3d shift = mesh.bounding_box().center();
Vec3d shift = this->mesh().bounding_box().center();
if (!shift.isApprox(Vec3d::Zero()))
{
mesh.translate(-(float)shift(0), -(float)shift(1), -(float)shift(2));
m_convex_hull.translate(-(float)shift(0), -(float)shift(1), -(float)shift(2));
m_mesh->translate(-(float)shift(0), -(float)shift(1), -(float)shift(2));
m_convex_hull->translate(-(float)shift(0), -(float)shift(1), -(float)shift(2));
translate(shift);
}
}
void ModelVolume::calculate_convex_hull()
{
m_convex_hull = mesh.convex_hull_3d();
m_convex_hull = std::make_shared<TriangleMesh>(this->mesh().convex_hull_3d());
}
int ModelVolume::get_mesh_errors_count() const
{
const stl_stats& stats = this->mesh.stl.stats;
const stl_stats& stats = this->mesh().stl.stats;
return stats.degenerate_facets + stats.edges_fixed + stats.facets_removed +
stats.facets_added + stats.facets_reversed + stats.backwards_edges;
@ -1562,7 +1549,7 @@ int ModelVolume::get_mesh_errors_count() const
const TriangleMesh& ModelVolume::get_convex_hull() const
{
return m_convex_hull;
return *m_convex_hull.get();
}
ModelVolumeType ModelVolume::type_from_string(const std::string &s)
@ -1602,7 +1589,7 @@ std::string ModelVolume::type_to_string(const ModelVolumeType t)
// This is useful to assign different materials to different volumes of an object.
size_t ModelVolume::split(unsigned int max_extruders)
{
TriangleMeshPtrs meshptrs = this->mesh.split();
TriangleMeshPtrs meshptrs = this->mesh().split();
if (meshptrs.size() <= 1) {
delete meshptrs.front();
return 1;
@ -1619,7 +1606,7 @@ size_t ModelVolume::split(unsigned int max_extruders)
mesh->repair();
if (idx == 0)
{
this->mesh = std::move(*mesh);
this->set_mesh(std::move(*mesh));
this->calculate_convex_hull();
// Assign a new unique ID, so that a new GLVolume will be generated.
this->set_new_unique_id();
@ -1628,7 +1615,7 @@ size_t ModelVolume::split(unsigned int max_extruders)
this->object->volumes.insert(this->object->volumes.begin() + (++ivolume), new ModelVolume(object, *this, std::move(*mesh)));
this->object->volumes[ivolume]->set_offset(Vec3d::Zero());
this->object->volumes[ivolume]->center_geometry();
this->object->volumes[ivolume]->center_geometry_after_creation();
this->object->volumes[ivolume]->translate(offset);
this->object->volumes[ivolume]->name = name + "_" + std::to_string(idx + 1);
this->object->volumes[ivolume]->config.set_deserialize("extruder", Model::get_auto_extruder_id_as_string(max_extruders));
@ -1694,24 +1681,33 @@ void ModelVolume::mirror(Axis axis)
set_mirror(mirror);
}
// This method could only be called before the meshes of this ModelVolumes are not shared!
void ModelVolume::scale_geometry(const Vec3d& versor)
{
mesh.scale(versor);
m_convex_hull.scale(versor);
m_mesh->scale(versor);
m_convex_hull->scale(versor);
}
void ModelVolume::transform_mesh(const Transform3d &mesh_trafo, bool fix_left_handed)
void ModelVolume::transform_this_mesh(const Transform3d &mesh_trafo, bool fix_left_handed)
{
this->mesh.transform(mesh_trafo, fix_left_handed);
this->m_convex_hull.transform(mesh_trafo, fix_left_handed);
TriangleMesh mesh = this->mesh();
mesh.transform(mesh_trafo, fix_left_handed);
this->set_mesh(std::move(mesh));
TriangleMesh convex_hull = this->get_convex_hull();
convex_hull.transform(mesh_trafo, fix_left_handed);
this->m_convex_hull = std::make_shared<TriangleMesh>(std::move(convex_hull));
// Let the rest of the application know that the geometry changed, so the meshes have to be reloaded.
this->set_new_unique_id();
}
void ModelVolume::transform_mesh(const Matrix3d &matrix, bool fix_left_handed)
void ModelVolume::transform_this_mesh(const Matrix3d &matrix, bool fix_left_handed)
{
this->mesh.transform(matrix, fix_left_handed);
this->m_convex_hull.transform(matrix, fix_left_handed);
TriangleMesh mesh = this->mesh();
mesh.transform(matrix, fix_left_handed);
this->set_mesh(std::move(mesh));
TriangleMesh convex_hull = this->get_convex_hull();
convex_hull.transform(matrix, fix_left_handed);
this->m_convex_hull = std::make_shared<TriangleMesh>(std::move(convex_hull));
// Let the rest of the application know that the geometry changed, so the meshes have to be reloaded.
this->set_new_unique_id();
}

View file

@ -7,7 +7,9 @@
#include "Point.hpp"
#include "TriangleMesh.hpp"
#include "Slicing.hpp"
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
@ -261,6 +263,7 @@ public:
void rotate(double angle, const Vec3d& axis);
void mirror(Axis axis);
// This method could only be called before the meshes of this ModelVolumes are not shared!
void scale_mesh(const Vec3d& versor);
size_t materials_count() const;
@ -268,7 +271,6 @@ public:
bool needed_repair() const;
ModelObjectPtrs cut(size_t instance, coordf_t z, bool keep_upper = true, bool keep_lower = true, bool rotate_lower = false); // Note: z is in world coordinates
void split(ModelObjectPtrs* new_objects);
void repair();
// Support for non-uniform scaling of instances. If an instance is rotated by angles, which are not multiples of ninety degrees,
// then the scaling in world coordinate system is not representable by the Geometry::Transformation structure.
// This situation is solved by baking in the instance transformation into the mesh vertices.
@ -340,7 +342,12 @@ class ModelVolume : public ModelBase
public:
std::string name;
// The triangular model.
TriangleMesh mesh;
const TriangleMesh& mesh() const { return *m_mesh.get(); }
void set_mesh(const TriangleMesh &mesh) { m_mesh = std::make_shared<TriangleMesh>(mesh); }
void set_mesh(TriangleMesh &&mesh) { m_mesh = std::make_shared<TriangleMesh>(std::move(mesh)); }
void set_mesh(std::shared_ptr<TriangleMesh> &mesh) { m_mesh = mesh; }
void set_mesh(std::unique_ptr<TriangleMesh> &&mesh) { m_mesh = std::move(mesh); }
void reset_mesh() { m_mesh = std::make_shared<TriangleMesh>(); }
// Configuration parameters specific to an object model geometry or a modifier volume,
// overriding the global Slic3r settings and the ModelObject settings.
DynamicPrintConfig config;
@ -377,13 +384,16 @@ public:
void rotate(double angle, const Vec3d& axis);
void mirror(Axis axis);
// This method could only be called before the meshes of this ModelVolumes are not shared!
void scale_geometry(const Vec3d& versor);
// translates the mesh and the convex hull so that the origin of their vertices is in the center of this volume's bounding box
void center_geometry();
// Translates the mesh and the convex hull so that the origin of their vertices is in the center of this volume's bounding box.
// Attention! This method may only be called just after ModelVolume creation! It must not be called once the TriangleMesh of this ModelVolume is shared!
void center_geometry_after_creation();
void calculate_convex_hull();
const TriangleMesh& get_convex_hull() const;
std::shared_ptr<const TriangleMesh> get_convex_hull_shared_ptr() const { return m_convex_hull; }
// Get count of errors in the mesh
int get_mesh_errors_count() const;
@ -430,18 +440,20 @@ protected:
explicit ModelVolume(const ModelVolume &rhs) = default;
void set_model_object(ModelObject *model_object) { object = model_object; }
void transform_mesh(const Transform3d& t, bool fix_left_handed);
void transform_mesh(const Matrix3d& m, bool fix_left_handed);
void transform_this_mesh(const Transform3d& t, bool fix_left_handed);
void transform_this_mesh(const Matrix3d& m, bool fix_left_handed);
private:
// Parent object owning this ModelVolume.
ModelObject* object;
ModelObject* object;
// The triangular model.
std::shared_ptr<TriangleMesh> m_mesh;
// Is it an object to be printed, or a modifier volume?
ModelVolumeType m_type;
t_model_material_id m_material_id;
ModelVolumeType m_type;
t_model_material_id m_material_id;
// The convex hull of this model's mesh.
TriangleMesh m_convex_hull;
Geometry::Transformation m_transformation;
std::shared_ptr<TriangleMesh> m_convex_hull;
Geometry::Transformation m_transformation;
// flag to optimize the checking if the volume is splittable
// -1 -> is unknown value (before first cheking)
@ -449,24 +461,24 @@ private:
// 1 -> is splittable
mutable int m_is_splittable{ -1 };
ModelVolume(ModelObject *object, const TriangleMesh &mesh) : mesh(mesh), m_type(ModelVolumeType::MODEL_PART), object(object)
ModelVolume(ModelObject *object, const TriangleMesh &mesh) : m_mesh(new TriangleMesh(mesh)), m_type(ModelVolumeType::MODEL_PART), object(object)
{
if (mesh.stl.stats.number_of_facets > 1)
calculate_convex_hull();
}
ModelVolume(ModelObject *object, TriangleMesh &&mesh, TriangleMesh &&convex_hull) :
mesh(std::move(mesh)), m_convex_hull(std::move(convex_hull)), m_type(ModelVolumeType::MODEL_PART), object(object) {}
m_mesh(new TriangleMesh(std::move(mesh))), m_convex_hull(new TriangleMesh(std::move(convex_hull))), m_type(ModelVolumeType::MODEL_PART), object(object) {}
// Copying an existing volume, therefore this volume will get a copy of the ID assigned.
ModelVolume(ModelObject *object, const ModelVolume &other) :
ModelBase(other), // copy the ID
name(other.name), mesh(other.mesh), m_convex_hull(other.m_convex_hull), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation)
name(other.name), m_mesh(other.m_mesh), m_convex_hull(other.m_convex_hull), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation)
{
this->set_material_id(other.material_id());
}
// Providing a new mesh, therefore this volume will get a new unique ID assigned.
ModelVolume(ModelObject *object, const ModelVolume &other, const TriangleMesh &&mesh) :
name(other.name), mesh(std::move(mesh)), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation)
name(other.name), m_mesh(new TriangleMesh(std::move(mesh))), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation)
{
this->set_material_id(other.material_id());
if (mesh.stl.stats.number_of_facets > 1)
@ -597,10 +609,6 @@ public:
static Model read_from_file(const std::string &input_file, DynamicPrintConfig *config = nullptr, bool add_default_instances = true);
static Model read_from_archive(const std::string &input_file, DynamicPrintConfig *config, bool add_default_instances = true);
/// Repair the ModelObjects of the current Model.
/// This function calls repair function on each TriangleMesh of each model object volume
void repair();
// Add a new ModelObject to this Model, generate a new ID for this ModelObject.
ModelObject* add_object();
ModelObject* add_object(const char *name, const char *path, const TriangleMesh &mesh);

View file

@ -9,6 +9,31 @@
#include <ClipperUtils.hpp>
#include <boost/geometry/index/rtree.hpp>
#include <boost/multiprecision/integer.hpp>
#include <boost/rational.hpp>
namespace libnest2d {
#if !defined(_MSC_VER) && defined(__SIZEOF_INT128__) && !defined(__APPLE__)
using LargeInt = __int128;
#else
using LargeInt = boost::multiprecision::int128_t;
template<> struct _NumTag<LargeInt> { using Type = ScalarTag; };
#endif
template<class T> struct _NumTag<boost::rational<T>> { using Type = RationalTag; };
namespace nfp {
template<class S>
struct NfpImpl<S, NfpLevel::CONVEX_ONLY>
{
NfpResult<S> operator()(const S &sh, const S &other)
{
return nfpConvexOnly<S, boost::rational<LargeInt>>(sh, other);
}
};
}
}
namespace Slic3r {
@ -130,7 +155,7 @@ Box boundingBox(const Box& pilebb, const Box& ibb ) {
// at the same time, it has to provide reasonable results.
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
objfunc(const PointImpl& bincenter,
const shapelike::Shapes<PolygonImpl>& merged_pile,
const TMultiShape<PolygonImpl>& merged_pile,
const Box& pilebb,
const ItemGroup& items,
const Item &item,
@ -293,7 +318,7 @@ class AutoArranger {};
// management and spatial index structures for acceleration.
template<class TBin>
class _ArrBase {
protected:
public:
// Useful type shortcuts...
using Placer = TPacker<TBin>;
@ -301,7 +326,9 @@ protected:
using Packer = Nester<Placer, Selector>;
using PConfig = typename Packer::PlacementConfig;
using Distance = TCoord<PointImpl>;
using Pile = sl::Shapes<PolygonImpl>;
using Pile = TMultiShape<PolygonImpl>;
protected:
Packer m_pck;
PConfig m_pconf; // Placement configuration
@ -539,7 +566,10 @@ public:
// 2D shape from top view.
using ShapeData2D = std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
ShapeData2D projectModelFromTop(const Slic3r::Model &model, const WipeTowerInfo& wti) {
ShapeData2D projectModelFromTop(const Slic3r::Model &model,
const WipeTowerInfo &wti,
double tolerance)
{
ShapeData2D ret;
// Count all the items on the bin (all the object's instances)
@ -561,21 +591,32 @@ ShapeData2D projectModelFromTop(const Slic3r::Model &model, const WipeTowerInfo&
// Object instances should carry the same scaling and
// x, y rotation that is why we use the first instance.
{
ModelInstance *finst = objptr->instances.front();
Vec3d rotation = finst->get_rotation();
rotation.z() = 0.;
Transform3d trafo_instance = Geometry::assemble_transform(Vec3d::Zero(), rotation, finst->get_scaling_factor(), finst->get_mirror());
ModelInstance *finst = objptr->instances.front();
Vec3d rotation = finst->get_rotation();
rotation.z() = 0.;
Transform3d trafo_instance = Geometry::assemble_transform(
Vec3d::Zero(),
rotation,
finst->get_scaling_factor(),
finst->get_mirror());
Polygon p = objptr->convex_hull_2d(trafo_instance);
assert(! p.points.empty());
// this may happen for malformed models, see: https://github.com/prusa3d/PrusaSlicer/issues/2209
if (p.points.empty())
continue;
assert(!p.points.empty());
// this may happen for malformed models, see:
// https://github.com/prusa3d/PrusaSlicer/issues/2209
if (p.points.empty()) continue;
if(tolerance > EPSILON) {
Polygons pp { p };
pp = p.simplify(double(scaled(tolerance)));
if (!pp.empty()) p = pp.front();
}
p.reverse();
assert(!p.is_counter_clockwise());
p.append(p.first_point());
clpath = Slic3rMultiPoint_to_ClipperPath(p);
auto firstp = clpath.front(); clpath.emplace_back(firstp);
}
Vec3d rotation0 = objptr->instances.front()->get_rotation();
@ -589,7 +630,7 @@ ShapeData2D projectModelFromTop(const Slic3r::Model &model, const WipeTowerInfo&
// Invalid geometries would throw exceptions when arranging
if(item.vertexCount() > 3) {
item.rotation(float(Geometry::rotation_diff_z(rotation0, objinst->get_rotation()))),
item.rotation(Geometry::rotation_diff_z(rotation0, objinst->get_rotation()));
item.translation({
ClipperLib::cInt(objinst->get_offset(X)/SCALING_FACTOR),
ClipperLib::cInt(objinst->get_offset(Y)/SCALING_FACTOR)
@ -741,6 +782,8 @@ BedShapeHint bedShape(const Polyline &bed) {
return ret;
}
static const SLIC3R_CONSTEXPR double SIMPLIFY_TOLERANCE_MM = 0.1;
// The final client function to arrange the Model. A progress indicator and
// a stop predicate can be also be passed to control the process.
bool arrange(Model &model, // The model with the geometries
@ -755,9 +798,9 @@ bool arrange(Model &model, // The model with the geometries
std::function<bool ()> stopcondition)
{
bool ret = true;
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model, wti);
auto shapemap = arr::projectModelFromTop(model, wti, SIMPLIFY_TOLERANCE_MM);
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
@ -782,7 +825,7 @@ bool arrange(Model &model, // The model with the geometries
static_cast<libnest2d::Coord>(bbb.min(0)),
static_cast<libnest2d::Coord>(bbb.min(1))
},
{
{
static_cast<libnest2d::Coord>(bbb.max(0)),
static_cast<libnest2d::Coord>(bbb.max(1))
});
@ -856,9 +899,9 @@ void find_new_position(const Model &model,
coord_t min_obj_distance,
const Polyline &bed,
WipeTowerInfo& wti)
{
{
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model, wti);
auto shapemap = arr::projectModelFromTop(model, wti, SIMPLIFY_TOLERANCE_MM);
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon

View file

@ -2258,6 +2258,20 @@ void PrintConfigDef::init_sla_params()
def->min = 100;
def->set_default_value(new ConfigOptionInt(1440));
def = this->add("display_mirror_x", coBool);
def->full_label = L("Display horizontal mirroring");
def->label = L("Mirror horizontally");
def->tooltip = L("Enable horizontal mirroring of output images");
def->mode = comExpert;
def->set_default_value(new ConfigOptionBool(true));
def = this->add("display_mirror_y", coBool);
def->full_label = L("Display vertical mirroring");
def->label = L("Mirror vertically");
def->tooltip = L("Enable vertical mirroring of output images");
def->mode = comExpert;
def->set_default_value(new ConfigOptionBool(false));
def = this->add("display_orientation", coEnum);
def->label = L("Display orientation");
def->tooltip = L("Set the actual LCD display orientation inside the SLA printer."

View file

@ -1083,6 +1083,8 @@ public:
ConfigOptionInt display_pixels_x;
ConfigOptionInt display_pixels_y;
ConfigOptionEnum<SLADisplayOrientation> display_orientation;
ConfigOptionBool display_mirror_x;
ConfigOptionBool display_mirror_y;
ConfigOptionFloats relative_correction;
ConfigOptionFloat absolute_correction;
ConfigOptionFloat gamma_correction;
@ -1099,6 +1101,8 @@ protected:
OPT_PTR(display_height);
OPT_PTR(display_pixels_x);
OPT_PTR(display_pixels_y);
OPT_PTR(display_mirror_x);
OPT_PTR(display_mirror_y);
OPT_PTR(display_orientation);
OPT_PTR(relative_correction);
OPT_PTR(absolute_correction);

View file

@ -1,327 +0,0 @@
#ifndef PRINTEXPORT_HPP
#define PRINTEXPORT_HPP
// For png export of the sliced model
#include <fstream>
#include <sstream>
#include <vector>
#include <boost/log/trivial.hpp>
#include <boost/filesystem/path.hpp>
#include "Rasterizer/Rasterizer.hpp"
//#include <tbb/parallel_for.h>
//#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
namespace Slic3r {
// Used for addressing parameters of FilePrinter::set_statistics()
enum ePrintStatistics
{
psUsedMaterial = 0,
psNumFade,
psNumSlow,
psNumFast,
psCnt
};
enum class FilePrinterFormat {
SLA_PNGZIP,
SVG
};
/*
* Interface for a file printer of the slices. Implementation can be an SVG
* or PNG printer or any other format.
*
* The format argument specifies the output format of the printer and it enables
* different implementations of this class template for each supported format.
*
*/
template<FilePrinterFormat format>
class FilePrinter {
public:
// Draw a polygon which is a polygon inside a slice on the specified layer.
void draw_polygon(const ExPolygon& p, unsigned lyr);
void draw_polygon(const ClipperLib::Polygon& p, unsigned lyr);
// Tell the printer how many layers should it consider.
void layers(unsigned layernum);
// Get the number of layers in the print.
unsigned layers() const;
/* Switch to a particular layer. If there where less layers then the
* specified layer number than an appropriate number of layers will be
* allocated in the printer.
*/
void begin_layer(unsigned layer);
// Allocate a new layer on top of the last and switch to it.
void begin_layer();
/*
* Finish the selected layer. It means that no drawing is allowed on that
* layer anymore. This fact can be used to prepare the file system output
* data like png comprimation and so on.
*/
void finish_layer(unsigned layer);
// Finish the top layer.
void finish_layer();
// Save all the layers into the file (or dir) specified in the path argument
// An optional project name can be added to be used for the layer file names
void save(const std::string& path, const std::string& projectname = "");
// Save only the selected layer to the file specified in path argument.
void save_layer(unsigned lyr, const std::string& path);
};
// Provokes static_assert in the right way.
template<class T = void> struct VeryFalse { static const bool value = false; };
// This can be explicitly implemented in the gui layer or the default Zipper
// API in libslic3r with minz.
template<class Fmt> class LayerWriter {
public:
LayerWriter(const std::string& /*zipfile_path*/)
{
static_assert(VeryFalse<Fmt>::value,
"No layer writer implementation provided!");
}
// Should create a new file within the zip with the given filename. It
// should also finish any previous entry.
void next_entry(const std::string& /*fname*/) {}
// Should create a new file within the archive and write the provided data.
void binary_entry(const std::string& /*fname*/,
const std::uint8_t* buf, size_t len);
// Test whether the object can still be used for writing.
bool is_ok() { return false; }
// Write some data (text) into the current file (entry) within the archive.
template<class T> LayerWriter& operator<<(T&& /*arg*/) {
return *this;
}
// Flush the current entry into the archive.
void finalize() {}
};
// Implementation for PNG raster output
// Be aware that if a large number of layers are allocated, it can very well
// exhaust the available memory especially on 32 bit platform.
template<> class FilePrinter<FilePrinterFormat::SLA_PNGZIP>
{
struct Layer {
Raster raster;
RawBytes rawbytes;
Layer() {}
Layer(const Layer&) = delete;
Layer(Layer&& m):
raster(std::move(m.raster)) {}
};
// We will save the compressed PNG data into stringstreams which can be done
// in parallel. Later we can write every layer to the disk sequentially.
std::vector<Layer> m_layers_rst;
Raster::Resolution m_res;
Raster::PixelDim m_pxdim;
double m_exp_time_s = .0, m_exp_time_first_s = .0;
double m_layer_height = .0;
Raster::Origin m_o = Raster::Origin::TOP_LEFT;
double m_gamma;
double m_used_material = 0.0;
int m_cnt_fade_layers = 0;
int m_cnt_slow_layers = 0;
int m_cnt_fast_layers = 0;
std::string createIniContent(const std::string& projectname) {
using std::string;
using std::to_string;
auto expt_str = to_string(m_exp_time_s);
auto expt_first_str = to_string(m_exp_time_first_s);
auto layerh_str = to_string(m_layer_height);
const std::string cnt_fade_layers = to_string(m_cnt_fade_layers);
const std::string cnt_slow_layers = to_string(m_cnt_slow_layers);
const std::string cnt_fast_layers = to_string(m_cnt_fast_layers);
const std::string used_material = to_string(m_used_material);
return string(
"action = print\n"
"jobDir = ") + projectname + "\n" +
"expTime = " + expt_str + "\n"
"expTimeFirst = " + expt_first_str + "\n"
"numFade = " + cnt_fade_layers + "\n"
"layerHeight = " + layerh_str + "\n"
"usedMaterial = " + used_material + "\n"
"numSlow = " + cnt_slow_layers + "\n"
"numFast = " + cnt_fast_layers + "\n";
}
public:
enum RasterOrientation {
RO_LANDSCAPE,
RO_PORTRAIT
};
// We will play with the raster's coordinate origin parameter. When the
// printer should print in landscape mode it should have the Y axis flipped
// because the layers should be displayed upside down. PNG has its
// coordinate origin in the top-left corner so normally the Raster objects
// should be instantiated with the TOP_LEFT flag. However, in landscape mode
// we do want the pictures to be upside down so we will make BOTTOM_LEFT
// type rasters and the PNG format will do the flipping automatically.
// In case of portrait images, we have to rotate the image by a 90 degrees
// and flip the y axis. To get the correct upside-down orientation of the
// slice images, we can flip the x and y coordinates of the input polygons
// and do the Y flipping of the image. This will generate the correct
// orientation in portrait mode.
inline FilePrinter(double width_mm, double height_mm,
unsigned width_px, unsigned height_px,
double layer_height,
double exp_time, double exp_time_first,
RasterOrientation ro = RO_PORTRAIT,
double gamma = 1.0):
m_res(width_px, height_px),
m_pxdim(width_mm/width_px, height_mm/height_px),
m_exp_time_s(exp_time),
m_exp_time_first_s(exp_time_first),
m_layer_height(layer_height),
// Here is the trick with the orientation.
m_o(ro == RO_LANDSCAPE? Raster::Origin::BOTTOM_LEFT :
Raster::Origin::TOP_LEFT ),
m_gamma(gamma)
{
}
FilePrinter(const FilePrinter& ) = delete;
FilePrinter(FilePrinter&& m):
m_layers_rst(std::move(m.m_layers_rst)),
m_res(m.m_res),
m_pxdim(m.m_pxdim) {}
inline void layers(unsigned cnt) { if(cnt > 0) m_layers_rst.resize(cnt); }
inline unsigned layers() const { return unsigned(m_layers_rst.size()); }
inline void draw_polygon(const ExPolygon& p, unsigned lyr) {
assert(lyr < m_layers_rst.size());
m_layers_rst[lyr].raster.draw(p);
}
inline void draw_polygon(const ClipperLib::Polygon& p, unsigned lyr) {
assert(lyr < m_layers_rst.size());
m_layers_rst[lyr].raster.draw(p);
}
inline void begin_layer(unsigned lyr) {
if(m_layers_rst.size() <= lyr) m_layers_rst.resize(lyr+1);
m_layers_rst[lyr].raster.reset(m_res, m_pxdim, m_o, m_gamma);
}
inline void begin_layer() {
m_layers_rst.emplace_back();
m_layers_rst.front().raster.reset(m_res, m_pxdim, m_o, m_gamma);
}
inline void finish_layer(unsigned lyr_id) {
assert(lyr_id < m_layers_rst.size());
m_layers_rst[lyr_id].rawbytes =
m_layers_rst[lyr_id].raster.save(Raster::Compression::PNG);
m_layers_rst[lyr_id].raster.reset();
}
inline void finish_layer() {
if(!m_layers_rst.empty()) {
m_layers_rst.back().rawbytes =
m_layers_rst.back().raster.save(Raster::Compression::PNG);
m_layers_rst.back().raster.reset();
}
}
template<class LyrFmt>
inline void save(const std::string& fpath, const std::string& prjname = "")
{
try {
LayerWriter<LyrFmt> writer(fpath);
if(!writer.is_ok()) return;
std::string project = prjname.empty()?
boost::filesystem::path(fpath).stem().string() : prjname;
writer.next_entry("config.ini");
if(!writer.is_ok()) return;
writer << createIniContent(project);
for(unsigned i = 0; i < m_layers_rst.size() && writer.is_ok(); i++)
{
if(m_layers_rst[i].rawbytes.size() > 0) {
char lyrnum[6];
std::sprintf(lyrnum, "%.5d", i);
auto zfilename = project + lyrnum + ".png";
if(!writer.is_ok()) break;
writer.binary_entry(zfilename,
m_layers_rst[i].rawbytes.data(),
m_layers_rst[i].rawbytes.size());
}
}
writer.finalize();
} catch(std::exception& e) {
BOOST_LOG_TRIVIAL(error) << e.what();
// Rethrow the exception
throw;
}
}
void save_layer(unsigned lyr, const std::string& path) {
unsigned i = lyr;
assert(i < m_layers_rst.size());
char lyrnum[6];
std::sprintf(lyrnum, "%.5d", lyr);
std::string loc = path + "layer" + lyrnum + ".png";
std::fstream out(loc, std::fstream::out | std::fstream::binary);
if(out.good()) {
m_layers_rst[i].raster.save(out, Raster::Compression::PNG);
} else {
BOOST_LOG_TRIVIAL(error) << "Can't create file for layer";
}
out.close();
m_layers_rst[i].raster.reset();
}
void set_statistics(const std::vector<double> statistics)
{
if (statistics.size() != psCnt)
return;
m_used_material = statistics[psUsedMaterial];
m_cnt_fade_layers = int(statistics[psNumFade]);
m_cnt_slow_layers = int(statistics[psNumSlow]);
m_cnt_fast_layers = int(statistics[psNumFast]);
}
};
}
#endif // PRINTEXPORT_HPP

View file

@ -1797,7 +1797,7 @@ std::vector<ExPolygons> PrintObject::_slice_volumes(const std::vector<float> &z,
if (! volumes.empty()) {
// Compose mesh.
//FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them.
TriangleMesh mesh(volumes.front()->mesh);
TriangleMesh mesh(volumes.front()->mesh());
mesh.transform(volumes.front()->get_matrix(), true);
assert(mesh.repaired);
if (volumes.size() == 1 && mesh.repaired) {
@ -1806,7 +1806,7 @@ std::vector<ExPolygons> PrintObject::_slice_volumes(const std::vector<float> &z,
}
for (size_t idx_volume = 1; idx_volume < volumes.size(); ++ idx_volume) {
const ModelVolume &model_volume = *volumes[idx_volume];
TriangleMesh vol_mesh(model_volume.mesh);
TriangleMesh vol_mesh(model_volume.mesh());
vol_mesh.transform(model_volume.get_matrix(), true);
mesh.merge(vol_mesh);
}
@ -1815,10 +1815,11 @@ std::vector<ExPolygons> PrintObject::_slice_volumes(const std::vector<float> &z,
// apply XY shift
mesh.translate(- unscale<float>(m_copies_shift(0)), - unscale<float>(m_copies_shift(1)), 0);
// perform actual slicing
TriangleMeshSlicer mslicer;
const Print *print = this->print();
auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
mesh.require_shared_vertices(); // TriangleMeshSlicer needs this
// TriangleMeshSlicer needs shared vertices, also this calls the repair() function.
mesh.require_shared_vertices();
TriangleMeshSlicer mslicer;
mslicer.init(&mesh, callback);
mslicer.slice(z, float(m_config.slice_closing_radius.value), &layers, callback);
m_print->throw_if_canceled();
@ -1832,7 +1833,7 @@ std::vector<ExPolygons> PrintObject::_slice_volume(const std::vector<float> &z,
std::vector<ExPolygons> layers;
// Compose mesh.
//FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them.
TriangleMesh mesh(volume.mesh);
TriangleMesh mesh(volume.mesh());
mesh.transform(volume.get_matrix(), true);
if (mesh.repaired) {
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
@ -1846,7 +1847,8 @@ std::vector<ExPolygons> PrintObject::_slice_volume(const std::vector<float> &z,
TriangleMeshSlicer mslicer;
const Print *print = this->print();
auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
mesh.require_shared_vertices(); // TriangleMeshSlicer needs this
// TriangleMeshSlicer needs the shared vertices.
mesh.require_shared_vertices();
mslicer.init(&mesh, callback);
mslicer.slice(z, float(m_config.slice_closing_radius.value), &layers, callback);
m_print->throw_if_canceled();

View file

@ -1,5 +1,10 @@
#include "Rasterizer.hpp"
#include <ExPolygon.hpp>
#ifndef SLARASTER_CPP
#define SLARASTER_CPP
#include <functional>
#include "SLARaster.hpp"
#include "libslic3r/ExPolygon.hpp"
#include <libnest2d/backends/clipper/clipper_polygon.hpp>
// For rasterizing
@ -19,11 +24,13 @@
namespace Slic3r {
const Polygon& contour(const ExPolygon& p) { return p.contour; }
const ClipperLib::Path& contour(const ClipperLib::Polygon& p) { return p.Contour; }
inline const Polygon& contour(const ExPolygon& p) { return p.contour; }
inline const ClipperLib::Path& contour(const ClipperLib::Polygon& p) { return p.Contour; }
const Polygons& holes(const ExPolygon& p) { return p.holes; }
const ClipperLib::Paths& holes(const ClipperLib::Polygon& p) { return p.Holes; }
inline const Polygons& holes(const ExPolygon& p) { return p.holes; }
inline const ClipperLib::Paths& holes(const ClipperLib::Polygon& p) { return p.Holes; }
namespace sla {
class Raster::Impl {
public:
@ -39,7 +46,7 @@ public:
static const TPixel ColorWhite;
static const TPixel ColorBlack;
using Origin = Raster::Origin;
using Format = Raster::Format;
private:
Raster::Resolution m_resolution;
@ -52,16 +59,21 @@ private:
TRendererAA m_renderer;
std::function<double(double)> m_gammafn;
Origin m_o;
std::array<bool, 2> m_mirror;
Format m_fmt = Format::PNG;
inline void flipy(agg::path_storage& path) const {
path.flip_y(0, m_resolution.height_px);
}
inline void flipx(agg::path_storage& path) const {
path.flip_x(0, m_resolution.width_px);
}
public:
inline Impl(const Raster::Resolution& res, const Raster::PixelDim &pd,
Origin o, double gamma = 1.0):
const std::array<bool, 2>& mirror, double gamma = 1.0):
m_resolution(res),
// m_pxdim(pd),
m_pxdim_scaled(SCALING_FACTOR / pd.w_mm, SCALING_FACTOR / pd.h_mm),
@ -72,7 +84,7 @@ public:
m_pixfmt(m_rbuf),
m_raw_renderer(m_pixfmt),
m_renderer(m_raw_renderer),
m_o(o)
m_mirror(mirror)
{
m_renderer.color(ColorWhite);
@ -81,6 +93,19 @@ public:
clear();
}
inline Impl(const Raster::Resolution& res,
const Raster::PixelDim &pd,
Format fmt,
double gamma = 1.0):
Impl(res, pd, {false, false}, gamma)
{
switch (fmt) {
case Format::PNG: m_mirror = {false, true}; break;
case Format::RAW: m_mirror = {false, false}; break;
}
m_fmt = fmt;
}
template<class P> void draw(const P &poly) {
agg::rasterizer_scanline_aa<> ras;
@ -89,14 +114,16 @@ public:
ras.gamma(m_gammafn);
auto&& path = to_path(contour(poly));
if(m_o == Origin::TOP_LEFT) flipy(path);
if(m_mirror[X]) flipx(path);
if(m_mirror[Y]) flipy(path);
ras.add_path(path);
for(auto& h : holes(poly)) {
auto&& holepath = to_path(h);
if(m_o == Origin::TOP_LEFT) flipy(holepath);
if(m_mirror[X]) flipx(holepath);
if(m_mirror[Y]) flipy(holepath);
ras.add_path(holepath);
}
@ -108,11 +135,11 @@ public:
}
inline TBuffer& buffer() { return m_buf; }
inline Format format() const { return m_fmt; }
inline const Raster::Resolution resolution() { return m_resolution; }
inline Origin origin() const /*noexcept*/ { return m_o; }
private:
inline double getPx(const Point& p) {
return p(0) * m_pxdim_scaled.w_mm;
@ -154,30 +181,30 @@ private:
const Raster::Impl::TPixel Raster::Impl::ColorWhite = Raster::Impl::TPixel(255);
const Raster::Impl::TPixel Raster::Impl::ColorBlack = Raster::Impl::TPixel(0);
Raster::Raster(const Resolution &r, const PixelDim &pd, Origin o, double g):
m_impl(new Impl(r, pd, o, g)) {}
template<> Raster::Raster() { reset(); };
Raster::~Raster() = default;
Raster::Raster() {}
// Raster::Raster(Raster &&m) = default;
// Raster& Raster::operator=(Raster&&) = default;
Raster::~Raster() {}
Raster::Raster(Raster &&m):
m_impl(std::move(m.m_impl)) {}
void Raster::reset(const Raster::Resolution &r, const Raster::PixelDim &pd,
double g)
{
// Free up the unnecessary memory and make sure it stays clear after
// an exception
auto o = m_impl? m_impl->origin() : Origin::TOP_LEFT;
reset(r, pd, o, g);
// FIXME: remove after migrating to higher version of windows compiler
Raster::Raster(Raster &&m): m_impl(std::move(m.m_impl)) {}
Raster& Raster::operator=(Raster &&m) {
m_impl = std::move(m.m_impl); return *this;
}
void Raster::reset(const Raster::Resolution &r, const Raster::PixelDim &pd,
Raster::Origin o, double gamma)
Format fmt, double gamma)
{
m_impl.reset();
m_impl.reset(new Impl(r, pd, o, gamma));
m_impl.reset(new Impl(r, pd, fmt, gamma));
}
void Raster::reset(const Raster::Resolution &r, const Raster::PixelDim &pd,
const std::array<bool, 2>& mirror, double gamma)
{
m_impl.reset();
m_impl.reset(new Impl(r, pd, mirror, gamma));
}
void Raster::reset()
@ -208,13 +235,13 @@ void Raster::draw(const ClipperLib::Polygon &poly)
m_impl->draw(poly);
}
void Raster::save(std::ostream& stream, Compression comp)
void Raster::save(std::ostream& stream, Format fmt)
{
assert(m_impl);
if(!stream.good()) return;
switch(comp) {
case Compression::PNG: {
switch(fmt) {
case Format::PNG: {
auto& b = m_impl->buffer();
size_t out_len = 0;
void * rawdata = tdefl_write_image_to_png_file_in_memory(
@ -231,7 +258,7 @@ void Raster::save(std::ostream& stream, Compression comp)
break;
}
case Compression::RAW: {
case Format::RAW: {
stream << "P5 "
<< m_impl->resolution().width_px << " "
<< m_impl->resolution().height_px << " "
@ -244,14 +271,19 @@ void Raster::save(std::ostream& stream, Compression comp)
}
}
RawBytes Raster::save(Raster::Compression comp)
void Raster::save(std::ostream &stream)
{
save(stream, m_impl->format());
}
RawBytes Raster::save(Format fmt)
{
assert(m_impl);
std::vector<std::uint8_t> data; size_t s = 0;
switch(comp) {
case Compression::PNG: {
switch(fmt) {
case Format::PNG: {
void *rawdata = tdefl_write_image_to_png_file_in_memory(
m_impl->buffer().data(),
int(resolution().width_px),
@ -265,7 +297,7 @@ RawBytes Raster::save(Raster::Compression comp)
MZ_FREE(rawdata);
break;
}
case Compression::RAW: {
case Format::RAW: {
auto header = std::string("P5 ") +
std::to_string(m_impl->resolution().width_px) + " " +
std::to_string(m_impl->resolution().height_px) + " " + "255 ";
@ -286,4 +318,12 @@ RawBytes Raster::save(Raster::Compression comp)
return {std::move(data)};
}
RawBytes Raster::save()
{
return save(m_impl->format());
}
}
}
#endif // SLARASTER_CPP

View file

@ -1,17 +1,21 @@
#ifndef RASTERIZER_HPP
#define RASTERIZER_HPP
#ifndef SLARASTER_HPP
#define SLARASTER_HPP
#include <ostream>
#include <memory>
#include <vector>
#include <array>
#include <utility>
#include <cstdint>
namespace ClipperLib { struct Polygon; }
namespace Slic3r {
namespace Slic3r {
class ExPolygon;
namespace sla {
// Raw byte buffer paired with its size. Suitable for compressed PNG data.
class RawBytes {
@ -23,15 +27,18 @@ public:
size_t size() const { return m_buffer.size(); }
const uint8_t * data() { return m_buffer.data(); }
RawBytes(const RawBytes&) = delete;
RawBytes& operator=(const RawBytes&) = delete;
// /////////////////////////////////////////////////////////////////////////
// FIXME: the following is needed for MSVC2013 compatibility
// /////////////////////////////////////////////////////////////////////////
RawBytes(const RawBytes&) = delete;
RawBytes(RawBytes&& mv) : m_buffer(std::move(mv.m_buffer)) {}
// RawBytes(RawBytes&&) = default;
// RawBytes& operator=(RawBytes&&) = default;
RawBytes& operator=(const RawBytes&) = delete;
RawBytes(RawBytes&& mv) : m_buffer(std::move(mv.m_buffer)) {}
RawBytes& operator=(RawBytes&& mv) {
m_buffer = std::move(mv.m_buffer);
return *this;
@ -54,28 +61,19 @@ class Raster {
public:
/// Supported compression types
enum class Compression {
enum class Format {
RAW, //!> Uncompressed pixel data
PNG //!> PNG compression
};
/// The Rasterizer expects the input polygons to have their coordinate
/// system origin in the bottom left corner. If the raster is then
/// configured with the TOP_LEFT origin parameter (in the constructor) than
/// it will flip the Y axis in output to maintain the correct orientation.
/// This is the default case with PNG images. They have the origin in the
/// top left corner. Without the flipping, the image would be upside down
/// with the scaled (clipper) coordinate system of the input polygons.
enum class Origin {
TOP_LEFT,
BOTTOM_LEFT
};
/// Type that represents a resolution in pixels.
struct Resolution {
unsigned width_px;
unsigned height_px;
inline Resolution(unsigned w, unsigned h): width_px(w), height_px(h) {}
inline Resolution(unsigned w = 0, unsigned h = 0):
width_px(w), height_px(h) {}
inline unsigned pixels() const /*noexcept*/ {
return width_px * height_px;
}
@ -85,24 +83,34 @@ public:
struct PixelDim {
double w_mm;
double h_mm;
inline PixelDim(double px_width_mm, double px_height_mm ):
inline PixelDim(double px_width_mm = 0.0, double px_height_mm = 0.0):
w_mm(px_width_mm), h_mm(px_height_mm) {}
};
/// Constructor taking the resolution and the pixel dimension.
Raster(const Resolution& r, const PixelDim& pd,
Origin o = Origin::BOTTOM_LEFT, double gamma = 1.0);
template <class...Args> Raster(Args...args) {
reset(std::forward<Args>(args)...);
}
Raster();
Raster(const Raster& cpy) = delete;
Raster& operator=(const Raster& cpy) = delete;
Raster(Raster&& m);
Raster& operator=(Raster&&);
~Raster();
/// Reallocated everything for the given resolution and pixel dimension.
void reset(const Resolution& r, const PixelDim& pd, double gamma = 1.0);
void reset(const Resolution& r, const PixelDim& pd, Origin o, double gamma);
/// The third parameter is either the X, Y mirroring or a supported format
/// for which the correct mirroring will be configured.
void reset(const Resolution&,
const PixelDim&,
const std::array<bool, 2>& mirror,
double gamma = 1.0);
void reset(const Resolution& r,
const PixelDim& pd,
Format o,
double gamma = 1.0);
/**
* Release the allocated resources. Drawing in this state ends in
* unspecified behavior.
@ -119,11 +127,24 @@ public:
void draw(const ExPolygon& poly);
void draw(const ClipperLib::Polygon& poly);
// Saving the raster:
// It is possible to override the format given in the constructor but
// be aware that the mirroring will not be modified.
/// Save the raster on the specified stream.
void save(std::ostream& stream, Compression comp = Compression::RAW);
void save(std::ostream& stream, Format);
void save(std::ostream& stream);
RawBytes save(Compression comp = Compression::RAW);
/// Save into a continuous byte stream which is returned.
RawBytes save(Format fmt);
RawBytes save();
};
}
#endif // RASTERIZER_HPP
// This prevents the duplicate default constructor warning on MSVC2013
template<> Raster::Raster();
} // sla
} // Slic3r
#endif // SLARASTER_HPP

View file

@ -0,0 +1,136 @@
#include "SLARasterWriter.hpp"
#include "libslic3r/Zipper.hpp"
#include "ExPolygon.hpp"
#include <libnest2d/backends/clipper/clipper_polygon.hpp>
#include <boost/log/trivial.hpp>
#include <boost/filesystem/path.hpp>
namespace Slic3r { namespace sla {
std::string SLARasterWriter::createIniContent(const std::string& projectname) const
{
auto expt_str = std::to_string(m_exp_time_s);
auto expt_first_str = std::to_string(m_exp_time_first_s);
auto layerh_str = std::to_string(m_layer_height);
const std::string cnt_fade_layers = std::to_string(m_cnt_fade_layers);
const std::string cnt_slow_layers = std::to_string(m_cnt_slow_layers);
const std::string cnt_fast_layers = std::to_string(m_cnt_fast_layers);
const std::string used_material = std::to_string(m_used_material);
return std::string(
"action = print\n"
"jobDir = ") + projectname + "\n" +
"expTime = " + expt_str + "\n"
"expTimeFirst = " + expt_first_str + "\n"
"numFade = " + cnt_fade_layers + "\n"
"layerHeight = " + layerh_str + "\n"
"usedMaterial = " + used_material + "\n"
"numSlow = " + cnt_slow_layers + "\n"
"numFast = " + cnt_fast_layers + "\n";
}
void SLARasterWriter::flpXY(ClipperLib::Polygon &poly)
{
for(auto& p : poly.Contour) std::swap(p.X, p.Y);
std::reverse(poly.Contour.begin(), poly.Contour.end());
for(auto& h : poly.Holes) {
for(auto& p : h) std::swap(p.X, p.Y);
std::reverse(h.begin(), h.end());
}
}
void SLARasterWriter::flpXY(ExPolygon &poly)
{
for(auto& p : poly.contour.points) p = Point(p.y(), p.x());
std::reverse(poly.contour.points.begin(), poly.contour.points.end());
for(auto& h : poly.holes) {
for(auto& p : h.points) p = Point(p.y(), p.x());
std::reverse(h.points.begin(), h.points.end());
}
}
SLARasterWriter::SLARasterWriter(const SLAPrinterConfig &cfg,
const SLAMaterialConfig &mcfg,
double layer_height)
{
double w = cfg.display_width.getFloat();
double h = cfg.display_height.getFloat();
auto pw = unsigned(cfg.display_pixels_x.getInt());
auto ph = unsigned(cfg.display_pixels_y.getInt());
m_mirror[X] = cfg.display_mirror_x.getBool();
// PNG raster will implicitly do an Y mirror
m_mirror[Y] = ! cfg.display_mirror_y.getBool();
auto ro = cfg.display_orientation.getInt();
if(ro == roPortrait) {
std::swap(w, h);
std::swap(pw, ph);
m_o = roPortrait;
// XY flipping implicitly does an X mirror
m_mirror[X] = ! m_mirror[X];
} else m_o = roLandscape;
m_res = Raster::Resolution(pw, ph);
m_pxdim = Raster::PixelDim(w/pw, h/ph);
m_exp_time_s = mcfg.exposure_time.getFloat();
m_exp_time_first_s = mcfg.initial_exposure_time.getFloat();
m_layer_height = layer_height;
m_gamma = cfg.gamma_correction.getFloat();
}
void SLARasterWriter::save(const std::string &fpath, const std::string &prjname)
{
try {
Zipper zipper(fpath); // zipper with no compression
std::string project = prjname.empty()?
boost::filesystem::path(fpath).stem().string() : prjname;
zipper.add_entry("config.ini");
zipper << createIniContent(project);
for(unsigned i = 0; i < m_layers_rst.size(); i++)
{
if(m_layers_rst[i].rawbytes.size() > 0) {
char lyrnum[6];
std::sprintf(lyrnum, "%.5d", i);
auto zfilename = project + lyrnum + ".png";
// Add binary entry to the zipper
zipper.add_entry(zfilename,
m_layers_rst[i].rawbytes.data(),
m_layers_rst[i].rawbytes.size());
}
}
zipper.finalize();
} catch(std::exception& e) {
BOOST_LOG_TRIVIAL(error) << e.what();
// Rethrow the exception
throw;
}
}
void SLARasterWriter::set_statistics(const std::vector<double> statistics)
{
if (statistics.size() != psCnt)
return;
m_used_material = statistics[psUsedMaterial];
m_cnt_fade_layers = int(statistics[psNumFade]);
m_cnt_slow_layers = int(statistics[psNumSlow]);
m_cnt_fast_layers = int(statistics[psNumFast]);
}
} // namespace sla
} // namespace Slic3r

View file

@ -0,0 +1,167 @@
#ifndef SLARASTERWRITER_HPP
#define SLARASTERWRITER_HPP
// For png export of the sliced model
#include <fstream>
#include <sstream>
#include <vector>
#include <array>
#include "libslic3r/PrintConfig.hpp"
#include "SLARaster.hpp"
namespace Slic3r { namespace sla {
// Implementation for PNG raster output
// Be aware that if a large number of layers are allocated, it can very well
// exhaust the available memory especially on 32 bit platform.
// This class is designed to be used in parallel mode. Layers have an ID and
// each layer can be written and compressed independently (in parallel).
// At the end when all layers where written, the save method can be used to
// write out the result into a zipped archive.
class SLARasterWriter
{
public:
enum RasterOrientation {
roLandscape,
roPortrait
};
// Used for addressing parameters of set_statistics()
enum ePrintStatistics
{
psUsedMaterial = 0,
psNumFade,
psNumSlow,
psNumFast,
psCnt
};
private:
// A struct to bind the raster image data and its compressed bytes together.
struct Layer {
Raster raster;
RawBytes rawbytes;
Layer() = default;
Layer(const Layer&) = delete; // The image is big, do not copy by accident
Layer& operator=(const Layer&) = delete;
// /////////////////////////////////////////////////////////////////////
// FIXME: the following is needed for MSVC2013 compatibility
// /////////////////////////////////////////////////////////////////////
// Layer(Layer&& m) = default;
// Layer& operator=(Layer&&) = default;
Layer(Layer &&m):
raster(std::move(m.raster)), rawbytes(std::move(m.rawbytes)) {}
Layer& operator=(Layer &&m) {
raster = std::move(m.raster); rawbytes = std::move(m.rawbytes);
return *this;
}
};
// We will save the compressed PNG data into RawBytes type buffers in
// parallel. Later we can write every layer to the disk sequentially.
std::vector<Layer> m_layers_rst;
Raster::Resolution m_res;
Raster::PixelDim m_pxdim;
double m_exp_time_s = .0, m_exp_time_first_s = .0;
double m_layer_height = .0;
RasterOrientation m_o = roPortrait;
std::array<bool, 2> m_mirror;
double m_gamma;
double m_used_material = 0.0;
int m_cnt_fade_layers = 0;
int m_cnt_slow_layers = 0;
int m_cnt_fast_layers = 0;
std::string createIniContent(const std::string& projectname) const;
static void flpXY(ClipperLib::Polygon& poly);
static void flpXY(ExPolygon& poly);
public:
SLARasterWriter(const SLAPrinterConfig& cfg,
const SLAMaterialConfig& mcfg,
double layer_height);
SLARasterWriter(const SLARasterWriter& ) = delete;
SLARasterWriter& operator=(const SLARasterWriter&) = delete;
// /////////////////////////////////////////////////////////////////////////
// FIXME: the following is needed for MSVC2013 compatibility
// /////////////////////////////////////////////////////////////////////////
// SLARasterWriter(SLARasterWriter&& m) = default;
// SLARasterWriter& operator=(SLARasterWriter&&) = default;
SLARasterWriter(SLARasterWriter&& m):
m_layers_rst(std::move(m.m_layers_rst)),
m_res(m.m_res),
m_pxdim(m.m_pxdim),
m_exp_time_s(m.m_exp_time_s),
m_exp_time_first_s(m.m_exp_time_first_s),
m_layer_height(m.m_layer_height),
m_o(m.m_o),
m_mirror(std::move(m.m_mirror)),
m_gamma(m.m_gamma),
m_used_material(m.m_used_material),
m_cnt_fade_layers(m.m_cnt_fade_layers),
m_cnt_slow_layers(m.m_cnt_slow_layers),
m_cnt_fast_layers(m.m_cnt_fast_layers)
{}
// /////////////////////////////////////////////////////////////////////////
inline void layers(unsigned cnt) { if(cnt > 0) m_layers_rst.resize(cnt); }
inline unsigned layers() const { return unsigned(m_layers_rst.size()); }
template<class Poly> void draw_polygon(const Poly& p, unsigned lyr) {
assert(lyr < m_layers_rst.size());
if(m_o == roPortrait) {
Poly poly(p); flpXY(poly);
m_layers_rst[lyr].raster.draw(poly);
}
else m_layers_rst[lyr].raster.draw(p);
}
inline void begin_layer(unsigned lyr) {
if(m_layers_rst.size() <= lyr) m_layers_rst.resize(lyr+1);
m_layers_rst[lyr].raster.reset(m_res, m_pxdim, m_mirror, m_gamma);
}
inline void begin_layer() {
m_layers_rst.emplace_back();
m_layers_rst.front().raster.reset(m_res, m_pxdim, m_mirror, m_gamma);
}
inline void finish_layer(unsigned lyr_id) {
assert(lyr_id < m_layers_rst.size());
m_layers_rst[lyr_id].rawbytes =
m_layers_rst[lyr_id].raster.save(Raster::Format::PNG);
m_layers_rst[lyr_id].raster.reset();
}
inline void finish_layer() {
if(!m_layers_rst.empty()) {
m_layers_rst.back().rawbytes =
m_layers_rst.back().raster.save(Raster::Format::PNG);
m_layers_rst.back().raster.reset();
}
}
void save(const std::string& fpath, const std::string& prjname = "");
void set_statistics(const std::vector<double> statistics);
};
} // namespace sla
} // namespace Slic3r
#endif // SLARASTERWRITER_HPP

View file

@ -44,7 +44,7 @@ std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
// call the status callback in each iteration but the actual value may be
// the same for subsequent iterations (status goes from 0 to 100 but
// iterations can be many more)
auto objfunc = [&emesh, &status, &statuscb, max_tries]
auto objfunc = [&emesh, &status, &statuscb, &stopcond, max_tries]
(double rx, double ry, double rz)
{
EigenMesh3D& m = emesh;
@ -91,7 +91,7 @@ std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
}
// report status
statuscb( unsigned(++status * 100.0/max_tries) );
if(!stopcond()) statuscb( unsigned(++status * 100.0/max_tries) );
return score;
};

View file

@ -121,19 +121,10 @@ EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh): m_aabb(new AABBImpl()) {
V.resize(3*stl.stats.number_of_facets, 3);
F.resize(stl.stats.number_of_facets, 3);
for (unsigned int i = 0; i < stl.stats.number_of_facets; ++i) {
const stl_facet* facet = stl.facet_start+i;
V(3*i+0, 0) = double(facet->vertex[0](0));
V(3*i+0, 1) = double(facet->vertex[0](1));
V(3*i+0, 2) = double(facet->vertex[0](2));
V(3*i+1, 0) = double(facet->vertex[1](0));
V(3*i+1, 1) = double(facet->vertex[1](1));
V(3*i+1, 2) = double(facet->vertex[1](2));
V(3*i+2, 0) = double(facet->vertex[2](0));
V(3*i+2, 1) = double(facet->vertex[2](1));
V(3*i+2, 2) = double(facet->vertex[2](2));
const stl_facet &facet = stl.facet_start[i];
V.block<1, 3>(3 * i + 0, 0) = facet.vertex[0].cast<double>();
V.block<1, 3>(3 * i + 1, 0) = facet.vertex[1].cast<double>();
V.block<1, 3>(3 * i + 2, 0) = facet.vertex[2].cast<double>();
F(i, 0) = int(3*i+0);
F(i, 1) = int(3*i+1);
F(i, 2) = int(3*i+2);

View file

@ -747,8 +747,8 @@ void SLAPrint::process()
{
// We apply the printer correction offset here.
if(clpr_offs != 0)
po.m_model_slices[id] =
offset_ex(po.m_model_slices[id], float(clpr_offs));
po.m_model_slices[id] =
offset_ex(po.m_model_slices[id], float(clpr_offs));
mit->set_model_slice_idx(po, id); ++mit;
}
@ -1014,7 +1014,7 @@ void SLAPrint::process()
namespace sl = libnest2d::shapelike; // For algorithms
// If the raster has vertical orientation, we will flip the coordinates
bool flpXY = m_printer_config.display_orientation.getInt() == SLADisplayOrientation::sladoPortrait;
// bool flpXY = m_printer_config.display_orientation.getInt() == SLADisplayOrientation::sladoPortrait;
// Set up custom union and diff functions for clipper polygons
auto polyunion = [] (const ClipperPolygons& subjects)
@ -1072,9 +1072,9 @@ void SLAPrint::process()
// get polygons for all instances in the object
auto get_all_polygons =
[flpXY](const ExPolygons& input_polygons,
const std::vector<SLAPrintObject::Instance>& instances,
bool is_lefthanded)
[](const ExPolygons& input_polygons,
const std::vector<SLAPrintObject::Instance>& instances,
bool is_lefthanded)
{
ClipperPolygons polygons;
polygons.reserve(input_polygons.size() * instances.size());
@ -1088,7 +1088,7 @@ void SLAPrint::process()
// We need to reverse if flpXY OR is_lefthanded is true but
// not if both are true which is a logical inequality (XOR)
bool needreverse = flpXY != is_lefthanded;
bool needreverse = /*flpXY !=*/ is_lefthanded;
// should be a move
poly.Contour.reserve(polygon.contour.size() + 1);
@ -1123,10 +1123,10 @@ void SLAPrint::process()
sl::translate(poly, ClipperPoint{instances[i].shift(X),
instances[i].shift(Y)});
if (flpXY) {
for(auto& p : poly.Contour) std::swap(p.X, p.Y);
for(auto& h : poly.Holes) for(auto& p : h) std::swap(p.X, p.Y);
}
// if (flpXY) {
// for(auto& p : poly.Contour) std::swap(p.X, p.Y);
// for(auto& h : poly.Holes) for(auto& p : h) std::swap(p.X, p.Y);
// }
polygons.emplace_back(std::move(poly));
}
@ -1295,35 +1295,11 @@ void SLAPrint::process()
auto rasterize = [this]() {
if(canceled()) return;
// collect all the keys
// If the raster has vertical orientation, we will flip the coordinates
bool flpXY = m_printer_config.display_orientation.getInt() ==
SLADisplayOrientation::sladoPortrait;
{ // create a raster printer for the current print parameters
// I don't know any better
auto& ocfg = m_objects.front()->m_config;
auto& matcfg = m_material_config;
auto& printcfg = m_printer_config;
double w = printcfg.display_width.getFloat();
double h = printcfg.display_height.getFloat();
auto pw = unsigned(printcfg.display_pixels_x.getInt());
auto ph = unsigned(printcfg.display_pixels_y.getInt());
double lh = ocfg.layer_height.getFloat();
double exp_t = matcfg.exposure_time.getFloat();
double iexp_t = matcfg.initial_exposure_time.getFloat();
double gamma = m_printer_config.gamma_correction.getFloat();
if(flpXY) { std::swap(w, h); std::swap(pw, ph); }
m_printer.reset(
new SLAPrinter(w, h, pw, ph, lh, exp_t, iexp_t,
flpXY? SLAPrinter::RO_PORTRAIT :
SLAPrinter::RO_LANDSCAPE,
gamma));
double layerh = m_default_object_config.layer_height.getFloat();
m_printer.reset(new SLAPrinter(m_printer_config,
m_material_config,
layerh));
}
// Allocate space for all the layers
@ -1511,6 +1487,8 @@ bool SLAPrint::invalidate_state_by_config_options(const std::vector<t_config_opt
"display_height",
"display_pixels_x",
"display_pixels_y",
"display_mirror_x",
"display_mirror_y",
"display_orientation"
};

View file

@ -3,11 +3,11 @@
#include <mutex>
#include "PrintBase.hpp"
#include "PrintExport.hpp"
//#include "PrintExport.hpp"
#include "SLA/SLARasterWriter.hpp"
#include "Point.hpp"
#include "MTUtils.hpp"
#include <libnest2d/backends/clipper/clipper_polygon.hpp>
#include "Zipper.hpp"
namespace Slic3r {
@ -326,37 +326,6 @@ struct SLAPrintStatistics
}
};
// The implementation of creating zipped archives with wxWidgets
template<> class LayerWriter<Zipper> {
Zipper m_zip;
public:
LayerWriter(const std::string& zipfile_path): m_zip(zipfile_path) {}
void next_entry(const std::string& fname) { m_zip.add_entry(fname); }
void binary_entry(const std::string& fname,
const std::uint8_t* buf,
size_t l)
{
m_zip.add_entry(fname, buf, l);
}
template<class T> inline LayerWriter& operator<<(T&& arg) {
m_zip << std::forward<T>(arg); return *this;
}
bool is_ok() const {
return true; // m_zip blows up if something goes wrong...
}
// After finalize, no writing to the archive will have an effect. The only
// valid operation is to dispose the object calling the destructor which
// should close the file. This method can throw and signal potential errors
// when flushing the archive. This is why its present.
void finalize() { m_zip.finalize(); }
};
/**
* @brief This class is the high level FSM for the SLA printing process.
*
@ -389,11 +358,10 @@ public:
// Returns true if the last step was finished with success.
bool finished() const override { return this->is_step_done(slaposSliceSupports) && this->Inherited::is_step_done(slapsRasterize); }
template<class Fmt = Zipper>
inline void export_raster(const std::string& fpath,
const std::string& projectname = "")
const std::string& projectname = "")
{
if(m_printer) m_printer->save<Fmt>(fpath, projectname);
if(m_printer) m_printer->save(fpath, projectname);
}
const PrintObjects& objects() const { return m_objects; }
@ -454,7 +422,7 @@ public:
const std::vector<PrintLayer>& print_layers() const { return m_printer_input; }
private:
using SLAPrinter = FilePrinter<FilePrinterFormat::SLA_PNGZIP>;
using SLAPrinter = sla::SLARasterWriter;
using SLAPrinterPtr = std::unique_ptr<SLAPrinter>;
// Implement same logic as in SLAPrintObject

View file

@ -227,7 +227,7 @@ std::vector<coordf_t> layer_height_profile_adaptive(
as.set_slicing_parameters(slicing_params);
for (const ModelVolume *volume : volumes)
if (volume->is_model_part())
as.add_mesh(&volume->mesh);
as.add_mesh(&volume->mesh());
as.prepare();
// 2) Generate layers using the algorithm of @platsch

View file

@ -27,8 +27,8 @@ void SlicingAdaptive::prepare()
nfaces_total += (*it_mesh)->stl.stats.number_of_facets;
m_faces.reserve(nfaces_total);
for (std::vector<const TriangleMesh*>::const_iterator it_mesh = m_meshes.begin(); it_mesh != m_meshes.end(); ++ it_mesh)
for (int i = 0; i < (*it_mesh)->stl.stats.number_of_facets; ++ i)
m_faces.push_back((*it_mesh)->stl.facet_start + i);
for (const stl_facet &face : (*it_mesh)->stl.facet_start)
m_faces.emplace_back(&face);
// 2) Sort faces lexicographically by their Z span.
std::sort(m_faces.begin(), m_faces.end(), [](const stl_facet *f1, const stl_facet *f2) {

View file

@ -42,20 +42,17 @@
namespace Slic3r {
TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd>& facets)
: repaired(false)
TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd>& facets) : repaired(false)
{
stl_initialize(&this->stl);
stl_file &stl = this->stl;
stl.error = 0;
stl.stats.type = inmemory;
// count facets and allocate memory
stl.stats.number_of_facets = facets.size();
stl.stats.number_of_facets = (uint32_t)facets.size();
stl.stats.original_num_facets = stl.stats.number_of_facets;
stl_allocate(&stl);
for (uint32_t i = 0; i < stl.stats.number_of_facets; i++) {
for (uint32_t i = 0; i < stl.stats.number_of_facets; ++ i) {
stl_facet facet;
facet.vertex[0] = points[facets[i](0)].cast<float>();
facet.vertex[1] = points[facets[i](1)].cast<float>();
@ -73,57 +70,37 @@ TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd>& f
stl_get_size(&stl);
}
TriangleMesh& TriangleMesh::operator=(const TriangleMesh &other)
{
stl_close(&this->stl);
this->stl = other.stl;
this->repaired = other.repaired;
this->stl.heads = nullptr;
this->stl.tail = nullptr;
this->stl.error = other.stl.error;
if (other.stl.facet_start != nullptr) {
this->stl.facet_start = (stl_facet*)calloc(other.stl.stats.number_of_facets, sizeof(stl_facet));
std::copy(other.stl.facet_start, other.stl.facet_start + other.stl.stats.number_of_facets, this->stl.facet_start);
}
if (other.stl.neighbors_start != nullptr) {
this->stl.neighbors_start = (stl_neighbors*)calloc(other.stl.stats.number_of_facets, sizeof(stl_neighbors));
std::copy(other.stl.neighbors_start, other.stl.neighbors_start + other.stl.stats.number_of_facets, this->stl.neighbors_start);
}
if (other.stl.v_indices != nullptr) {
this->stl.v_indices = (v_indices_struct*)calloc(other.stl.stats.number_of_facets, sizeof(v_indices_struct));
std::copy(other.stl.v_indices, other.stl.v_indices + other.stl.stats.number_of_facets, this->stl.v_indices);
}
if (other.stl.v_shared != nullptr) {
this->stl.v_shared = (stl_vertex*)calloc(other.stl.stats.shared_vertices, sizeof(stl_vertex));
std::copy(other.stl.v_shared, other.stl.v_shared + other.stl.stats.shared_vertices, this->stl.v_shared);
}
return *this;
}
// #define SLIC3R_TRACE_REPAIR
void TriangleMesh::repair()
void TriangleMesh::repair(bool update_shared_vertices)
{
if (this->repaired) return;
if (this->repaired) {
if (update_shared_vertices)
this->require_shared_vertices();
return;
}
// admesh fails when repairing empty meshes
if (this->stl.stats.number_of_facets == 0) return;
if (this->stl.stats.number_of_facets == 0)
return;
BOOST_LOG_TRIVIAL(debug) << "TriangleMesh::repair() started";
// checking exact
#ifdef SLIC3R_TRACE_REPAIR
BOOST_LOG_TRIVIAL(trace) << "\tstl_check_faces_exact";
#endif /* SLIC3R_TRACE_REPAIR */
assert(stl_validate(&this->stl));
stl_check_facets_exact(&stl);
assert(stl_validate(&this->stl));
stl.stats.facets_w_1_bad_edge = (stl.stats.connected_facets_2_edge - stl.stats.connected_facets_3_edge);
stl.stats.facets_w_2_bad_edge = (stl.stats.connected_facets_1_edge - stl.stats.connected_facets_2_edge);
stl.stats.facets_w_3_bad_edge = (stl.stats.number_of_facets - stl.stats.connected_facets_1_edge);
// checking nearby
//int last_edges_fixed = 0;
float tolerance = stl.stats.shortest_edge;
float increment = stl.stats.bounding_diameter / 10000.0;
float tolerance = (float)stl.stats.shortest_edge;
float increment = (float)stl.stats.bounding_diameter / 10000.0f;
int iterations = 2;
if (stl.stats.connected_facets_3_edge < (int)stl.stats.number_of_facets) {
for (int i = 0; i < iterations; i++) {
@ -141,6 +118,7 @@ void TriangleMesh::repair()
}
}
}
assert(stl_validate(&this->stl));
// remove_unconnected
if (stl.stats.connected_facets_3_edge < (int)stl.stats.number_of_facets) {
@ -148,6 +126,7 @@ void TriangleMesh::repair()
BOOST_LOG_TRIVIAL(trace) << "\tstl_remove_unconnected_facets";
#endif /* SLIC3R_TRACE_REPAIR */
stl_remove_unconnected_facets(&stl);
assert(stl_validate(&this->stl));
}
// fill_holes
@ -168,28 +147,38 @@ void TriangleMesh::repair()
BOOST_LOG_TRIVIAL(trace) << "\tstl_fix_normal_directions";
#endif /* SLIC3R_TRACE_REPAIR */
stl_fix_normal_directions(&stl);
assert(stl_validate(&this->stl));
// normal_values
#ifdef SLIC3R_TRACE_REPAIR
BOOST_LOG_TRIVIAL(trace) << "\tstl_fix_normal_values";
#endif /* SLIC3R_TRACE_REPAIR */
stl_fix_normal_values(&stl);
assert(stl_validate(&this->stl));
// always calculate the volume and reverse all normals if volume is negative
#ifdef SLIC3R_TRACE_REPAIR
BOOST_LOG_TRIVIAL(trace) << "\tstl_calculate_volume";
#endif /* SLIC3R_TRACE_REPAIR */
stl_calculate_volume(&stl);
assert(stl_validate(&this->stl));
// neighbors
#ifdef SLIC3R_TRACE_REPAIR
BOOST_LOG_TRIVIAL(trace) << "\tstl_verify_neighbors";
#endif /* SLIC3R_TRACE_REPAIR */
stl_verify_neighbors(&stl);
assert(stl_validate(&this->stl));
this->repaired = true;
BOOST_LOG_TRIVIAL(debug) << "TriangleMesh::repair() finished";
// This call should be quite cheap, a lot of code requires the indexed_triangle_set data structure,
// and it is risky to generate such a structure once the meshes are shared. Do it now.
this->its.clear();
if (update_shared_vertices)
this->require_shared_vertices();
}
float TriangleMesh::volume()
@ -249,20 +238,24 @@ bool TriangleMesh::needed_repair() const
void TriangleMesh::WriteOBJFile(const char* output_file)
{
stl_generate_shared_vertices(&stl);
stl_write_obj(&stl, output_file);
its_write_obj(this->its, output_file);
}
void TriangleMesh::scale(float factor)
{
stl_scale(&(this->stl), factor);
stl_invalidate_shared_vertices(&this->stl);
for (stl_vertex& v : this->its.vertices)
v *= factor;
}
void TriangleMesh::scale(const Vec3d &versor)
{
stl_scale_versor(&this->stl, versor.cast<float>());
stl_invalidate_shared_vertices(&this->stl);
for (stl_vertex& v : this->its.vertices) {
v.x() *= versor.x();
v.y() *= versor.y();
v.z() *= versor.z();
}
}
void TriangleMesh::translate(float x, float y, float z)
@ -270,7 +263,9 @@ void TriangleMesh::translate(float x, float y, float z)
if (x == 0.f && y == 0.f && z == 0.f)
return;
stl_translate_relative(&(this->stl), x, y, z);
stl_invalidate_shared_vertices(&this->stl);
stl_vertex shift(x, y, z);
for (stl_vertex& v : this->its.vertices)
v += shift;
}
void TriangleMesh::translate(const Vec3f &displacement)
@ -287,13 +282,15 @@ void TriangleMesh::rotate(float angle, const Axis &axis)
angle = Slic3r::Geometry::rad2deg(angle);
if (axis == X) {
stl_rotate_x(&(this->stl), angle);
stl_rotate_x(&this->stl, angle);
its_rotate_x(this->its, angle);
} else if (axis == Y) {
stl_rotate_y(&(this->stl), angle);
stl_rotate_y(&this->stl, angle);
its_rotate_y(this->its, angle);
} else if (axis == Z) {
stl_rotate_z(&(this->stl), angle);
stl_rotate_z(&this->stl, angle);
its_rotate_z(this->its, angle);
}
stl_invalidate_shared_vertices(&this->stl);
}
void TriangleMesh::rotate(float angle, const Vec3d& axis)
@ -305,39 +302,49 @@ void TriangleMesh::rotate(float angle, const Vec3d& axis)
Transform3d m = Transform3d::Identity();
m.rotate(Eigen::AngleAxisd(angle, axis_norm));
stl_transform(&stl, m);
its_transform(its, m);
}
void TriangleMesh::mirror(const Axis &axis)
{
if (axis == X) {
stl_mirror_yz(&this->stl);
for (stl_vertex &v : this->its.vertices)
v(0) *= -1.0;
} else if (axis == Y) {
stl_mirror_xz(&this->stl);
for (stl_vertex &v : this->its.vertices)
v(1) *= -1.0;
} else if (axis == Z) {
stl_mirror_xy(&this->stl);
for (stl_vertex &v : this->its.vertices)
v(2) *= -1.0;
}
stl_invalidate_shared_vertices(&this->stl);
}
void TriangleMesh::transform(const Transform3d& t, bool fix_left_handed)
{
stl_transform(&stl, t);
stl_invalidate_shared_vertices(&stl);
its_transform(its, t);
if (fix_left_handed && t.matrix().block(0, 0, 3, 3).determinant() < 0.) {
// Left handed transformation is being applied. It is a good idea to flip the faces and their normals.
this->repair();
this->repair(false);
stl_reverse_all_facets(&stl);
this->its.clear();
this->require_shared_vertices();
}
}
void TriangleMesh::transform(const Matrix3d& m, bool fix_left_handed)
{
stl_transform(&stl, m);
stl_invalidate_shared_vertices(&stl);
its_transform(its, m);
if (fix_left_handed && m.determinant() < 0.) {
// Left handed transformation is being applied. It is a good idea to flip the faces and their normals.
this->repair();
this->repair(false);
stl_reverse_all_facets(&stl);
this->its.clear();
this->require_shared_vertices();
}
}
@ -355,7 +362,8 @@ void TriangleMesh::rotate(double angle, Point* center)
return;
Vec2f c = center->cast<float>();
this->translate(-c(0), -c(1), 0);
stl_rotate_z(&(this->stl), (float)angle);
stl_rotate_z(&this->stl, (float)angle);
its_rotate_z(this->its, (float)angle);
this->translate(c(0), c(1), 0);
}
@ -435,9 +443,8 @@ TriangleMeshPtrs TriangleMesh::split() const
TriangleMesh* mesh = new TriangleMesh;
meshes.emplace_back(mesh);
mesh->stl.stats.type = inmemory;
mesh->stl.stats.number_of_facets = facets.size();
mesh->stl.stats.number_of_facets = (uint32_t)facets.size();
mesh->stl.stats.original_num_facets = mesh->stl.stats.number_of_facets;
stl_clear_error(&mesh->stl);
stl_allocate(&mesh->stl);
// Assign the facets to the new mesh.
@ -455,7 +462,7 @@ void TriangleMesh::merge(const TriangleMesh &mesh)
{
// reset stats and metadata
int number_of_facets = this->stl.stats.number_of_facets;
stl_invalidate_shared_vertices(&this->stl);
this->its.clear();
this->repaired = false;
// update facet count and allocate more memory
@ -477,13 +484,12 @@ ExPolygons TriangleMesh::horizontal_projection() const
{
Polygons pp;
pp.reserve(this->stl.stats.number_of_facets);
for (uint32_t i = 0; i < this->stl.stats.number_of_facets; ++ i) {
stl_facet* facet = &this->stl.facet_start[i];
for (const stl_facet &facet : this->stl.facet_start) {
Polygon p;
p.points.resize(3);
p.points[0] = Point::new_scale(facet->vertex[0](0), facet->vertex[0](1));
p.points[1] = Point::new_scale(facet->vertex[1](0), facet->vertex[1](1));
p.points[2] = Point::new_scale(facet->vertex[2](0), facet->vertex[2](1));
p.points[0] = Point::new_scale(facet.vertex[0](0), facet.vertex[0](1));
p.points[1] = Point::new_scale(facet.vertex[1](0), facet.vertex[1](1));
p.points[2] = Point::new_scale(facet.vertex[2](0), facet.vertex[2](1));
p.make_counter_clockwise(); // do this after scaling, as winding order might change while doing that
pp.emplace_back(p);
}
@ -495,11 +501,10 @@ ExPolygons TriangleMesh::horizontal_projection() const
// 2D convex hull of a 3D mesh projected into the Z=0 plane.
Polygon TriangleMesh::convex_hull()
{
this->require_shared_vertices();
Points pp;
pp.reserve(this->stl.stats.shared_vertices);
for (int i = 0; i < this->stl.stats.shared_vertices; ++ i) {
const stl_vertex &v = this->stl.v_shared[i];
pp.reserve(this->its.vertices.size());
for (size_t i = 0; i < this->its.vertices.size(); ++ i) {
const stl_vertex &v = this->its.vertices[i];
pp.emplace_back(Point::new_scale(v(0), v(1)));
}
return Slic3r::Geometry::convex_hull(pp);
@ -517,49 +522,47 @@ BoundingBoxf3 TriangleMesh::bounding_box() const
BoundingBoxf3 TriangleMesh::transformed_bounding_box(const Transform3d &trafo) const
{
BoundingBoxf3 bbox;
if (stl.v_shared == nullptr) {
if (this->its.vertices.empty()) {
// Using the STL faces.
for (size_t i = 0; i < this->facets_count(); ++ i) {
const stl_facet &facet = this->stl.facet_start[i];
for (const stl_facet &facet : this->stl.facet_start)
for (size_t j = 0; j < 3; ++ j)
bbox.merge(trafo * facet.vertex[j].cast<double>());
}
} else {
// Using the shared vertices should be a bit quicker than using the STL faces.
for (int i = 0; i < stl.stats.shared_vertices; ++ i)
bbox.merge(trafo * this->stl.v_shared[i].cast<double>());
for (const stl_vertex &v : this->its.vertices)
bbox.merge(trafo * v.cast<double>());
}
return bbox;
}
TriangleMesh TriangleMesh::convex_hull_3d() const
{
// Helper struct for qhull:
struct PointForQHull{
PointForQHull(float x_p, float y_p, float z_p) : x((realT)x_p), y((realT)y_p), z((realT)z_p) {}
realT x, y, z;
};
std::vector<PointForQHull> src_vertices;
// We will now fill the vector with input points for computation:
stl_facet* facet_ptr = stl.facet_start;
while (facet_ptr < stl.facet_start + stl.stats.number_of_facets)
{
for (int i = 0; i < 3; ++i)
{
const stl_vertex& v = facet_ptr->vertex[i];
src_vertices.emplace_back(v(0), v(1), v(2));
}
facet_ptr += 1;
}
// The qhull call:
orgQhull::Qhull qhull;
qhull.disableOutputStream(); // we want qhull to be quiet
try
std::vector<realT> src_vertices;
try
{
qhull.runQhull("", 3, (int)src_vertices.size(), (const realT*)(src_vertices.data()), "Qt");
if (this->has_shared_vertices()) {
#if REALfloat
qhull.runQhull("", 3, (int)this->its.vertices.size(), (const realT*)(this->its.vertices.front().data()), "Qt");
#else
src_vertices.reserve(this->its.vertices() * 3);
// We will now fill the vector with input points for computation:
for (const stl_vertex &v : ths->its.vertices.size())
for (int i = 0; i < 3; ++ i)
src_vertices.emplace_back(v(i));
qhull.runQhull("", 3, (int)src_vertices.size() / 3, src_vertices.data(), "Qt");
#endif
} else {
src_vertices.reserve(this->stl.facet_start.size() * 9);
// We will now fill the vector with input points for computation:
for (const stl_facet &f : this->stl.facet_start)
for (int i = 0; i < 3; ++ i)
for (int j = 0; j < 3; ++ j)
src_vertices.emplace_back(f.vertex[i](j));
qhull.runQhull("", 3, (int)src_vertices.size() / 3, src_vertices.data(), "Qt");
}
}
catch (...)
{
@ -587,34 +590,20 @@ TriangleMesh TriangleMesh::convex_hull_3d() const
TriangleMesh output_mesh(dst_vertices, facets);
output_mesh.repair();
output_mesh.require_shared_vertices();
return output_mesh;
}
void TriangleMesh::require_shared_vertices()
{
BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - start";
if (!this->repaired)
assert(stl_validate(&this->stl));
if (! this->repaired)
this->repair();
if (this->stl.v_shared == NULL) {
if (this->its.vertices.empty()) {
BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - stl_generate_shared_vertices";
stl_generate_shared_vertices(&(this->stl));
stl_generate_shared_vertices(&this->stl, this->its);
}
#ifdef _DEBUG
// Verify validity of neighborship data.
for (int facet_idx = 0; facet_idx < stl.stats.number_of_facets; ++facet_idx) {
const stl_neighbors &nbr = stl.neighbors_start[facet_idx];
const int *vertices = stl.v_indices[facet_idx].vertex;
for (int nbr_idx = 0; nbr_idx < 3; ++nbr_idx) {
int nbr_face = this->stl.neighbors_start[facet_idx].neighbor[nbr_idx];
if (nbr_face != -1) {
assert(
(stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 1) % 3] == vertices[(nbr_idx + 1) % 3] && stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 2) % 3] == vertices[nbr_idx]) ||
(stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 2) % 3] == vertices[(nbr_idx + 1) % 3] && stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 1) % 3] == vertices[nbr_idx]));
}
}
}
#endif /* _DEBUG */
assert(stl_validate(&this->stl, this->its));
BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - end";
}
@ -626,10 +615,9 @@ void TriangleMeshSlicer::init(const TriangleMesh *_mesh, throw_on_cancel_callbac
throw_on_cancel();
facets_edges.assign(_mesh->stl.stats.number_of_facets * 3, -1);
v_scaled_shared.assign(_mesh->stl.v_shared, _mesh->stl.v_shared + _mesh->stl.stats.shared_vertices);
// Scale the copied vertices.
for (int i = 0; i < this->mesh->stl.stats.shared_vertices; ++ i)
this->v_scaled_shared[i] *= float(1. / SCALING_FACTOR);
v_scaled_shared.assign(_mesh->its.vertices.size(), stl_vertex());
for (size_t i = 0; i < v_scaled_shared.size(); ++ i)
this->v_scaled_shared[i] = _mesh->its.vertices[i] / float(SCALING_FACTOR);
// Create a mapping from triangle edge into face.
struct EdgeToFace {
@ -649,8 +637,8 @@ void TriangleMeshSlicer::init(const TriangleMesh *_mesh, throw_on_cancel_callbac
for (uint32_t facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; ++ facet_idx)
for (int i = 0; i < 3; ++ i) {
EdgeToFace &e2f = edges_map[facet_idx*3+i];
e2f.vertex_low = this->mesh->stl.v_indices[facet_idx].vertex[i];
e2f.vertex_high = this->mesh->stl.v_indices[facet_idx].vertex[(i + 1) % 3];
e2f.vertex_low = this->mesh->its.indices[facet_idx][i];
e2f.vertex_high = this->mesh->its.indices[facet_idx][(i + 1) % 3];
e2f.face = facet_idx;
// 1 based indexing, to be always strictly positive.
e2f.face_edge = i + 1;
@ -818,7 +806,7 @@ void TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<Polygons
void TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLines>* lines, boost::mutex* lines_mutex,
const std::vector<float> &z) const
{
const stl_facet &facet = m_use_quaternion ? this->mesh->stl.facet_start[facet_idx].rotated(m_quaternion) : this->mesh->stl.facet_start[facet_idx];
const stl_facet &facet = m_use_quaternion ? (this->mesh->stl.facet_start.data() + facet_idx)->rotated(m_quaternion) : *(this->mesh->stl.facet_start.data() + facet_idx);
// find facet extents
const float min_z = fminf(facet.vertex[0](2), fminf(facet.vertex[1](2), facet.vertex[2](2)));
@ -887,7 +875,7 @@ TriangleMeshSlicer::FacetSliceType TriangleMeshSlicer::slice_facet(
// Reorder vertices so that the first one is the one with lowest Z.
// This is needed to get all intersection lines in a consistent order
// (external on the right of the line)
const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
const stl_triangle_vertex_indices &vertices = this->mesh->its.indices[facet_idx];
int i = (facet.vertex[1].z() == min_z) ? 1 : ((facet.vertex[2].z() == min_z) ? 2 : 0);
// These are used only if the cut plane is tilted:
@ -1714,7 +1702,7 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::cut - slicing object";
float scaled_z = scale_(z);
for (uint32_t facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; ++ facet_idx) {
stl_facet* facet = &this->mesh->stl.facet_start[facet_idx];
const stl_facet* facet = &this->mesh->stl.facet_start[facet_idx];
// find facet extents
float min_z = std::min(facet->vertex[0](2), std::min(facet->vertex[1](2), facet->vertex[2](2)));
@ -1736,10 +1724,12 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
if (min_z > z || (min_z == z && max_z > z)) {
// facet is above the cut plane and does not belong to it
if (upper != NULL) stl_add_facet(&upper->stl, facet);
if (upper != nullptr)
stl_add_facet(&upper->stl, facet);
} else if (max_z < z || (max_z == z && min_z < z)) {
// facet is below the cut plane and does not belong to it
if (lower != NULL) stl_add_facet(&lower->stl, facet);
if (lower != nullptr)
stl_add_facet(&lower->stl, facet);
} else if (min_z < z && max_z > z) {
// Facet is cut by the slicing plane.
@ -1786,22 +1776,24 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
quadrilateral[1].vertex[2] = v0v1;
if (v0(2) > z) {
if (upper != NULL) stl_add_facet(&upper->stl, &triangle);
if (lower != NULL) {
if (upper != nullptr)
stl_add_facet(&upper->stl, &triangle);
if (lower != nullptr) {
stl_add_facet(&lower->stl, &quadrilateral[0]);
stl_add_facet(&lower->stl, &quadrilateral[1]);
}
} else {
if (upper != NULL) {
if (upper != nullptr) {
stl_add_facet(&upper->stl, &quadrilateral[0]);
stl_add_facet(&upper->stl, &quadrilateral[1]);
}
if (lower != NULL) stl_add_facet(&lower->stl, &triangle);
if (lower != nullptr)
stl_add_facet(&lower->stl, &triangle);
}
}
}
if (upper != NULL) {
if (upper != nullptr) {
BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::cut - triangulating upper part";
ExPolygons section;
this->make_expolygons_simple(upper_lines, &section);
@ -1815,7 +1807,7 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
}
}
if (lower != NULL) {
if (lower != nullptr) {
BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::cut - triangulating lower part";
ExPolygons section;
this->make_expolygons_simple(lower_lines, &section);
@ -1905,10 +1897,10 @@ TriangleMesh make_cylinder(double r, double h, double fa)
//FIXME better to discretize an Icosahedron recursively http://www.songho.ca/opengl/gl_sphere.html
TriangleMesh make_sphere(double radius, double fa)
{
int sectorCount = ceil(2. * M_PI / fa);
int stackCount = ceil(M_PI / fa);
float sectorStep = 2. * M_PI / sectorCount;
float stackStep = M_PI / stackCount;
int sectorCount = int(ceil(2. * M_PI / fa));
int stackCount = int(ceil(M_PI / fa));
float sectorStep = float(2. * M_PI / sectorCount);
float stackStep = float(M_PI / stackCount);
Pointf3s vertices;
vertices.reserve((stackCount - 1) * sectorCount + 2);

View file

@ -21,19 +21,13 @@ typedef std::vector<TriangleMesh*> TriangleMeshPtrs;
class TriangleMesh
{
public:
TriangleMesh() : repaired(false) { stl_initialize(&this->stl); }
TriangleMesh() : repaired(false) {}
TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd> &facets);
TriangleMesh(const TriangleMesh &other) : repaired(false) { stl_initialize(&this->stl); *this = other; }
TriangleMesh(TriangleMesh &&other) : repaired(false) { stl_initialize(&this->stl); this->swap(other); }
~TriangleMesh() { clear(); }
TriangleMesh& operator=(const TriangleMesh &other);
TriangleMesh& operator=(TriangleMesh &&other) { this->swap(other); return *this; }
void clear() { stl_close(&this->stl); this->repaired = false; }
void swap(TriangleMesh &other) { std::swap(this->stl, other.stl); std::swap(this->repaired, other.repaired); }
void ReadSTLFile(const char* input_file) { stl_open(&stl, input_file); }
void write_ascii(const char* output_file) { stl_write_ascii(&this->stl, output_file, ""); }
void write_binary(const char* output_file) { stl_write_binary(&this->stl, output_file, ""); }
void repair();
void clear() { this->stl.clear(); this->its.clear(); this->repaired = false; }
bool ReadSTLFile(const char* input_file) { return stl_open(&stl, input_file); }
bool write_ascii(const char* output_file) { return stl_write_ascii(&this->stl, output_file, ""); }
bool write_binary(const char* output_file) { return stl_write_binary(&this->stl, output_file, ""); }
void repair(bool update_shared_vertices = true);
float volume();
void check_topology();
bool is_manifold() const { return this->stl.stats.connected_facets_3_edge == (int)this->stl.stats.number_of_facets; }
@ -58,7 +52,7 @@ public:
TriangleMeshPtrs split() const;
void merge(const TriangleMesh &mesh);
ExPolygons horizontal_projection() const;
const float* first_vertex() const { return this->stl.facet_start ? &this->stl.facet_start->vertex[0](0) : nullptr; }
const float* first_vertex() const { return this->stl.facet_start.empty() ? nullptr : &this->stl.facet_start.front().vertex[0](0); }
// 2D convex hull of a 3D mesh projected into the Z=0 plane.
Polygon convex_hull();
BoundingBoxf3 bounding_box() const;
@ -69,12 +63,13 @@ public:
void reset_repair_stats();
bool needed_repair() const;
void require_shared_vertices();
bool has_shared_vertices() const { return stl.v_shared != NULL; }
bool has_shared_vertices() const { return ! this->its.vertices.empty(); }
size_t facets_count() const { return this->stl.stats.number_of_facets; }
bool empty() const { return this->facets_count() == 0; }
bool is_splittable() const;
stl_file stl;
indexed_triangle_set its;
bool repaired;
private:

View file

@ -198,6 +198,11 @@ size_t Index::load(const boost::filesystem::path &path)
size_t idx_line = 0;
Version ver;
while (std::getline(ifs, line)) {
#ifndef _MSVCVER
// On a Unix system, getline does not remove the trailing carriage returns, if the index is shared over a Windows filesystem. Remove them manually.
while (! line.empty() && line.back() == '\r')
line.pop_back();
#endif
++ idx_line;
// Skip the initial white spaces.
char *key = left_trim(const_cast<char*>(line.data()));

View file

@ -241,8 +241,6 @@ GLVolume::GLVolume(float r, float g, float b, float a)
: m_transformed_bounding_box_dirty(true)
, m_sla_shift_z(0.0)
, m_transformed_convex_hull_bounding_box_dirty(true)
, m_convex_hull(nullptr)
, m_convex_hull_owned(false)
// geometry_id == 0 -> invalid
, geometry_id(std::pair<size_t, size_t>(0, 0))
, extruder_id(0)
@ -268,12 +266,6 @@ GLVolume::GLVolume(float r, float g, float b, float a)
set_render_color(r, g, b, a);
}
GLVolume::~GLVolume()
{
if (m_convex_hull_owned)
delete m_convex_hull;
}
void GLVolume::set_render_color(float r, float g, float b, float a)
{
render_color[0] = r;
@ -335,12 +327,6 @@ void GLVolume::set_color_from_model_volume(const ModelVolume *model_volume)
color[3] = model_volume->is_model_part() ? 1.f : 0.5f;
}
void GLVolume::set_convex_hull(const TriangleMesh *convex_hull, bool owned)
{
m_convex_hull = convex_hull;
m_convex_hull_owned = owned;
}
Transform3d GLVolume::world_matrix() const
{
Transform3d m = m_instance_transformation.get_matrix() * m_volume_transformation.get_matrix();
@ -377,7 +363,7 @@ const BoundingBoxf3& GLVolume::transformed_convex_hull_bounding_box() const
BoundingBoxf3 GLVolume::transformed_convex_hull_bounding_box(const Transform3d &trafo) const
{
return (m_convex_hull != nullptr && m_convex_hull->stl.stats.number_of_facets > 0) ?
return (m_convex_hull && m_convex_hull->stl.stats.number_of_facets > 0) ?
m_convex_hull->transformed_bounding_box(trafo) :
bounding_box.transformed(trafo);
}
@ -587,7 +573,7 @@ int GLVolumeCollection::load_object_volume(
const ModelVolume *model_volume = model_object->volumes[volume_idx];
const int extruder_id = model_volume->extruder_id();
const ModelInstance *instance = model_object->instances[instance_idx];
const TriangleMesh& mesh = model_volume->mesh;
const TriangleMesh& mesh = model_volume->mesh();
float color[4];
memcpy(color, GLVolume::MODEL_COLOR[((color_by == "volume") ? volume_idx : obj_idx) % 4], sizeof(float) * 3);
/* if (model_volume->is_support_blocker()) {
@ -613,7 +599,7 @@ int GLVolumeCollection::load_object_volume(
if (model_volume->is_model_part())
{
// GLVolume will reference a convex hull from model_volume!
v.set_convex_hull(&model_volume->get_convex_hull(), false);
v.set_convex_hull(model_volume->get_convex_hull_shared_ptr());
if (extruder_id != -1)
v.extruder_id = extruder_id;
}
@ -656,7 +642,10 @@ void GLVolumeCollection::load_object_auxiliary(
v.composite_id = GLVolume::CompositeID(obj_idx, - int(milestone), (int)instance_idx.first);
v.geometry_id = std::pair<size_t, size_t>(timestamp, model_instance.id().id);
// Create a copy of the convex hull mesh for each instance. Use a move operator on the last instance.
v.set_convex_hull((&instance_idx == &instances.back()) ? new TriangleMesh(std::move(convex_hull)) : new TriangleMesh(convex_hull), true);
if (&instance_idx == &instances.back())
v.set_convex_hull(std::move(convex_hull));
else
v.set_convex_hull(convex_hull);
v.is_modifier = false;
v.shader_outside_printer_detection_enabled = (milestone == slaposSupportTree);
v.set_instance_transformation(model_instance.get_transformation());

View file

@ -10,6 +10,7 @@
#include "slic3r/GUI/GLCanvas3DManager.hpp"
#include <functional>
#include <memory>
#ifndef NDEBUG
#define HAS_GLSAFE
@ -243,7 +244,6 @@ public:
GLVolume(float r = 1.f, float g = 1.f, float b = 1.f, float a = 1.f);
GLVolume(const float *rgba) : GLVolume(rgba[0], rgba[1], rgba[2], rgba[3]) {}
~GLVolume();
private:
Geometry::Transformation m_instance_transformation;
@ -255,10 +255,8 @@ private:
mutable BoundingBoxf3 m_transformed_bounding_box;
// Whether or not is needed to recalculate the transformed bounding box.
mutable bool m_transformed_bounding_box_dirty;
// Pointer to convex hull of the original mesh, if any.
// This object may or may not own the convex hull instance based on m_convex_hull_owned
const TriangleMesh* m_convex_hull;
bool m_convex_hull_owned;
// Convex hull of the volume, if any.
std::shared_ptr<const TriangleMesh> m_convex_hull;
// Bounding box of this volume, in unscaled coordinates.
mutable BoundingBoxf3 m_transformed_convex_hull_bounding_box;
// Whether or not is needed to recalculate the transformed convex hull bounding box.
@ -395,7 +393,9 @@ public:
double get_sla_shift_z() const { return m_sla_shift_z; }
void set_sla_shift_z(double z) { m_sla_shift_z = z; }
void set_convex_hull(const TriangleMesh *convex_hull, bool owned);
void set_convex_hull(std::shared_ptr<const TriangleMesh> convex_hull) { m_convex_hull = std::move(convex_hull); }
void set_convex_hull(const TriangleMesh &convex_hull) { m_convex_hull = std::make_shared<const TriangleMesh>(convex_hull); }
void set_convex_hull(TriangleMesh &&convex_hull) { m_convex_hull = std::make_shared<const TriangleMesh>(std::move(convex_hull)); }
int object_idx() const { return this->composite_id.object_id; }
int volume_idx() const { return this->composite_id.volume_id; }

View file

@ -89,7 +89,7 @@ void BackgroundSlicingProcess::process_fff()
// Perform the final post-processing of the export path by applying the print statistics over the file name.
std::string export_path = m_fff_print->print_statistics().finalize_output_path(m_export_path);
if (copy_file(m_temp_output_path, export_path) != 0)
throw std::runtime_error(_utf8(L("Copying of the temporary G-code to the output G-code failed")));
throw std::runtime_error(_utf8(L("Copying of the temporary G-code to the output G-code failed. Maybe the SD card is write locked?")));
m_print->set_status(95, _utf8(L("Running post-processing scripts")));
run_post_process_scripts(export_path, m_fff_print->config());
m_print->set_status(100, (boost::format(_utf8(L("G-code file exported to %1%"))) % export_path).str());

View file

@ -5524,7 +5524,7 @@ void GLCanvas3D::_load_sla_shells()
v.set_instance_offset(unscale(instance.shift(0), instance.shift(1), 0));
v.set_instance_rotation(Vec3d(0.0, 0.0, (double)instance.rotation));
v.set_instance_mirror(X, object.is_left_handed() ? -1. : 1.);
v.set_convex_hull(new TriangleMesh(std::move(mesh.convex_hull_3d())), true);
v.set_convex_hull(mesh.convex_hull_3d());
};
// adds objects' volumes

View file

@ -261,7 +261,7 @@ wxString ObjectList::get_mesh_errors_list(const int obj_idx, const int vol_idx /
const stl_stats& stats = vol_idx == -1 ?
(*m_objects)[obj_idx]->get_object_stl_stats() :
(*m_objects)[obj_idx]->volumes[vol_idx]->mesh.stl.stats;
(*m_objects)[obj_idx]->volumes[vol_idx]->mesh().stl.stats;
std::map<std::string, int> error_msg = {
{ L("degenerate facets"), stats.degenerate_facets },
@ -1597,7 +1597,7 @@ void ObjectList::load_generic_subobject(const std::string& type_name, const Mode
// First (any) GLVolume of the selected instance. They all share the same instance matrix.
const GLVolume* v = selection.get_volume(*selection.get_volume_idxs().begin());
// Transform the new modifier to be aligned with the print bed.
const BoundingBoxf3 mesh_bb = new_volume->mesh.bounding_box();
const BoundingBoxf3 mesh_bb = new_volume->mesh().bounding_box();
new_volume->set_transformation(volume_to_bed_transformation(v->get_instance_transformation(), mesh_bb));
// Set the modifier position.
auto offset = (type_name == "Slab") ?

View file

@ -92,6 +92,7 @@ void msw_rescale_word_local_combo(wxBitmapComboBox* combo)
combo->SetValue(selection);
}
ObjectManipulation::ObjectManipulation(wxWindow* parent) :
OG_Settings(parent, true)
#ifndef __APPLE__
@ -162,16 +163,71 @@ ObjectManipulation::ObjectManipulation(wxWindow* parent) :
const int field_width = 5;
// Mirror button size:
const int mirror_btn_width = 3;
// Legend for object modification
line = Line{ "", "" };
def.label = "";
def.type = coString;
def.width = field_width/*50*/;
def.width = field_width - mirror_btn_width;//field_width/*50*/;
// Load bitmaps to be used for the mirroring buttons:
m_mirror_bitmap_on = ScalableBitmap(parent, "mirroring_on.png");
m_mirror_bitmap_off = ScalableBitmap(parent, "mirroring_off.png");
m_mirror_bitmap_hidden = ScalableBitmap(parent, "mirroring_transparent.png");
for (const std::string axis : { "x", "y", "z" }) {
const std::string label = boost::algorithm::to_upper_copy(axis);
def.set_default_value(new ConfigOptionString{ " " + label });
Option option = Option(def, axis + "_axis_legend");
unsigned int axis_idx = (axis[0] - 'x'); // 0, 1 or 2
// We will add a button to toggle mirroring to each axis:
auto mirror_button = [=](wxWindow* parent) {
wxSize btn_size(em_unit(parent) * mirror_btn_width, em_unit(parent) * mirror_btn_width);
auto btn = new ScalableButton(parent, wxID_ANY, "mirroring_off.png", wxEmptyString, btn_size, wxDefaultPosition, wxBU_EXACTFIT | wxNO_BORDER | wxTRANSPARENT_WINDOW);
btn->SetToolTip(wxString::Format(_(L("Toggle %s axis mirroring")), label));
m_mirror_buttons[axis_idx].first = btn;
m_mirror_buttons[axis_idx].second = mbShown;
auto sizer = new wxBoxSizer(wxHORIZONTAL);
sizer->Add(btn);
btn->Bind(wxEVT_BUTTON, [=](wxCommandEvent &e) {
Axis axis = (Axis)(axis_idx + X);
if (m_mirror_buttons[axis_idx].second == mbHidden)
return;
GLCanvas3D* canvas = wxGetApp().plater()->canvas3D();
Selection& selection = canvas->get_selection();
if (selection.is_single_volume() || selection.is_single_modifier()) {
GLVolume* volume = const_cast<GLVolume*>(selection.get_volume(*selection.get_volume_idxs().begin()));
volume->set_volume_mirror(axis, -volume->get_volume_mirror(axis));
}
else if (selection.is_single_full_instance()) {
for (unsigned int idx : selection.get_volume_idxs()){
GLVolume* volume = const_cast<GLVolume*>(selection.get_volume(idx));
volume->set_instance_mirror(axis, -volume->get_instance_mirror(axis));
}
}
else
return;
// Update mirroring at the GLVolumes.
selection.synchronize_unselected_instances(Selection::SYNC_ROTATION_GENERAL);
selection.synchronize_unselected_volumes();
// Copy mirroring values from GLVolumes into Model (ModelInstance / ModelVolume), trigger background processing.
canvas->do_mirror();
canvas->set_as_dirty();
UpdateAndShow(true);
});
return sizer;
};
option.side_widget = mirror_button;
line.append_option(option);
}
line.near_label_widget = [this](wxWindow* parent) {
@ -190,8 +246,8 @@ ObjectManipulation::ObjectManipulation(wxWindow* parent) :
def.set_default_value(new ConfigOptionFloat(0.0));
def.width = field_width/*50*/;
// Add "uniform scaling" button in front of "Scale" option
if (option_name == "Scale") {
// Add "uniform scaling" button in front of "Scale" option
line.near_label_widget = [this](wxWindow* parent) {
auto btn = new LockButton(parent, wxID_ANY);
btn->Bind(wxEVT_BUTTON, [btn, this](wxCommandEvent &event){
@ -201,8 +257,59 @@ ObjectManipulation::ObjectManipulation(wxWindow* parent) :
m_lock_bnt = btn;
return btn;
};
// Add reset scale button
auto reset_scale_button = [=](wxWindow* parent) {
auto btn = new ScalableButton(parent, wxID_ANY, ScalableBitmap(parent, "undo"));
btn->SetToolTip(_(L("Reset scale")));
m_reset_scale_button = btn;
auto sizer = new wxBoxSizer(wxHORIZONTAL);
sizer->Add(btn, wxBU_EXACTFIT);
btn->Bind(wxEVT_BUTTON, [=](wxCommandEvent &e) {
change_scale_value(0, 100.);
change_scale_value(1, 100.);
change_scale_value(2, 100.);
});
return sizer;
};
line.append_widget(reset_scale_button);
}
else if (option_name == "Rotation") {
// Add reset rotation button
auto reset_rotation_button = [=](wxWindow* parent) {
auto btn = new ScalableButton(parent, wxID_ANY, ScalableBitmap(parent, "undo"));
btn->SetToolTip(_(L("Reset rotation")));
m_reset_rotation_button = btn;
auto sizer = new wxBoxSizer(wxHORIZONTAL);
sizer->Add(btn, wxBU_EXACTFIT);
btn->Bind(wxEVT_BUTTON, [=](wxCommandEvent &e) {
GLCanvas3D* canvas = wxGetApp().plater()->canvas3D();
Selection& selection = canvas->get_selection();
if (selection.is_single_volume() || selection.is_single_modifier()) {
GLVolume* volume = const_cast<GLVolume*>(selection.get_volume(*selection.get_volume_idxs().begin()));
volume->set_volume_rotation(Vec3d::Zero());
}
else if (selection.is_single_full_instance()) {
for (unsigned int idx : selection.get_volume_idxs()){
GLVolume* volume = const_cast<GLVolume*>(selection.get_volume(idx));
volume->set_instance_rotation(Vec3d::Zero());
}
}
else
return;
// Update rotation at the GLVolumes.
selection.synchronize_unselected_instances(Selection::SYNC_ROTATION_GENERAL);
selection.synchronize_unselected_volumes();
// Copy rotation values from GLVolumes into Model (ModelInstance / ModelVolume), trigger background processing.
canvas->do_rotate();
UpdateAndShow(true);
});
return sizer;
};
line.append_widget(reset_rotation_button);
}
// Add empty bmp (Its size have to be equal to PrusaLockButton) in front of "Size" option to label alignment
else if (option_name == "Size") {
line.near_label_widget = [this](wxWindow* parent) {
@ -224,8 +331,8 @@ ObjectManipulation::ObjectManipulation(wxWindow* parent) :
return line;
};
// Settings table
m_og->sidetext_width = 3;
m_og->append_line(add_og_to_object_settings(L("Position"), L("mm")), &m_move_Label);
m_og->append_line(add_og_to_object_settings(L("Rotation"), "°"), &m_rotate_Label);
m_og->append_line(add_og_to_object_settings(L("Scale"), "%"), &m_scale_Label);
@ -239,6 +346,8 @@ ObjectManipulation::ObjectManipulation(wxWindow* parent) :
ctrl->msw_rescale();
};
}
void ObjectManipulation::Show(const bool show)
{
@ -408,9 +517,95 @@ void ObjectManipulation::update_if_dirty()
else
m_og->disable();
update_reset_buttons_visibility();
update_mirror_buttons_visibility();
m_dirty = false;
}
void ObjectManipulation::update_reset_buttons_visibility()
{
GLCanvas3D* canvas = wxGetApp().plater()->canvas3D();
if (!canvas)
return;
const Selection& selection = canvas->get_selection();
bool show_rotation = false;
bool show_scale = false;
if (selection.is_single_full_instance() || selection.is_single_modifier() || selection.is_single_volume()) {
const GLVolume* volume = selection.get_volume(*selection.get_volume_idxs().begin());
Vec3d rotation;
Vec3d scale;
if (selection.is_single_full_instance()) {
rotation = volume->get_instance_rotation();
scale = volume->get_instance_scaling_factor();
}
else {
rotation = volume->get_volume_rotation();
scale = volume->get_volume_scaling_factor();
}
show_rotation = !rotation.isApprox(Vec3d::Zero());
show_scale = !scale.isApprox(Vec3d::Ones());
}
wxGetApp().CallAfter([this, show_rotation, show_scale]{
m_reset_rotation_button->Show(show_rotation);
m_reset_scale_button->Show(show_scale);
});
}
void ObjectManipulation::update_mirror_buttons_visibility()
{
GLCanvas3D* canvas = wxGetApp().plater()->canvas3D();
Selection& selection = canvas->get_selection();
std::array<MirrorButtonState, 3> new_states = {mbHidden, mbHidden, mbHidden};
if (!m_world_coordinates) {
if (selection.is_single_full_instance() || selection.is_single_modifier() || selection.is_single_volume()) {
const GLVolume* volume = selection.get_volume(*selection.get_volume_idxs().begin());
Vec3d mirror;
if (selection.is_single_full_instance())
mirror = volume->get_instance_mirror();
else
mirror = volume->get_volume_mirror();
for (unsigned char i=0; i<3; ++i)
new_states[i] = (mirror[i] < 0. ? mbActive : mbShown);
}
}
else {
// the mirroring buttons should be hidden in world coordinates,
// unless we make it actually mirror in world coords.
}
// Hiding the buttons through Hide() always messed up the sizers. As a workaround, the button
// is assigned a transparent bitmap. We must of course remember the actual state.
wxGetApp().CallAfter([this, new_states]{
for (int i=0; i<3; ++i) {
if (new_states[i] != m_mirror_buttons[i].second) {
const wxBitmap* bmp;
switch (new_states[i]) {
case mbHidden : bmp = &m_mirror_bitmap_hidden.bmp(); m_mirror_buttons[i].first->Enable(false); break;
case mbShown : bmp = &m_mirror_bitmap_off.bmp(); m_mirror_buttons[i].first->Enable(true); break;
case mbActive : bmp = &m_mirror_bitmap_on.bmp(); m_mirror_buttons[i].first->Enable(true); break;
}
m_mirror_buttons[i].first->SetBitmap(*bmp);
m_mirror_buttons[i].second = new_states[i];
}
}
});
}
#ifndef __APPLE__
void ObjectManipulation::emulate_kill_focus()
{
@ -493,7 +688,7 @@ void ObjectManipulation::change_rotation_value(int axis, double value)
m_cache.rotation = rotation;
m_cache.rotation_rounded(axis) = DBL_MAX;
this->UpdateAndShow(true);
this->UpdateAndShow(true);
}
void ObjectManipulation::change_scale_value(int axis, double value)
@ -511,6 +706,7 @@ void ObjectManipulation::change_scale_value(int axis, double value)
this->UpdateAndShow(true);
}
void ObjectManipulation::change_size_value(int axis, double value)
{
if (std::abs(m_cache.size_rounded(axis) - value) < EPSILON)
@ -666,6 +862,12 @@ void ObjectManipulation::msw_rescale()
m_manifold_warning_bmp.msw_rescale();
m_fix_throught_netfab_bitmap->SetBitmap(m_manifold_warning_bmp.bmp());
m_mirror_bitmap_on.msw_rescale();
m_mirror_bitmap_off.msw_rescale();
m_mirror_bitmap_hidden.msw_rescale();
m_reset_scale_button->msw_rescale();
m_reset_rotation_button->msw_rescale();
get_og()->msw_rescale();
}

View file

@ -53,6 +53,23 @@ class ObjectManipulation : public OG_Settings
wxStaticText* m_scale_Label = nullptr;
wxStaticText* m_rotate_Label = nullptr;
// Non-owning pointers to the reset buttons, so we can hide and show them.
ScalableButton* m_reset_scale_button = nullptr;
ScalableButton* m_reset_rotation_button = nullptr;
// Mirroring buttons and their current state
enum MirrorButtonState {
mbHidden,
mbShown,
mbActive
};
std::array<std::pair<ScalableButton*, MirrorButtonState>, 3> m_mirror_buttons;
// Bitmaps for the mirroring buttons.
ScalableBitmap m_mirror_bitmap_on;
ScalableBitmap m_mirror_bitmap_off;
ScalableBitmap m_mirror_bitmap_hidden;
// Needs to be updated from OnIdle?
bool m_dirty = false;
// Cached labels for the delayed update, not localized!
@ -111,10 +128,10 @@ private:
void reset_settings_value();
void update_settings_value(const Selection& selection);
// update size values after scale unit changing or "gizmos"
void update_size_value(const Vec3d& size);
// update rotation value after "gizmos"
void update_rotation_value(const Vec3d& rotation);
// Show or hide scale/rotation reset buttons if needed
void update_reset_buttons_visibility();
//Show or hide mirror buttons
void update_mirror_buttons_visibility();
// change values
void change_position_value(int axis, double value);

View file

@ -27,6 +27,7 @@ GLGizmoSlaSupports::GLGizmoSlaSupports(GLCanvas3D& parent, unsigned int sprite_i
: GLGizmoBase(parent, sprite_id)
#endif // ENABLE_SVG_ICONS
, m_quadric(nullptr)
, m_its(nullptr)
{
m_quadric = ::gluNewQuadric();
if (m_quadric != nullptr)
@ -379,36 +380,23 @@ bool GLGizmoSlaSupports::is_point_clipped(const Vec3d& point) const
bool GLGizmoSlaSupports::is_mesh_update_necessary() const
{
return ((m_state == On) && (m_model_object != nullptr) && !m_model_object->instances.empty())
&& ((m_model_object->id() != m_current_mesh_model_id) || m_V.size()==0);
&& ((m_model_object->id() != m_current_mesh_model_id) || m_its == nullptr);
}
void GLGizmoSlaSupports::update_mesh()
{
wxBusyCursor wait;
Eigen::MatrixXf& V = m_V;
Eigen::MatrixXi& F = m_F;
// We rely on SLA model object having a single volume,
// this way we can use that mesh directly.
// This mesh does not account for the possible Z up SLA offset.
m_mesh = &m_model_object->volumes.front()->mesh;
const_cast<TriangleMesh*>(m_mesh)->require_shared_vertices(); // TriangleMeshSlicer needs this
const stl_file& stl = m_mesh->stl;
V.resize(3 * stl.stats.number_of_facets, 3);
F.resize(stl.stats.number_of_facets, 3);
for (unsigned int i=0; i<stl.stats.number_of_facets; ++i) {
const stl_facet* facet = stl.facet_start+i;
V(3*i+0, 0) = facet->vertex[0](0); V(3*i+0, 1) = facet->vertex[0](1); V(3*i+0, 2) = facet->vertex[0](2);
V(3*i+1, 0) = facet->vertex[1](0); V(3*i+1, 1) = facet->vertex[1](1); V(3*i+1, 2) = facet->vertex[1](2);
V(3*i+2, 0) = facet->vertex[2](0); V(3*i+2, 1) = facet->vertex[2](1); V(3*i+2, 2) = facet->vertex[2](2);
F(i, 0) = 3*i+0;
F(i, 1) = 3*i+1;
F(i, 2) = 3*i+2;
}
m_mesh = &m_model_object->volumes.front()->mesh();
m_its = &m_mesh->its;
m_current_mesh_model_id = m_model_object->id();
m_editing_mode = false;
m_AABB = igl::AABB<Eigen::MatrixXf,3>();
m_AABB.init(m_V, m_F);
m_AABB.deinit();
m_AABB.init(
MapMatrixXfUnaligned(m_its->vertices.front().data(), m_its->vertices.size(), 3),
MapMatrixXiUnaligned(m_its->indices.front().data(), m_its->indices.size(), 3));
}
// Unprojects the mouse position on the mesh and return the hit point and normal of the facet.
@ -416,7 +404,7 @@ void GLGizmoSlaSupports::update_mesh()
std::pair<Vec3f, Vec3f> GLGizmoSlaSupports::unproject_on_mesh(const Vec2d& mouse_pos)
{
// if the gizmo doesn't have the V, F structures for igl, calculate them first:
if (m_V.size() == 0)
if (m_its == nullptr)
update_mesh();
const Camera& camera = m_parent.get_camera();
@ -442,7 +430,10 @@ std::pair<Vec3f, Vec3f> GLGizmoSlaSupports::unproject_on_mesh(const Vec2d& mouse
point1 = inv * point1;
point2 = inv * point2;
if (!m_AABB.intersect_ray(m_V, m_F, point1.cast<float>(), (point2-point1).cast<float>(), hits))
if (!m_AABB.intersect_ray(
MapMatrixXfUnaligned(m_its->vertices.front().data(), m_its->vertices.size(), 3),
MapMatrixXiUnaligned(m_its->indices.front().data(), m_its->indices.size(), 3),
point1.cast<float>(), (point2-point1).cast<float>(), hits))
throw std::invalid_argument("unproject_on_mesh(): No intersection found.");
std::sort(hits.begin(), hits.end(), [](const igl::Hit& a, const igl::Hit& b) { return a.t < b.t; });
@ -457,9 +448,9 @@ std::pair<Vec3f, Vec3f> GLGizmoSlaSupports::unproject_on_mesh(const Vec2d& mouse
igl::Hit& hit = hits[i];
int fid = hit.id; // facet id
bc = Vec3f(1-hit.u-hit.v, hit.u, hit.v); // barycentric coordinates of the hit
a = (m_V.row(m_F(fid, 1)) - m_V.row(m_F(fid, 0)));
b = (m_V.row(m_F(fid, 2)) - m_V.row(m_F(fid, 0)));
result = bc(0) * m_V.row(m_F(fid, 0)) + bc(1) * m_V.row(m_F(fid, 1)) + bc(2)*m_V.row(m_F(fid, 2));
a = (m_its->vertices[m_its->indices[fid](1)] - m_its->vertices[m_its->indices[fid](0)]);
b = (m_its->vertices[m_its->indices[fid](2)] - m_its->vertices[m_its->indices[fid](0)]);
result = bc(0) * m_its->vertices[m_its->indices[fid](0)] + bc(1) * m_its->vertices[m_its->indices[fid](1)] + bc(2)*m_its->vertices[m_its->indices[fid](2)];
if (m_clipping_plane_distance == 0.f || !is_point_clipped(result.cast<double>()))
break;
}
@ -564,15 +555,18 @@ bool GLGizmoSlaSupports::gizmo_event(SLAGizmoEventType action, const Vec2d& mous
// Cast a ray in the direction of the camera and look for intersection with the mesh:
std::vector<igl::Hit> hits;
// Offset the start of the ray to the front of the ball + EPSILON to account for numerical inaccuracies.
if (m_AABB.intersect_ray(m_V, m_F, support_point.pos + direction_to_camera_mesh * (support_point.head_front_radius + EPSILON), direction_to_camera_mesh, hits)) {
if (m_AABB.intersect_ray(
MapMatrixXfUnaligned(m_its->vertices.front().data(), m_its->vertices.size(), 3),
MapMatrixXiUnaligned(m_its->indices.front().data(), m_its->indices.size(), 3),
support_point.pos + direction_to_camera_mesh * (support_point.head_front_radius + EPSILON), direction_to_camera_mesh, hits)) {
std::sort(hits.begin(), hits.end(), [](const igl::Hit& h1, const igl::Hit& h2) { return h1.t < h2.t; });
if (m_clipping_plane_distance != 0.f) {
// If the closest hit facet normal points in the same direction as the ray,
// we are looking through the mesh and should therefore discard the point:
int fid = hits.front().id; // facet id
Vec3f a = (m_V.row(m_F(fid, 1)) - m_V.row(m_F(fid, 0)));
Vec3f b = (m_V.row(m_F(fid, 2)) - m_V.row(m_F(fid, 0)));
Vec3f a = (m_its->vertices[m_its->indices[fid](1)] - m_its->vertices[m_its->indices[fid](0)]);
Vec3f b = (m_its->vertices[m_its->indices[fid](2)] - m_its->vertices[m_its->indices[fid](0)]);
if ((a.cross(b)).dot(direction_to_camera_mesh) > 0.f)
is_obscured = true;
@ -582,7 +576,7 @@ bool GLGizmoSlaSupports::gizmo_event(SLAGizmoEventType action, const Vec2d& mous
int fid = hit.id; // facet id
Vec3f bc = Vec3f(1-hit.u-hit.v, hit.u, hit.v); // barycentric coordinates of the hit
Vec3f hit_pos = bc(0) * m_V.row(m_F(fid, 0)) + bc(1) * m_V.row(m_F(fid, 1)) + bc(2)*m_V.row(m_F(fid, 2));
Vec3f hit_pos = bc(0) * m_its->vertices[m_its->indices[fid](0)] + bc(1) * m_its->vertices[m_its->indices[fid](1)] + bc(2)*m_its->vertices[m_its->indices[fid](2)];
if (is_point_clipped(hit_pos.cast<double>())) {
hits.erase(hits.begin()+j);
--j;
@ -759,9 +753,12 @@ void GLGizmoSlaSupports::update_cache_entry_normal(unsigned int i) const
int idx = 0;
Eigen::Matrix<float, 1, 3> pp = m_editing_mode_cache[i].support_point.pos;
Eigen::Matrix<float, 1, 3> cc;
m_AABB.squared_distance(m_V, m_F, pp, idx, cc);
Vec3f a = (m_V.row(m_F(idx, 1)) - m_V.row(m_F(idx, 0)));
Vec3f b = (m_V.row(m_F(idx, 2)) - m_V.row(m_F(idx, 0)));
m_AABB.squared_distance(
MapMatrixXfUnaligned(m_its->vertices.front().data(), m_its->vertices.size(), 3),
MapMatrixXiUnaligned(m_its->indices.front().data(), m_its->indices.size(), 3),
pp, idx, cc);
Vec3f a = (m_its->vertices[m_its->indices[idx](1)] - m_its->vertices[m_its->indices[idx](0)]);
Vec3f b = (m_its->vertices[m_its->indices[idx](2)] - m_its->vertices[m_its->indices[idx](0)]);
m_editing_mode_cache[i].normal = a.cross(b);
}
@ -1067,8 +1064,7 @@ void GLGizmoSlaSupports::on_set_state()
m_clipping_plane_distance = 0.f;
// Release triangle mesh slicer and the AABB spatial search structure.
m_AABB.deinit();
m_V = Eigen::MatrixXf();
m_F = Eigen::MatrixXi();
m_its = nullptr;
m_tms.reset();
m_supports_tms.reset();
});

View file

@ -35,10 +35,11 @@ private:
const float RenderPointScale = 1.f;
GLUquadricObj* m_quadric;
Eigen::MatrixXf m_V; // vertices
Eigen::MatrixXi m_F; // facets indices
igl::AABB<Eigen::MatrixXf,3> m_AABB;
typedef Eigen::Map<const Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>> MapMatrixXfUnaligned;
typedef Eigen::Map<const Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>> MapMatrixXiUnaligned;
igl::AABB<MapMatrixXfUnaligned, 3> m_AABB;
const TriangleMesh* m_mesh;
const indexed_triangle_set* m_its;
mutable const TriangleMesh* m_supports_mesh;
mutable std::vector<Vec2f> m_triangles;
mutable std::vector<Vec2f> m_supports_triangles;
@ -131,6 +132,11 @@ private:
protected:
void on_set_state() override;
virtual void on_set_hover_id()
{
if ((int)m_editing_mode_cache.size() <= m_hover_id)
m_hover_id = -1;
}
void on_start_dragging(const Selection& selection) override;
virtual void on_render_input_window(float x, float y, float bottom_limit, const Selection& selection) override;

View file

@ -54,7 +54,7 @@ DPIFrame(NULL, wxID_ANY, "", wxDefaultPosition, wxDefaultSize, wxDEFAULT_FRAME_S
#endif // _WIN32
// initialize status bar
m_statusbar = new ProgressStatusBar(this);
m_statusbar.reset(new ProgressStatusBar(this));
m_statusbar->embed(this);
m_statusbar->set_status_text(_(L("Version")) + " " +
SLIC3R_VERSION +
@ -103,6 +103,8 @@ DPIFrame(NULL, wxID_ANY, "", wxDefaultPosition, wxDefaultSize, wxDEFAULT_FRAME_S
event.Veto();
return;
}
if(m_plater) m_plater->stop_jobs();
// Weird things happen as the Paint messages are floating around the windows being destructed.
// Avoid the Paint messages by hiding the main window.
@ -138,6 +140,8 @@ DPIFrame(NULL, wxID_ANY, "", wxDefaultPosition, wxDefaultSize, wxDEFAULT_FRAME_S
update_ui_from_settings(); // FIXME (?)
}
MainFrame::~MainFrame() = default;
void MainFrame::update_title()
{
wxString title = wxEmptyString;

View file

@ -89,7 +89,7 @@ protected:
public:
MainFrame();
~MainFrame() {}
~MainFrame();
Plater* plater() { return m_plater; }
@ -126,7 +126,7 @@ public:
Plater* m_plater { nullptr };
wxNotebook* m_tabpanel { nullptr };
wxProgressDialog* m_progress_dialog { nullptr };
ProgressStatusBar* m_statusbar { nullptr };
std::unique_ptr<ProgressStatusBar> m_statusbar;
};
} // GUI

View file

@ -276,7 +276,7 @@ void OptionsGroup::append_line(const Line& line, wxStaticText** full_Label/* = n
// add sidetext if any
if (option.sidetext != "") {
auto sidetext = new wxStaticText( this->ctrl_parent(), wxID_ANY, _(option.sidetext), wxDefaultPosition,
/*wxSize(sidetext_width*wxGetApp().em_unit(), -1)*/wxDefaultSize, wxALIGN_LEFT);
wxSize(sidetext_width != -1 ? sidetext_width*wxGetApp().em_unit() : -1, -1) /*wxDefaultSize*/, wxALIGN_LEFT);
sidetext->SetBackgroundStyle(wxBG_STYLE_PAINT);
sidetext->SetFont(wxGetApp().normal_font());
sizer_tmp->Add(sidetext, 0, wxLEFT | wxALIGN_CENTER_VERTICAL, 4);

View file

@ -5,9 +5,11 @@
#include <vector>
#include <string>
#include <regex>
#include <future>
#include <boost/algorithm/string.hpp>
#include <boost/optional.hpp>
#include <boost/filesystem/path.hpp>
#include <boost/log/trivial.hpp>
#include <wx/sizer.h>
#include <wx/stattext.h>
@ -37,7 +39,12 @@
#include "libslic3r/SLA/SLARotfinder.hpp"
#include "libslic3r/Utils.hpp"
#include "libnest2d/optimizers/nlopt/genetic.hpp"
//#include "libslic3r/ClipperUtils.hpp"
// #include "libnest2d/optimizers/nlopt/genetic.hpp"
// #include "libnest2d/backends/clipper/geometries.hpp"
// #include "libnest2d/utils/rotcalipers.hpp"
#include "libslic3r/MinAreaBoundingBox.hpp"
#include "GUI.hpp"
#include "GUI_App.hpp"
@ -1253,8 +1260,243 @@ struct Plater::priv
Preview *preview;
BackgroundSlicingProcess background_process;
bool arranging;
bool rotoptimizing;
// A class to handle UI jobs like arranging and optimizing rotation.
// These are not instant jobs, the user has to be informed about their
// state in the status progress indicator. On the other hand they are
// separated from the background slicing process. Ideally, these jobs should
// run when the background process is not running.
//
// TODO: A mechanism would be useful for blocking the plater interactions:
// objects would be frozen for the user. In case of arrange, an animation
// could be shown, or with the optimize orientations, partial results
// could be displayed.
class Job: public wxEvtHandler {
int m_range = 100;
std::future<void> m_ftr;
priv *m_plater = nullptr;
std::atomic<bool> m_running {false}, m_canceled {false};
bool m_finalized = false;
void run() {
m_running.store(true); process(); m_running.store(false);
// ensure to call the last status to finalize the job
update_status(status_range(), "");
}
protected:
// status range for a particular job
virtual int status_range() const { return 100; }
// status update, to be used from the work thread (process() method)
void update_status(int st, const wxString& msg = "") {
auto evt = new wxThreadEvent(); evt->SetInt(st); evt->SetString(msg);
wxQueueEvent(this, evt);
}
priv& plater() { return *m_plater; }
bool was_canceled() const { return m_canceled.load(); }
// Launched just before start(), a job can use it to prepare internals
virtual void prepare() {}
// Launched when the job is finished. It refreshes the 3dscene by def.
virtual void finalize() {
// Do a full refresh of scene tree, including regenerating
// all the GLVolumes. FIXME The update function shall just
// reload the modified matrices.
if(! was_canceled())
plater().update(true);
}
public:
Job(priv *_plater): m_plater(_plater)
{
Bind(wxEVT_THREAD, [this](const wxThreadEvent& evt){
auto msg = evt.GetString();
if(! msg.empty()) plater().statusbar()->set_status_text(msg);
if(m_finalized) return;
plater().statusbar()->set_progress(evt.GetInt());
if(evt.GetInt() == status_range()) {
// set back the original range and cancel callback
plater().statusbar()->set_range(m_range);
plater().statusbar()->set_cancel_callback();
wxEndBusyCursor();
finalize();
// dont do finalization again for the same process
m_finalized = true;
}
});
}
// TODO: use this when we all migrated to VS2019
// Job(const Job&) = delete;
// Job(Job&&) = default;
// Job& operator=(const Job&) = delete;
// Job& operator=(Job&&) = default;
Job(const Job&) = delete;
Job& operator=(const Job&) = delete;
Job(Job &&o) :
m_range(o.m_range),
m_ftr(std::move(o.m_ftr)),
m_plater(o.m_plater),
m_finalized(o.m_finalized)
{
m_running.store(o.m_running.load());
m_canceled.store(o.m_canceled.load());
}
virtual void process() = 0;
void start() { // Start the job. No effect if the job is already running
if(! m_running.load()) {
prepare();
// Save the current status indicatior range and push the new one
m_range = plater().statusbar()->get_range();
plater().statusbar()->set_range(status_range());
// init cancellation flag and set the cancel callback
m_canceled.store(false);
plater().statusbar()->set_cancel_callback( [this](){
m_canceled.store(true);
});
m_finalized = false;
// Changing cursor to busy
wxBeginBusyCursor();
try { // Execute the job
m_ftr = std::async(std::launch::async, &Job::run, this);
} catch(std::exception& ) {
update_status(status_range(),
_(L("ERROR: not enough resources to execute a new job.")));
}
// The state changes will be undone when the process hits the
// last status value, in the status update handler (see ctor)
}
}
// To wait for the running job and join the threads. False is returned
// if the timeout has been reached and the job is still running. Call
// cancel() before this fn if you want to explicitly end the job.
bool join(int timeout_ms = 0) const {
if(!m_ftr.valid()) return true;
if(timeout_ms <= 0)
m_ftr.wait();
else if(m_ftr.wait_for(std::chrono::milliseconds(timeout_ms)) ==
std::future_status::timeout)
return false;
return true;
}
bool is_running() const { return m_running.load(); }
void cancel() { m_canceled.store(true); }
};
enum class Jobs : size_t {
Arrange,
Rotoptimize
};
// Jobs defined inside the group class will be managed so that only one can
// run at a time. Also, the background process will be stopped if a job is
// started.
class ExclusiveJobGroup {
static const int ABORT_WAIT_MAX_MS = 10000;
priv * m_plater;
class ArrangeJob : public Job
{
int count = 0;
protected:
void prepare() override
{
count = 0;
for (auto obj : plater().model.objects)
count += int(obj->instances.size());
}
public:
//using Job::Job;
ArrangeJob(priv * pltr): Job(pltr) {}
int status_range() const override { return count; }
void set_count(int c) { count = c; }
void process() override;
} arrange_job/*{m_plater}*/;
class RotoptimizeJob : public Job
{
public:
//using Job::Job;
RotoptimizeJob(priv * pltr): Job(pltr) {}
void process() override;
} rotoptimize_job/*{m_plater}*/;
// To create a new job, just define a new subclass of Job, implement
// the process and the optional prepare() and finalize() methods
// Register the instance of the class in the m_jobs container
// if it cannot run concurrently with other jobs in this group
std::vector<std::reference_wrapper<Job>> m_jobs/*{arrange_job,
rotoptimize_job}*/;
public:
ExclusiveJobGroup(priv *_plater)
: m_plater(_plater)
, arrange_job(m_plater)
, rotoptimize_job(m_plater)
, m_jobs({arrange_job, rotoptimize_job})
{}
void start(Jobs jid) {
m_plater->background_process.stop();
stop_all();
m_jobs[size_t(jid)].get().start();
}
void cancel_all() { for (Job& j : m_jobs) j.cancel(); }
void join_all(int wait_ms = 0)
{
std::vector<bool> aborted(m_jobs.size(), false);
for (size_t jid = 0; jid < m_jobs.size(); ++jid)
aborted[jid] = m_jobs[jid].get().join(wait_ms);
if (!all_of(aborted))
BOOST_LOG_TRIVIAL(error) << "Could not abort a job!";
}
void stop_all() { cancel_all(); join_all(ABORT_WAIT_MAX_MS); }
const Job& get(Jobs jobid) const { return m_jobs[size_t(jobid)]; }
bool is_any_running() const
{
return std::any_of(m_jobs.begin(),
m_jobs.end(),
[](const Job &j) { return j.is_running(); });
}
} m_ui_jobs{this};
bool delayed_scene_refresh;
std::string delayed_error_message;
@ -1429,8 +1671,6 @@ Plater::priv::priv(Plater *q, MainFrame *main_frame)
{
this->q->SetFont(Slic3r::GUI::wxGetApp().normal_font());
arranging = false;
rotoptimizing = false;
background_process.set_fff_print(&fff_print);
background_process.set_sla_print(&sla_print);
background_process.set_gcode_preview_data(&gcode_preview_data);
@ -1536,7 +1776,8 @@ Plater::priv::priv(Plater *q, MainFrame *main_frame)
void Plater::priv::update(bool force_full_scene_refresh)
{
wxWindowUpdateLocker freeze_guard(q);
// the following line, when enabled, causes flickering on NVIDIA graphics cards
// wxWindowUpdateLocker freeze_guard(q);
if (get_config("autocenter") == "1") {
// auto *bed_shape_opt = config->opt<ConfigOptionPoints>("bed_shape");
// const auto bed_shape = Slic3r::Polygon::new_scale(bed_shape_opt->values);
@ -1606,7 +1847,7 @@ void Plater::priv::update_ui_from_settings()
ProgressStatusBar* Plater::priv::statusbar()
{
return main_frame->m_statusbar;
return main_frame->m_statusbar.get();
}
std::string Plater::priv::get_config(const std::string &key) const
@ -2143,59 +2384,45 @@ void Plater::priv::mirror(Axis axis)
void Plater::priv::arrange()
{
if (arranging) { return; }
arranging = true;
Slic3r::ScopeGuard arranging_guard([this]() { arranging = false; });
m_ui_jobs.start(Jobs::Arrange);
}
wxBusyCursor wait;
// This method will find an optimal orientation for the currently selected item
// Very similar in nature to the arrange method above...
void Plater::priv::sla_optimize_rotation() {
m_ui_jobs.start(Jobs::Rotoptimize);
}
this->background_process.stop();
void Plater::priv::ExclusiveJobGroup::ArrangeJob::process() {
// TODO: we should decide whether to allow arrange when the search is
// running we should probably disable explicit slicing and background
// processing
unsigned count = 0;
for(auto obj : model.objects) count += obj->instances.size();
static const auto arrangestr = _(L("Arranging"));
auto prev_range = statusbar()->get_range();
statusbar()->set_range(count);
auto statusfn = [this, count] (unsigned st, const std::string& msg) {
/* // In case we would run the arrange asynchronously
wxCommandEvent event(EVT_PROGRESS_BAR);
event.SetInt(st);
event.SetString(msg);
wxQueueEvent(this->q, event.Clone()); */
statusbar()->set_progress(count - st);
statusbar()->set_status_text(_(msg));
// ok, this is dangerous, but we are protected by the flag
// 'arranging' and the arrange button is also disabled.
// This call is needed for the cancel button to work.
wxYieldIfNeeded();
};
statusbar()->set_cancel_callback([this, statusfn](){
arranging = false;
statusfn(0, L("Arranging canceled"));
});
static const std::string arrangestr = L("Arranging");
auto &config = plater().config;
auto &view3D = plater().view3D;
auto &model = plater().model;
// FIXME: I don't know how to obtain the minimum distance, it depends
// on printer technology. I guess the following should work but it crashes.
double dist = 6; //PrintConfig::min_object_distance(config);
if(printer_technology == ptFFF) {
double dist = 6; // PrintConfig::min_object_distance(config);
if (plater().printer_technology == ptFFF) {
dist = PrintConfig::min_object_distance(config);
}
auto min_obj_distance = coord_t(dist/SCALING_FACTOR);
auto min_obj_distance = coord_t(dist / SCALING_FACTOR);
const auto *bed_shape_opt = config->opt<ConfigOptionPoints>("bed_shape");
const auto *bed_shape_opt = config->opt<ConfigOptionPoints>(
"bed_shape");
assert(bed_shape_opt);
auto& bedpoints = bed_shape_opt->values;
Polyline bed; bed.points.reserve(bedpoints.size());
for(auto& v : bedpoints) bed.append(Point::new_scale(v(0), v(1)));
auto & bedpoints = bed_shape_opt->values;
Polyline bed;
bed.points.reserve(bedpoints.size());
for (auto &v : bedpoints) bed.append(Point::new_scale(v(0), v(1)));
statusfn(0, arrangestr);
update_status(0, arrangestr);
arr::WipeTowerInfo wti = view3D->get_canvas3d()->get_wipe_tower_info();
@ -2211,129 +2438,87 @@ void Plater::priv::arrange()
bed,
hint,
false, // create many piles not just one pile
[statusfn](unsigned st) { statusfn(st, arrangestr); },
[this] () { return !arranging; });
} catch(std::exception& /*e*/) {
GUI::show_error(this->q, L("Could not arrange model objects! "
"Some geometries may be invalid."));
[this](unsigned st) {
if (st > 0)
update_status(count - int(st), arrangestr);
},
[this]() { return was_canceled(); });
} catch (std::exception & /*e*/) {
GUI::show_error(plater().q,
L("Could not arrange model objects! "
"Some geometries may be invalid."));
}
update_status(count,
was_canceled() ? _(L("Arranging canceled."))
: _(L("Arranging done.")));
// it remains to move the wipe tower:
view3D->get_canvas3d()->arrange_wipe_tower(wti);
statusfn(0, L("Arranging done."));
statusbar()->set_range(prev_range);
statusbar()->set_cancel_callback(); // remove cancel button
// Do a full refresh of scene tree, including regenerating all the GLVolumes.
//FIXME The update function shall just reload the modified matrices.
update(true);
}
// This method will find an optimal orientation for the currently selected item
// Very similar in nature to the arrange method above...
void Plater::priv::sla_optimize_rotation() {
// TODO: we should decide whether to allow arrange when the search is
// running we should probably disable explicit slicing and background
// processing
if (rotoptimizing) { return; }
rotoptimizing = true;
Slic3r::ScopeGuard rotoptimizing_guard([this]() { rotoptimizing = false; });
int obj_idx = get_selected_object_idx();
void Plater::priv::ExclusiveJobGroup::RotoptimizeJob::process()
{
int obj_idx = plater().get_selected_object_idx();
if (obj_idx < 0) { return; }
ModelObject * o = model.objects[size_t(obj_idx)];
background_process.stop();
auto prev_range = statusbar()->get_range();
statusbar()->set_range(100);
auto stfn = [this] (unsigned st, const std::string& msg) {
statusbar()->set_progress(int(st));
statusbar()->set_status_text(msg);
// could be problematic, but we need the cancel button.
wxYieldIfNeeded();
};
statusbar()->set_cancel_callback([this, stfn](){
rotoptimizing = false;
stfn(0, L("Orientation search canceled"));
});
ModelObject *o = plater().model.objects[size_t(obj_idx)];
auto r = sla::find_best_rotation(
*o, .005f,
[stfn](unsigned s) { stfn(s, L("Searching for optimal orientation")); },
[this](){ return !rotoptimizing; }
);
*o,
.005f,
[this](unsigned s) {
if (s < 100)
update_status(int(s),
_(L("Searching for optimal orientation")));
},
[this]() { return was_canceled(); });
const auto *bed_shape_opt = config->opt<ConfigOptionPoints>("bed_shape");
const auto *bed_shape_opt =
plater().config->opt<ConfigOptionPoints>("bed_shape");
assert(bed_shape_opt);
auto& bedpoints = bed_shape_opt->values;
Polyline bed; bed.points.reserve(bedpoints.size());
for(auto& v : bedpoints) bed.append(Point::new_scale(v(0), v(1)));
auto & bedpoints = bed_shape_opt->values;
Polyline bed;
bed.points.reserve(bedpoints.size());
for (auto &v : bedpoints) bed.append(Point::new_scale(v(0), v(1)));
double mindist = 6.0; // FIXME
double offs = mindist / 2.0 - EPSILON;
if(rotoptimizing) // wasn't canceled
for(ModelInstance * oi : o->instances) {
oi->set_rotation({r[X], r[Y], r[Z]});
auto trchull = o->convex_hull_2d(oi->get_transformation().get_matrix());
namespace opt = libnest2d::opt;
opt::StopCriteria stopcr;
stopcr.relative_score_difference = 0.01;
stopcr.max_iterations = 10000;
stopcr.stop_score = 0.0;
opt::GeneticOptimizer solver(stopcr);
Polygon pbed(bed);
auto bin = pbed.bounding_box();
double binw = bin.size()(X) * SCALING_FACTOR - offs;
double binh = bin.size()(Y) * SCALING_FACTOR - offs;
auto result = solver.optimize_min([&trchull, binw, binh](double rot){
auto chull = trchull;
chull.rotate(rot);
auto bb = chull.bounding_box();
double bbw = bb.size()(X) * SCALING_FACTOR;
double bbh = bb.size()(Y) * SCALING_FACTOR;
auto wdiff = bbw - binw;
auto hdiff = bbh - binh;
double diff = 0;
if(wdiff < 0 && hdiff < 0) diff = wdiff + hdiff;
if(wdiff > 0) diff += wdiff;
if(hdiff > 0) diff += hdiff;
return diff;
}, opt::initvals(0.0), opt::bound(-PI/2, PI/2));
double r = std::get<0>(result.optimum);
Vec3d rt = oi->get_rotation(); rt(Z) += r;
oi->set_rotation(rt);
if (!was_canceled()) {
for(ModelInstance * oi : o->instances) {
oi->set_rotation({r[X], r[Y], r[Z]});
auto trmatrix = oi->get_transformation().get_matrix();
Polygon trchull = o->convex_hull_2d(trmatrix);
MinAreaBoundigBox rotbb(trchull, MinAreaBoundigBox::pcConvex);
double r = rotbb.angle_to_X();
// The box should be landscape
if(rotbb.width() < rotbb.height()) r += PI / 2;
Vec3d rt = oi->get_rotation(); rt(Z) += r;
oi->set_rotation(rt);
}
arr::WipeTowerInfo wti; // useless in SLA context
arr::find_new_position(plater().model,
o->instances,
coord_t(mindist / SCALING_FACTOR),
bed,
wti);
// Correct the z offset of the object which was corrupted be
// the rotation
o->ensure_on_bed();
}
arr::WipeTowerInfo wti; // useless in SLA context
arr::find_new_position(model, o->instances, coord_t(mindist/SCALING_FACTOR), bed, wti);
// Correct the z offset of the object which was corrupted be the rotation
o->ensure_on_bed();
stfn(0, L("Orientation found."));
statusbar()->set_range(prev_range);
statusbar()->set_cancel_callback();
update(true);
update_status(100,
was_canceled() ? _(L("Orientation search canceled."))
: _(L("Orientation found.")));
}
void Plater::priv::split_object()
@ -2514,7 +2699,7 @@ unsigned int Plater::priv::update_background_process(bool force_validation)
// Restart background processing thread based on a bitmask of UpdateBackgroundProcessReturnState.
bool Plater::priv::restart_background_process(unsigned int state)
{
if (arranging || rotoptimizing) {
if (m_ui_jobs.is_any_running()) {
// Avoid a race condition
return false;
}
@ -2745,7 +2930,7 @@ void Plater::priv::on_select_preset(wxCommandEvent &evt)
void Plater::priv::on_slicing_update(SlicingStatusEvent &evt)
{
if (evt.status.percent >= -1) {
if (arranging || rotoptimizing) {
if (m_ui_jobs.is_any_running()) {
// Avoid a race condition
return;
}
@ -3226,7 +3411,7 @@ bool Plater::priv::can_fix_through_netfabb() const
bool Plater::priv::can_increase_instances() const
{
if (arranging || rotoptimizing) {
if (m_ui_jobs.is_any_running()) {
return false;
}
@ -3236,7 +3421,7 @@ bool Plater::priv::can_increase_instances() const
bool Plater::priv::can_decrease_instances() const
{
if (arranging || rotoptimizing) {
if (m_ui_jobs.is_any_running()) {
return false;
}
@ -3256,7 +3441,7 @@ bool Plater::priv::can_split_to_volumes() const
bool Plater::priv::can_arrange() const
{
return !model.objects.empty() && !arranging;
return !model.objects.empty() && !m_ui_jobs.is_any_running();
}
bool Plater::priv::can_layers_editing() const
@ -3323,6 +3508,7 @@ SLAPrint& Plater::sla_print() { return p->sla_print; }
void Plater::new_project()
{
p->select_view_3D("3D");
wxPostEvent(p->view3D->get_wxglcanvas(), SimpleEvent(EVT_GLTOOLBAR_DELETE_ALL));
}
@ -3383,6 +3569,8 @@ void Plater::load_files(const std::vector<std::string>& input_files, bool load_m
void Plater::update() { p->update(); }
void Plater::stop_jobs() { p->m_ui_jobs.stop_all(); }
void Plater::update_ui_from_settings() { p->update_ui_from_settings(); }
void Plater::select_view(const std::string& direction) { p->select_view(direction); }
@ -3583,7 +3771,7 @@ void Plater::export_stl(bool extended, bool selection_only)
else
{
const GLVolume* volume = selection.get_volume(*selection.get_volume_idxs().begin());
mesh = model_object->volumes[volume->volume_idx()]->mesh;
mesh = model_object->volumes[volume->volume_idx()]->mesh();
mesh.transform(volume->get_volume_transformation().get_matrix());
mesh.translate(-model_object->origin_translation.cast<float>());
}
@ -3689,7 +3877,7 @@ void Plater::export_3mf(const boost::filesystem::path& output_path)
if (!path.Lower().EndsWith(".3mf"))
return;
DynamicPrintConfig cfg = wxGetApp().preset_bundle->full_config_secure();
DynamicPrintConfig cfg = wxGetApp().preset_bundle->full_config_secure();
const std::string path_u8 = into_u8(path);
wxBusyCursor wait;
if (Slic3r::store_3mf(path_u8.c_str(), &p->model, export_config ? &cfg : nullptr)) {
@ -3705,6 +3893,9 @@ void Plater::export_3mf(const boost::filesystem::path& output_path)
void Plater::reslice()
{
// Stop arrange and (or) optimize rotation tasks.
this->stop_jobs();
//FIXME Don't reslice if export of G-code or sending to OctoPrint is running.
// bitmask of UpdateBackgroundProcessReturnState
unsigned int state = this->p->update_background_process(true);
@ -3740,7 +3931,7 @@ void Plater::reslice_SLA_supports(const ModelObject &object)
if (state & priv::UPDATE_BACKGROUND_PROCESS_REFRESH_SCENE)
this->p->view3D->reload_scene(false);
if (this->p->background_process.empty() || (state & priv::UPDATE_BACKGROUND_PROCESS_INVALID))
if (this->p->background_process.empty() || (state & priv::UPDATE_BACKGROUND_PROCESS_INVALID))
// Nothing to do on empty input or invalid configuration.
return;

View file

@ -144,6 +144,7 @@ public:
void load_files(const std::vector<std::string>& input_files, bool load_model = true, bool load_config = true);
void update();
void stop_jobs();
void select_view(const std::string& direction);
void select_view_3D(const std::string& name);

View file

@ -509,6 +509,7 @@ const std::vector<std::string>& Preset::sla_printer_options()
"printer_technology",
"bed_shape", "max_print_height",
"display_width", "display_height", "display_pixels_x", "display_pixels_y",
"display_mirror_x", "display_mirror_y",
"display_orientation",
"fast_tilt_time", "slow_tilt_time", "area_fill",
"relative_correction",

View file

@ -781,7 +781,7 @@ void PresetBundle::load_config_file_config(const std::string &name_or_path, bool
if (i == 0)
suffix[0] = 0;
else
sprintf(suffix, "%d", i);
sprintf(suffix, "%d", (int)i);
std::string new_name = name + suffix;
loaded = &this->filaments.load_preset(this->filaments.path_from_name(new_name),
new_name, std::move(cfg), i == 0);
@ -837,7 +837,7 @@ void PresetBundle::load_config_file_config_bundle(const std::string &path, const
return preset_name_dst;
// Try to generate another name.
char buf[64];
sprintf(buf, " (%d)", i);
sprintf(buf, " (%d)", (int)i);
preset_name_dst = preset_name_src + buf + bundle_name;
}
}
@ -1379,7 +1379,7 @@ void PresetBundle::export_configbundle(const std::string &path, bool export_syst
for (size_t i = 0; i < this->filament_presets.size(); ++ i) {
char suffix[64];
if (i > 0)
sprintf(suffix, "_%d", i);
sprintf(suffix, "_%d", (int)i);
else
suffix[0] = 0;
c << "filament" << suffix << " = " << this->filament_presets[i] << std::endl;

View file

@ -168,6 +168,11 @@ void ProgressStatusBar::set_status_text(const char *txt)
this->set_status_text(wxString::FromUTF8(txt));
}
wxString ProgressStatusBar::get_status_text() const
{
return self->GetStatusText();
}
void ProgressStatusBar::show_cancel_button()
{
if(m_cancelbutton) m_cancelbutton->Show();

View file

@ -52,6 +52,7 @@ public:
void set_status_text(const wxString& txt);
void set_status_text(const std::string& txt);
void set_status_text(const char *txt);
wxString get_status_text() const;
// Temporary methods to satisfy Perl side
void show_cancel_button();

View file

@ -333,6 +333,8 @@ private:
void render_sidebar_rotation_hint(Axis axis) const;
void render_sidebar_scale_hint(Axis axis) const;
void render_sidebar_size_hint(Axis axis, double length) const;
public:
enum SyncRotationType {
// Do not synchronize rotation. Either not rotating at all, or rotating by world Z axis.
SYNC_ROTATION_NONE = 0,
@ -343,6 +345,8 @@ private:
};
void synchronize_unselected_instances(SyncRotationType sync_rotation_type);
void synchronize_unselected_volumes();
private:
void ensure_on_bed();
bool is_from_fully_selected_instance(unsigned int volume_idx) const;

View file

@ -2087,6 +2087,10 @@ void TabPrinter::build_sla()
line.append_option(optgroup->get_option("display_pixels_y"));
optgroup->append_line(line);
optgroup->append_single_option_line("display_orientation");
// FIXME: This should be on one line in the UI
optgroup->append_single_option_line("display_mirror_x");
optgroup->append_single_option_line("display_mirror_y");
optgroup = page->new_optgroup(_(L("Tilt")));
line = { _(L("Tilt time")), "" };

View file

@ -389,10 +389,10 @@ void fix_model_by_win10_sdk_gui(ModelObject &model_object, int volume_idx)
throw std::runtime_error(L("Repaired 3MF file does not contain any volume"));
if (model.objects.front()->volumes.size() > 1)
throw std::runtime_error(L("Repaired 3MF file contains more than one volume"));
meshes_repaired.emplace_back(std::move(model.objects.front()->volumes.front()->mesh));
meshes_repaired.emplace_back(std::move(model.objects.front()->volumes.front()->mesh()));
}
for (size_t i = 0; i < volumes.size(); ++ i) {
volumes[i]->mesh = std::move(meshes_repaired[i]);
volumes[i]->set_mesh(std::move(meshes_repaired[i]));
volumes[i]->set_new_unique_id();
}
model_object.invalidate_bounding_box();

View file

@ -253,7 +253,7 @@ ModelMaterial::attributes()
Ref<DynamicPrintConfig> config()
%code%{ RETVAL = &THIS->config; %};
Ref<TriangleMesh> mesh()
%code%{ RETVAL = &THIS->mesh; %};
%code%{ RETVAL = &THIS->mesh(); %};
bool modifier()
%code%{ RETVAL = THIS->is_modifier(); %};

View file

@ -46,7 +46,6 @@ TriangleMesh::ReadFromPerl(vertices, facets)
SV* facets
CODE:
stl_file &stl = THIS->stl;
stl.error = 0;
stl.stats.type = inmemory;
// count facets and allocate memory
@ -99,20 +98,18 @@ SV*
TriangleMesh::vertices()
CODE:
if (!THIS->repaired) CONFESS("vertices() requires repair()");
if (THIS->stl.v_shared == NULL)
stl_generate_shared_vertices(&(THIS->stl));
THIS->require_shared_vertices();
// vertices
AV* vertices = newAV();
av_extend(vertices, THIS->stl.stats.shared_vertices);
for (int i = 0; i < THIS->stl.stats.shared_vertices; i++) {
av_extend(vertices, THIS->its.vertices.size());
for (size_t i = 0; i < THIS->its.vertices.size(); i++) {
AV* vertex = newAV();
av_store(vertices, i, newRV_noinc((SV*)vertex));
av_extend(vertex, 2);
av_store(vertex, 0, newSVnv(THIS->stl.v_shared[i](0)));
av_store(vertex, 1, newSVnv(THIS->stl.v_shared[i](1)));
av_store(vertex, 2, newSVnv(THIS->stl.v_shared[i](2)));
av_store(vertex, 0, newSVnv(THIS->its.vertices[i](0)));
av_store(vertex, 1, newSVnv(THIS->its.vertices[i](1)));
av_store(vertex, 2, newSVnv(THIS->its.vertices[i](2)));
}
RETVAL = newRV_noinc((SV*)vertices);
@ -123,9 +120,7 @@ SV*
TriangleMesh::facets()
CODE:
if (!THIS->repaired) CONFESS("facets() requires repair()");
if (THIS->stl.v_shared == NULL)
stl_generate_shared_vertices(&(THIS->stl));
THIS->require_shared_vertices();
// facets
AV* facets = newAV();
@ -134,9 +129,9 @@ TriangleMesh::facets()
AV* facet = newAV();
av_store(facets, i, newRV_noinc((SV*)facet));
av_extend(facet, 2);
av_store(facet, 0, newSVnv(THIS->stl.v_indices[i].vertex[0]));
av_store(facet, 1, newSVnv(THIS->stl.v_indices[i].vertex[1]));
av_store(facet, 2, newSVnv(THIS->stl.v_indices[i].vertex[2]));
av_store(facet, 0, newSVnv(THIS->its.indices[i][0]));
av_store(facet, 1, newSVnv(THIS->its.indices[i][1]));
av_store(facet, 2, newSVnv(THIS->its.indices[i][2]));
}
RETVAL = newRV_noinc((SV*)facets);