Refactored tree / organic supports into multiple compilation modules.

This commit is contained in:
Vojtech Bubnik 2023-05-23 15:49:55 +02:00
parent cb2936afc6
commit 0d1ff6df7d
10 changed files with 1918 additions and 1780 deletions

View File

@ -288,8 +288,12 @@ set(SLIC3R_SOURCES
Support/SupportMaterial.hpp Support/SupportMaterial.hpp
Support/SupportParameters.cpp Support/SupportParameters.cpp
Support/SupportParameters.hpp Support/SupportParameters.hpp
Support/OrganicSupport.cpp
Support/OrganicSupport.hpp
Support/TreeSupport.cpp Support/TreeSupport.cpp
Support/TreeSupport.hpp Support/TreeSupport.hpp
Support/TreeSupportCommon.cpp
Support/TreeSupportCommon.hpp
Support/TreeModelVolumes.cpp Support/TreeModelVolumes.cpp
Support/TreeModelVolumes.hpp Support/TreeModelVolumes.hpp
SupportSpotsGenerator.cpp SupportSpotsGenerator.cpp

View File

@ -0,0 +1,992 @@
#include "OrganicSupport.hpp"
#include "AABBTreeLines.hpp"
#include "ClipperUtils.hpp"
#include "Polygon.hpp"
#include "Polyline.hpp"
#include "MutablePolygon.hpp"
#include "TriangleMeshSlicer.hpp"
#include "Support/SupportCommon.hpp"
#include <cassert>
#include <tbb/parallel_for.h>
#define TREE_SUPPORT_ORGANIC_NUDGE_NEW 1
#ifndef TREE_SUPPORT_ORGANIC_NUDGE_NEW
// Old version using OpenVDB, works but it is extremely slow for complex meshes.
#include "OpenVDBUtilsLegacy.hpp"
#include <openvdb/tools/VolumeToSpheres.h>
#endif // TREE_SUPPORT_ORGANIC_NUDGE_NEW
namespace Slic3r
{
namespace FFFTreeSupport
{
// Test whether two circles, each on its own plane in 3D intersect.
// Circles are considered intersecting, if the lowest point on one circle is below the other circle's plane.
// Assumption: The two planes are oriented the same way.
static bool circles_intersect(
const Vec3d &p1, const Vec3d &n1, const double r1,
const Vec3d &p2, const Vec3d &n2, const double r2)
{
assert(n1.dot(n2) >= 0);
const Vec3d z = n1.cross(n2);
const Vec3d dir1 = z.cross(n1);
const Vec3d lowest_point1 = p1 + dir1 * (r1 / dir1.norm());
assert(n2.dot(p1) >= n2.dot(lowest_point1));
if (n2.dot(lowest_point1) <= 0)
return true;
const Vec3d dir2 = z.cross(n2);
const Vec3d lowest_point2 = p2 + dir2 * (r2 / dir2.norm());
assert(n1.dot(p2) >= n1.dot(lowest_point2));
return n1.dot(lowest_point2) <= 0;
}
template<bool flip_normals>
void triangulate_fan(indexed_triangle_set &its, int ifan, int ibegin, int iend)
{
// at least 3 vertices, increasing order.
assert(ibegin + 3 <= iend);
assert(ibegin >= 0 && iend <= its.vertices.size());
assert(ifan >= 0 && ifan < its.vertices.size());
int num_faces = iend - ibegin;
its.indices.reserve(its.indices.size() + num_faces * 3);
for (int v = ibegin, u = iend - 1; v < iend; u = v ++) {
if (flip_normals)
its.indices.push_back({ ifan, u, v });
else
its.indices.push_back({ ifan, v, u });
}
}
static void triangulate_strip(indexed_triangle_set &its, int ibegin1, int iend1, int ibegin2, int iend2)
{
// at least 3 vertices, increasing order.
assert(ibegin1 + 3 <= iend1);
assert(ibegin1 >= 0 && iend1 <= its.vertices.size());
assert(ibegin2 + 3 <= iend2);
assert(ibegin2 >= 0 && iend2 <= its.vertices.size());
int n1 = iend1 - ibegin1;
int n2 = iend2 - ibegin2;
its.indices.reserve(its.indices.size() + (n1 + n2) * 3);
// For the first vertex of 1st strip, find the closest vertex on the 2nd strip.
int istart2 = ibegin2;
{
const Vec3f &p1 = its.vertices[ibegin1];
auto d2min = std::numeric_limits<float>::max();
for (int i = ibegin2; i < iend2; ++ i) {
const Vec3f &p2 = its.vertices[i];
const float d2 = (p2 - p1).squaredNorm();
if (d2 < d2min) {
d2min = d2;
istart2 = i;
}
}
}
// Now triangulate the strip zig-zag fashion taking always the shortest connection if possible.
for (int u = ibegin1, v = istart2; n1 > 0 || n2 > 0;) {
bool take_first;
int u2, v2;
auto update_u2 = [&u2, u, ibegin1, iend1]() {
u2 = u;
if (++ u2 == iend1)
u2 = ibegin1;
};
auto update_v2 = [&v2, v, ibegin2, iend2]() {
v2 = v;
if (++ v2 == iend2)
v2 = ibegin2;
};
if (n1 == 0) {
take_first = false;
update_v2();
} else if (n2 == 0) {
take_first = true;
update_u2();
} else {
update_u2();
update_v2();
float l1 = (its.vertices[u2] - its.vertices[v]).squaredNorm();
float l2 = (its.vertices[v2] - its.vertices[u]).squaredNorm();
take_first = l1 < l2;
}
if (take_first) {
its.indices.push_back({ u, u2, v });
-- n1;
u = u2;
} else {
its.indices.push_back({ u, v2, v });
-- n2;
v = v2;
}
}
}
// Discretize 3D circle, append to output vector, return ranges of indices of the points added.
static std::pair<int, int> discretize_circle(const Vec3f &center, const Vec3f &normal, const float radius, const float eps, std::vector<Vec3f> &pts)
{
// Calculate discretization step and number of steps.
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(2 * M_PI / angle_step));
angle_step = 2 * M_PI / nsteps;
// Prepare coordinate system for the circle plane.
Vec3f x = normal.cross(Vec3f(0.f, -1.f, 0.f)).normalized();
Vec3f y = normal.cross(x).normalized();
assert(std::abs(x.cross(y).dot(normal) - 1.f) < EPSILON);
// Discretize the circle.
int begin = int(pts.size());
pts.reserve(pts.size() + nsteps);
float angle = 0;
x *= radius;
y *= radius;
for (int i = 0; i < nsteps; ++ i) {
pts.emplace_back(center + x * cos(angle) + y * sin(angle));
angle += angle_step;
}
return { begin, int(pts.size()) };
}
// Returns Z span of the generated mesh.
static std::pair<float, float> extrude_branch(
const std::vector<const SupportElement*> &path,
const TreeSupportSettings &config,
const SlicingParameters &slicing_params,
const std::vector<SupportElements> &move_bounds,
indexed_triangle_set &result)
{
Vec3d p1, p2, p3;
Vec3d v1, v2;
Vec3d nprev;
Vec3d ncurrent;
assert(path.size() >= 2);
static constexpr const float eps = 0.015f;
std::pair<int, int> prev_strip;
// char fname[2048];
// static int irun = 0;
float zmin, zmax;
for (size_t ipath = 1; ipath < path.size(); ++ ipath) {
const SupportElement &prev = *path[ipath - 1];
const SupportElement &current = *path[ipath];
assert(prev.state.layer_idx + 1 == current.state.layer_idx);
p1 = to_3d(unscaled<double>(prev .state.result_on_layer), layer_z(slicing_params, config, prev .state.layer_idx));
p2 = to_3d(unscaled<double>(current.state.result_on_layer), layer_z(slicing_params, config, current.state.layer_idx));
v1 = (p2 - p1).normalized();
if (ipath == 1) {
nprev = v1;
// Extrude the bottom half sphere.
float radius = unscaled<float>(getRadius(config, prev.state));
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(M_PI / (2. * angle_step)));
angle_step = M_PI / (2. * nsteps);
int ifan = int(result.vertices.size());
result.vertices.emplace_back((p1 - nprev * radius).cast<float>());
zmin = result.vertices.back().z();
float angle = angle_step;
for (int i = 1; i < nsteps; ++ i, angle += angle_step) {
std::pair<int, int> strip = discretize_circle((p1 - nprev * radius * cos(angle)).cast<float>(), nprev.cast<float>(), radius * sin(angle), eps, result.vertices);
if (i == 1)
triangulate_fan<false>(result, ifan, strip.first, strip.second);
else
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
prev_strip = strip;
}
}
if (ipath + 1 == path.size()) {
// End of the tube.
ncurrent = v1;
// Extrude the top half sphere.
float radius = unscaled<float>(getRadius(config, current.state));
float angle_step = 2. * acos(1. - eps / radius);
auto nsteps = int(ceil(M_PI / (2. * angle_step)));
angle_step = M_PI / (2. * nsteps);
auto angle = float(M_PI / 2.);
for (int i = 0; i < nsteps; ++ i, angle -= angle_step) {
std::pair<int, int> strip = discretize_circle((p2 + ncurrent * radius * cos(angle)).cast<float>(), ncurrent.cast<float>(), radius * sin(angle), eps, result.vertices);
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
prev_strip = strip;
}
int ifan = int(result.vertices.size());
result.vertices.emplace_back((p2 + ncurrent * radius).cast<float>());
zmax = result.vertices.back().z();
triangulate_fan<true>(result, ifan, prev_strip.first, prev_strip.second);
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++ irun);
// its_write_obj(result, fname);
} else {
const SupportElement &next = *path[ipath + 1];
assert(current.state.layer_idx + 1 == next.state.layer_idx);
p3 = to_3d(unscaled<double>(next.state.result_on_layer), layer_z(slicing_params, config, next.state.layer_idx));
v2 = (p3 - p2).normalized();
ncurrent = (v1 + v2).normalized();
float radius = unscaled<float>(getRadius(config, current.state));
std::pair<int, int> strip = discretize_circle(p2.cast<float>(), ncurrent.cast<float>(), radius, eps, result.vertices);
triangulate_strip(result, prev_strip.first, prev_strip.second, strip.first, strip.second);
prev_strip = strip;
// sprintf(fname, "d:\\temp\\meshes\\tree-partial-%d.obj", ++irun);
// its_write_obj(result, fname);
}
#if 0
if (circles_intersect(p1, nprev, settings.getRadius(prev), p2, ncurrent, settings.getRadius(current))) {
// Cannot connect previous and current slice using a simple zig-zag triangulation,
// because the two circles intersect.
} else {
// Continue with chaining.
}
#endif
}
return std::make_pair(zmin, zmax);
}
#ifdef TREE_SUPPORT_ORGANIC_NUDGE_NEW
// New version using per layer AABB trees of lines for nudging spheres away from an object.
static void organic_smooth_branches_avoid_collisions(
const PrintObject &print_object,
const TreeModelVolumes &volumes,
const TreeSupportSettings &config,
std::vector<SupportElements> &move_bounds,
const std::vector<std::pair<SupportElement*, int>> &elements_with_link_down,
const std::vector<size_t> &linear_data_layers,
std::function<void()> throw_on_cancel)
{
struct LayerCollisionCache {
coord_t min_element_radius{ std::numeric_limits<coord_t>::max() };
bool min_element_radius_known() const { return this->min_element_radius != std::numeric_limits<coord_t>::max(); }
coord_t collision_radius{ 0 };
std::vector<Linef> lines;
AABBTreeIndirect::Tree<2, double> aabbtree_lines;
bool empty() const { return this->lines.empty(); }
};
std::vector<LayerCollisionCache> layer_collision_cache;
layer_collision_cache.reserve(1024);
const SlicingParameters &slicing_params = print_object.slicing_parameters();
for (const std::pair<SupportElement*, int>& element : elements_with_link_down) {
LayerIndex layer_idx = element.first->state.layer_idx;
if (size_t num_layers = layer_idx + 1; num_layers > layer_collision_cache.size()) {
if (num_layers > layer_collision_cache.capacity())
reserve_power_of_2(layer_collision_cache, num_layers);
layer_collision_cache.resize(num_layers, {});
}
auto& l = layer_collision_cache[layer_idx];
l.min_element_radius = std::min(l.min_element_radius, getRadius(config, element.first->state));
}
throw_on_cancel();
for (LayerIndex layer_idx = 0; layer_idx < LayerIndex(layer_collision_cache.size()); ++layer_idx)
if (LayerCollisionCache& l = layer_collision_cache[layer_idx]; !l.min_element_radius_known())
l.min_element_radius = 0;
else {
//FIXME
l.min_element_radius = 0;
std::optional<std::pair<coord_t, std::reference_wrapper<const Polygons>>> res = volumes.get_collision_lower_bound_area(layer_idx, l.min_element_radius);
assert(res.has_value());
l.collision_radius = res->first;
Lines alines = to_lines(res->second.get());
l.lines.reserve(alines.size());
for (const Line &line : alines)
l.lines.push_back({ unscaled<double>(line.a), unscaled<double>(line.b) });
l.aabbtree_lines = AABBTreeLines::build_aabb_tree_over_indexed_lines(l.lines);
throw_on_cancel();
}
struct CollisionSphere {
const SupportElement& element;
int element_below_id;
const bool locked;
float radius;
// Current position, when nudged away from the collision.
Vec3f position;
// Previous position, for Laplacian smoothing.
Vec3f prev_position;
//
Vec3f last_collision;
double last_collision_depth;
// Minimum Z for which the sphere collision will be evaluated.
// Limited by the minimum sloping angle and by the bottom of the tree.
float min_z{ -std::numeric_limits<float>::max() };
// Maximum Z for which the sphere collision will be evaluated.
// Limited by the minimum sloping angle and by the tip of the current branch.
float max_z{ std::numeric_limits<float>::max() };
uint32_t layer_begin;
uint32_t layer_end;
};
std::vector<CollisionSphere> collision_spheres;
collision_spheres.reserve(elements_with_link_down.size());
for (const std::pair<SupportElement*, int> &element_with_link : elements_with_link_down) {
const SupportElement &element = *element_with_link.first;
const int link_down = element_with_link.second;
collision_spheres.push_back({
element,
link_down,
// locked
element.parents.empty() || (link_down == -1 && element.state.layer_idx > 0),
unscaled<float>(getRadius(config, element.state)),
// 3D position
to_3d(unscaled<float>(element.state.result_on_layer), float(layer_z(slicing_params, config, element.state.layer_idx)))
});
// Update min_z coordinate to min_z of the tree below.
CollisionSphere &collision_sphere = collision_spheres.back();
if (link_down != -1) {
const size_t offset_below = linear_data_layers[element.state.layer_idx - 1];
collision_sphere.min_z = collision_spheres[offset_below + link_down].min_z;
} else
collision_sphere.min_z = collision_sphere.position.z();
}
// Update max_z by propagating max_z from the tips of the branches.
for (int collision_sphere_id = int(collision_spheres.size()) - 1; collision_sphere_id >= 0; -- collision_sphere_id) {
CollisionSphere &collision_sphere = collision_spheres[collision_sphere_id];
if (collision_sphere.element.parents.empty())
// Tip
collision_sphere.max_z = collision_sphere.position.z();
else {
// Below tip
const size_t offset_above = linear_data_layers[collision_sphere.element.state.layer_idx + 1];
for (auto iparent : collision_sphere.element.parents) {
float parent_z = collision_spheres[offset_above + iparent].max_z;
// collision_sphere.max_z = collision_sphere.max_z == std::numeric_limits<float>::max() ? parent_z : std::max(collision_sphere.max_z, parent_z);
collision_sphere.max_z = std::min(collision_sphere.max_z, parent_z);
}
}
}
// Update min_z / max_z to limit the search Z span of a given sphere for collision detection.
for (CollisionSphere &collision_sphere : collision_spheres) {
//FIXME limit the collision span by the tree slope.
collision_sphere.min_z = std::max(collision_sphere.min_z, collision_sphere.position.z() - collision_sphere.radius);
collision_sphere.max_z = std::min(collision_sphere.max_z, collision_sphere.position.z() + collision_sphere.radius);
collision_sphere.layer_begin = std::min(collision_sphere.element.state.layer_idx, layer_idx_ceil(slicing_params, config, collision_sphere.min_z));
assert(collision_sphere.layer_begin < layer_collision_cache.size());
collision_sphere.layer_end = std::min(LayerIndex(layer_collision_cache.size()), std::max(collision_sphere.element.state.layer_idx, layer_idx_floor(slicing_params, config, collision_sphere.max_z)) + 1);
}
throw_on_cancel();
static constexpr const double collision_extra_gap = 0.1;
static constexpr const double max_nudge_collision_avoidance = 0.5;
static constexpr const double max_nudge_smoothing = 0.2;
static constexpr const size_t num_iter = 100; // 1000;
for (size_t iter = 0; iter < num_iter; ++ iter) {
// Back up prev position before Laplacian smoothing.
for (CollisionSphere &collision_sphere : collision_spheres)
collision_sphere.prev_position = collision_sphere.position;
std::atomic<size_t> num_moved{ 0 };
tbb::parallel_for(tbb::blocked_range<size_t>(0, collision_spheres.size()),
[&collision_spheres, &layer_collision_cache, &slicing_params, &config, &move_bounds, &linear_data_layers, &num_moved, &throw_on_cancel](const tbb::blocked_range<size_t> range) {
for (size_t collision_sphere_id = range.begin(); collision_sphere_id < range.end(); ++ collision_sphere_id)
if (CollisionSphere &collision_sphere = collision_spheres[collision_sphere_id]; ! collision_sphere.locked) {
// Calculate collision of multiple 2D layers against a collision sphere.
collision_sphere.last_collision_depth = - std::numeric_limits<double>::max();
for (uint32_t layer_id = collision_sphere.layer_begin; layer_id != collision_sphere.layer_end; ++ layer_id) {
double dz = (layer_id - collision_sphere.element.state.layer_idx) * slicing_params.layer_height;
if (double r2 = sqr(collision_sphere.radius) - sqr(dz); r2 > 0) {
if (const LayerCollisionCache &layer_collision_cache_item = layer_collision_cache[layer_id]; ! layer_collision_cache_item.empty()) {
size_t hit_idx_out;
Vec2d hit_point_out;
if (double dist = sqrt(AABBTreeLines::squared_distance_to_indexed_lines(
layer_collision_cache_item.lines, layer_collision_cache_item.aabbtree_lines, Vec2d(to_2d(collision_sphere.position).cast<double>()),
hit_idx_out, hit_point_out, r2)); dist >= 0.) {
double collision_depth = sqrt(r2) - dist;
if (collision_depth > collision_sphere.last_collision_depth) {
collision_sphere.last_collision_depth = collision_depth;
collision_sphere.last_collision = to_3d(hit_point_out.cast<float>(), float(layer_z(slicing_params, config, layer_id)));
}
}
}
}
}
if (collision_sphere.last_collision_depth > 0) {
// Collision detected to be removed.
// Nudge the circle center away from the collision.
if (collision_sphere.last_collision_depth > EPSILON)
// a little bit of hysteresis to detect end of
++ num_moved;
// Shift by maximum 2mm.
double nudge_dist = std::min(std::max(0., collision_sphere.last_collision_depth + collision_extra_gap), max_nudge_collision_avoidance);
Vec2d nudge_vector = (to_2d(collision_sphere.position) - to_2d(collision_sphere.last_collision)).cast<double>().normalized() * nudge_dist;
collision_sphere.position.head<2>() += (nudge_vector * nudge_dist).cast<float>();
}
// Laplacian smoothing
Vec2d avg{ 0, 0 };
const SupportElements &above = move_bounds[collision_sphere.element.state.layer_idx + 1];
const size_t offset_above = linear_data_layers[collision_sphere.element.state.layer_idx + 1];
double weight = 0.;
for (auto iparent : collision_sphere.element.parents) {
double w = collision_sphere.radius;
avg += w * to_2d(collision_spheres[offset_above + iparent].prev_position.cast<double>());
weight += w;
}
if (collision_sphere.element_below_id != -1) {
const size_t offset_below = linear_data_layers[collision_sphere.element.state.layer_idx - 1];
const double w = weight; // config.getRadius(move_bounds[element.state.layer_idx - 1][below].state);
avg += w * to_2d(collision_spheres[offset_below + collision_sphere.element_below_id].prev_position.cast<double>());
weight += w;
}
avg /= weight;
static constexpr const double smoothing_factor = 0.5;
Vec2d old_pos = to_2d(collision_sphere.position).cast<double>();
Vec2d new_pos = (1. - smoothing_factor) * old_pos + smoothing_factor * avg;
Vec2d shift = new_pos - old_pos;
double nudge_dist_max = shift.norm();
// Shift by maximum 1mm, less than the collision avoidance factor.
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_smoothing);
collision_sphere.position.head<2>() += (shift.normalized() * nudge_dist).cast<float>();
throw_on_cancel();
}
});
#if 0
std::vector<double> stat;
for (CollisionSphere& collision_sphere : collision_spheres)
if (!collision_sphere.locked)
stat.emplace_back(collision_sphere.last_collision_depth);
std::sort(stat.begin(), stat.end());
printf("iteration: %d, moved: %d, collision depth: min %lf, max %lf, median %lf\n", int(iter), int(num_moved), stat.front(), stat.back(), stat[stat.size() / 2]);
#endif
if (num_moved == 0)
break;
}
for (size_t i = 0; i < collision_spheres.size(); ++ i)
elements_with_link_down[i].first->state.result_on_layer = scaled<coord_t>(to_2d(collision_spheres[i].position));
}
#else // TREE_SUPPORT_ORGANIC_NUDGE_NEW
// Old version using OpenVDB, works but it is extremely slow for complex meshes.
static void organic_smooth_branches_avoid_collisions(
const PrintObject &print_object,
const TreeModelVolumes &volumes,
const TreeSupportSettings &config,
std::vector<SupportElements> &move_bounds,
const std::vector<std::pair<SupportElement*, int>> &elements_with_link_down,
const std::vector<size_t> &linear_data_layers,
std::function<void()> throw_on_cancel)
{
TriangleMesh mesh = print_object.model_object()->raw_mesh();
mesh.transform(print_object.trafo_centered());
double scale = 10.;
openvdb::FloatGrid::Ptr grid = mesh_to_grid(mesh.its, openvdb::math::Transform{}, scale, 0., 0.);
std::unique_ptr<openvdb::tools::ClosestSurfacePoint<openvdb::FloatGrid>> closest_surface_point = openvdb::tools::ClosestSurfacePoint<openvdb::FloatGrid>::create(*grid);
std::vector<openvdb::Vec3R> pts, prev, projections;
std::vector<float> distances;
for (const std::pair<SupportElement*, int>& element : elements_with_link_down) {
Vec3d pt = to_3d(unscaled<double>(element.first->state.result_on_layer), layer_z(print_object.slicing_parameters(), config, element.first->state.layer_idx)) * scale;
pts.push_back({ pt.x(), pt.y(), pt.z() });
}
const double collision_extra_gap = 1. * scale;
const double max_nudge_collision_avoidance = 2. * scale;
const double max_nudge_smoothing = 1. * scale;
static constexpr const size_t num_iter = 100; // 1000;
for (size_t iter = 0; iter < num_iter; ++ iter) {
prev = pts;
projections = pts;
distances.assign(pts.size(), std::numeric_limits<float>::max());
closest_surface_point->searchAndReplace(projections, distances);
size_t num_moved = 0;
for (size_t i = 0; i < projections.size(); ++ i) {
const SupportElement &element = *elements_with_link_down[i].first;
const int below = elements_with_link_down[i].second;
const bool locked = (below == -1 && element.state.layer_idx > 0) || element.state.locked();
if (! locked && pts[i] != projections[i]) {
// Nudge the circle center away from the collision.
Vec3d v{ projections[i].x() - pts[i].x(), projections[i].y() - pts[i].y(), projections[i].z() - pts[i].z() };
double depth = v.norm();
assert(std::abs(distances[i] - depth) < EPSILON);
double radius = unscaled<double>(config.getRadius(element.state)) * scale;
if (depth < radius) {
// Collision detected to be removed.
++ num_moved;
double dxy = sqrt(sqr(radius) - sqr(v.z()));
double nudge_dist_max = dxy - std::hypot(v.x(), v.y())
//FIXME 1mm gap
+ collision_extra_gap;
// Shift by maximum 2mm.
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_collision_avoidance);
Vec2d nudge_v = to_2d(v).normalized() * (- nudge_dist);
pts[i].x() += nudge_v.x();
pts[i].y() += nudge_v.y();
}
}
// Laplacian smoothing
if (! locked && ! element.parents.empty()) {
Vec2d avg{ 0, 0 };
const SupportElements &above = move_bounds[element.state.layer_idx + 1];
const size_t offset_above = linear_data_layers[element.state.layer_idx + 1];
double weight = 0.;
for (auto iparent : element.parents) {
double w = config.getRadius(above[iparent].state);
avg.x() += w * prev[offset_above + iparent].x();
avg.y() += w * prev[offset_above + iparent].y();
weight += w;
}
size_t cnt = element.parents.size();
if (below != -1) {
const size_t offset_below = linear_data_layers[element.state.layer_idx - 1];
const double w = weight; // config.getRadius(move_bounds[element.state.layer_idx - 1][below].state);
avg.x() += w * prev[offset_below + below].x();
avg.y() += w * prev[offset_below + below].y();
++ cnt;
weight += w;
}
//avg /= double(cnt);
avg /= weight;
static constexpr const double smoothing_factor = 0.5;
Vec2d old_pos{ pts[i].x(), pts[i].y() };
Vec2d new_pos = (1. - smoothing_factor) * old_pos + smoothing_factor * avg;
Vec2d shift = new_pos - old_pos;
double nudge_dist_max = shift.norm();
// Shift by maximum 1mm, less than the collision avoidance factor.
double nudge_dist = std::min(std::max(0., nudge_dist_max), max_nudge_smoothing);
Vec2d nudge_v = shift.normalized() * nudge_dist;
pts[i].x() += nudge_v.x();
pts[i].y() += nudge_v.y();
}
}
// printf("iteration: %d, moved: %d\n", int(iter), int(num_moved));
if (num_moved == 0)
break;
}
for (size_t i = 0; i < projections.size(); ++ i) {
elements_with_link_down[i].first->state.result_on_layer.x() = scaled<coord_t>(pts[i].x()) / scale;
elements_with_link_down[i].first->state.result_on_layer.y() = scaled<coord_t>(pts[i].y()) / scale;
}
}
#endif // TREE_SUPPORT_ORGANIC_NUDGE_NEW
// Organic specific: Smooth branches and produce one cummulative mesh to be sliced.
void organic_draw_branches(
PrintObject &print_object,
TreeModelVolumes &volumes,
const TreeSupportSettings &config,
std::vector<SupportElements> &move_bounds,
// I/O:
SupportGeneratorLayersPtr &bottom_contacts,
SupportGeneratorLayersPtr &top_contacts,
InterfacePlacer &interface_placer,
// Output:
SupportGeneratorLayersPtr &intermediate_layers,
SupportGeneratorLayerStorage &layer_storage,
std::function<void()> throw_on_cancel)
{
// All SupportElements are put into a layer independent storage to improve parallelization.
std::vector<std::pair<SupportElement*, int>> elements_with_link_down;
std::vector<size_t> linear_data_layers;
{
std::vector<std::pair<SupportElement*, int>> map_downwards_old;
std::vector<std::pair<SupportElement*, int>> map_downwards_new;
linear_data_layers.emplace_back(0);
for (LayerIndex layer_idx = 0; layer_idx < LayerIndex(move_bounds.size()); ++ layer_idx) {
SupportElements *layer_above = layer_idx + 1 < move_bounds.size() ? &move_bounds[layer_idx + 1] : nullptr;
map_downwards_new.clear();
std::sort(map_downwards_old.begin(), map_downwards_old.end(), [](auto& l, auto& r) { return l.first < r.first; });
SupportElements &layer = move_bounds[layer_idx];
for (size_t elem_idx = 0; elem_idx < layer.size(); ++ elem_idx) {
SupportElement &elem = layer[elem_idx];
int child = -1;
if (layer_idx > 0) {
auto it = std::lower_bound(map_downwards_old.begin(), map_downwards_old.end(), &elem, [](auto& l, const SupportElement* r) { return l.first < r; });
if (it != map_downwards_old.end() && it->first == &elem) {
child = it->second;
// Only one link points to a node above from below.
assert(!(++it != map_downwards_old.end() && it->first == &elem));
}
#ifndef NDEBUG
{
const SupportElement *pchild = child == -1 ? nullptr : &move_bounds[layer_idx - 1][child];
assert(pchild ? pchild->state.result_on_layer_is_set() : elem.state.target_height > layer_idx);
}
#endif // NDEBUG
}
for (int32_t parent_idx : elem.parents) {
SupportElement &parent = (*layer_above)[parent_idx];
if (parent.state.result_on_layer_is_set())
map_downwards_new.emplace_back(&parent, elem_idx);
}
elements_with_link_down.push_back({ &elem, int(child) });
}
std::swap(map_downwards_old, map_downwards_new);
linear_data_layers.emplace_back(elements_with_link_down.size());
}
}
throw_on_cancel();
organic_smooth_branches_avoid_collisions(print_object, volumes, config, move_bounds, elements_with_link_down, linear_data_layers, throw_on_cancel);
// Reduce memory footprint. After this point only finalize_interface_and_support_areas() will use volumes and from that only collisions with zero radius will be used.
volumes.clear_all_but_object_collision();
// Unmark all nodes.
for (SupportElements &elements : move_bounds)
for (SupportElement &element : elements)
element.state.marked = false;
// Traverse all nodes, generate tubes.
// Traversal stack with nodes and their current parent
struct Branch {
std::vector<const SupportElement*> path;
bool has_root{ false };
bool has_tip { false };
};
struct Slice {
Polygons polygons;
Polygons bottom_contacts;
size_t num_branches{ 0 };
};
struct Tree {
std::vector<Branch> branches;
std::vector<Slice> slices;
LayerIndex first_layer_id{ -1 };
};
std::vector<Tree> trees;
struct TreeVisitor {
static void visit_recursive(std::vector<SupportElements> &move_bounds, SupportElement &start_element, Tree &out) {
assert(! start_element.state.marked && ! start_element.parents.empty());
// Collect elements up to a bifurcation above.
start_element.state.marked = true;
// For each branch bifurcating from this point:
SupportElements &layer = move_bounds[start_element.state.layer_idx];
SupportElements &layer_above = move_bounds[start_element.state.layer_idx + 1];
bool root = out.branches.empty();
for (size_t parent_idx = 0; parent_idx < start_element.parents.size(); ++ parent_idx) {
Branch branch;
branch.path.emplace_back(&start_element);
// Traverse each branch until it branches again.
SupportElement &first_parent = layer_above[start_element.parents[parent_idx]];
assert(! first_parent.state.marked);
assert(branch.path.back()->state.layer_idx + 1 == first_parent.state.layer_idx);
branch.path.emplace_back(&first_parent);
if (first_parent.parents.size() < 2)
first_parent.state.marked = true;
SupportElement *next_branch = nullptr;
if (first_parent.parents.size() == 1) {
for (SupportElement *parent = &first_parent;;) {
assert(parent->state.marked);
SupportElement &next_parent = move_bounds[parent->state.layer_idx + 1][parent->parents.front()];
assert(! next_parent.state.marked);
assert(branch.path.back()->state.layer_idx + 1 == next_parent.state.layer_idx);
branch.path.emplace_back(&next_parent);
if (next_parent.parents.size() > 1) {
// Branching point was reached.
next_branch = &next_parent;
break;
}
next_parent.state.marked = true;
if (next_parent.parents.size() == 0)
// Tip is reached.
break;
parent = &next_parent;
}
} else if (first_parent.parents.size() > 1)
// Branching point was reached.
next_branch = &first_parent;
assert(branch.path.size() >= 2);
assert(next_branch == nullptr || ! next_branch->state.marked);
branch.has_root = root;
branch.has_tip = ! next_branch;
out.branches.emplace_back(std::move(branch));
if (next_branch)
visit_recursive(move_bounds, *next_branch, out);
}
}
};
for (LayerIndex layer_idx = 0; layer_idx + 1 < LayerIndex(move_bounds.size()); ++ layer_idx) {
// int ielement;
for (SupportElement& start_element : move_bounds[layer_idx]) {
if (!start_element.state.marked && !start_element.parents.empty()) {
#if 0
int found = 0;
if (layer_idx > 0) {
for (auto& el : move_bounds[layer_idx - 1]) {
for (auto iparent : el.parents)
if (iparent == ielement)
++found;
}
if (found != 0)
printf("Found: %d\n", found);
}
#endif
trees.push_back({});
TreeVisitor::visit_recursive(move_bounds, start_element, trees.back());
assert(!trees.back().branches.empty());
//FIXME debugging
#if 1
if (start_element.state.lost) {
}
else if (start_element.state.verylost) {
} else
trees.pop_back();
#endif
}
// ++ ielement;
}
}
const SlicingParameters &slicing_params = print_object.slicing_parameters();
MeshSlicingParams mesh_slicing_params;
mesh_slicing_params.mode = MeshSlicingParams::SlicingMode::Positive;
tbb::parallel_for(tbb::blocked_range<size_t>(0, trees.size(), 1),
[&trees, &volumes, &config, &slicing_params, &move_bounds, &interface_placer, &mesh_slicing_params, &throw_on_cancel](const tbb::blocked_range<size_t> &range) {
indexed_triangle_set partial_mesh;
std::vector<float> slice_z;
std::vector<Polygons> bottom_contacts;
for (size_t tree_id = range.begin(); tree_id < range.end(); ++ tree_id) {
Tree &tree = trees[tree_id];
for (const Branch &branch : tree.branches) {
// Triangulate the tube.
partial_mesh.clear();
std::pair<float, float> zspan = extrude_branch(branch.path, config, slicing_params, move_bounds, partial_mesh);
LayerIndex layer_begin = branch.has_root ?
branch.path.front()->state.layer_idx :
std::min(branch.path.front()->state.layer_idx, layer_idx_ceil(slicing_params, config, zspan.first));
LayerIndex layer_end = (branch.has_tip ?
branch.path.back()->state.layer_idx :
std::max(branch.path.back()->state.layer_idx, layer_idx_floor(slicing_params, config, zspan.second))) + 1;
slice_z.clear();
for (LayerIndex layer_idx = layer_begin; layer_idx < layer_end; ++ layer_idx) {
const double print_z = layer_z(slicing_params, config, layer_idx);
const double bottom_z = layer_idx > 0 ? layer_z(slicing_params, config, layer_idx - 1) : 0.;
slice_z.emplace_back(float(0.5 * (bottom_z + print_z)));
}
std::vector<Polygons> slices = slice_mesh(partial_mesh, slice_z, mesh_slicing_params, throw_on_cancel);
bottom_contacts.clear();
//FIXME parallelize?
for (LayerIndex i = 0; i < LayerIndex(slices.size()); ++ i)
slices[i] = diff_clipped(slices[i], volumes.getCollision(0, layer_begin + i, true)); //FIXME parent_uses_min || draw_area.element->state.use_min_xy_dist);
size_t num_empty = 0;
if (slices.front().empty()) {
// Some of the initial layers are empty.
num_empty = std::find_if(slices.begin(), slices.end(), [](auto &s) { return !s.empty(); }) - slices.begin();
} else {
if (branch.has_root) {
if (branch.path.front()->state.to_model_gracious) {
if (config.settings.support_floor_layers > 0)
//FIXME one may just take the whole tree slice as bottom interface.
bottom_contacts.emplace_back(intersection_clipped(slices.front(), volumes.getPlaceableAreas(0, layer_begin, [] {})));
} else if (layer_begin > 0) {
// Drop down areas that do rest non - gracefully on the model to ensure the branch actually rests on something.
struct BottomExtraSlice {
Polygons polygons;
double area;
};
std::vector<BottomExtraSlice> bottom_extra_slices;
Polygons rest_support;
coord_t bottom_radius = getRadius(config, branch.path.front()->state);
// Don't propagate further than 1.5 * bottom radius.
//LayerIndex layers_propagate_max = 2 * bottom_radius / config.layer_height;
LayerIndex layers_propagate_max = 5 * bottom_radius / config.layer_height;
LayerIndex layer_bottommost = branch.path.front()->state.verylost ?
// If the tree bottom is hanging in the air, bring it down to some surface.
0 :
//FIXME the "verylost" branches should stop when crossing another support.
std::max(0, layer_begin - layers_propagate_max);
double support_area_min_radius = M_PI * sqr(double(config.branch_radius));
double support_area_stop = std::max(0.2 * M_PI * sqr(double(bottom_radius)), 0.5 * support_area_min_radius);
// Only propagate until the rest area is smaller than this threshold.
double support_area_min = 0.1 * support_area_min_radius;
for (LayerIndex layer_idx = layer_begin - 1; layer_idx >= layer_bottommost; -- layer_idx) {
rest_support = diff_clipped(rest_support.empty() ? slices.front() : rest_support, volumes.getCollision(0, layer_idx, false));
double rest_support_area = area(rest_support);
if (rest_support_area < support_area_stop)
// Don't propagate a fraction of the tree contact surface.
break;
bottom_extra_slices.push_back({ rest_support, rest_support_area });
}
// Now remove those bottom slices that are not supported at all.
#if 0
while (! bottom_extra_slices.empty()) {
Polygons this_bottom_contacts = intersection_clipped(
bottom_extra_slices.back().polygons, volumes.getPlaceableAreas(0, layer_begin - LayerIndex(bottom_extra_slices.size()), [] {}));
if (area(this_bottom_contacts) < support_area_min)
bottom_extra_slices.pop_back();
else {
// At least a fraction of the tree bottom is considered to be supported.
if (config.settings.support_floor_layers > 0)
// Turn this fraction of the tree bottom into a contact layer.
bottom_contacts.emplace_back(std::move(this_bottom_contacts));
break;
}
}
#endif
if (config.settings.support_floor_layers > 0)
for (int i = int(bottom_extra_slices.size()) - 2; i >= 0; -- i)
bottom_contacts.emplace_back(
intersection_clipped(bottom_extra_slices[i].polygons, volumes.getPlaceableAreas(0, layer_begin - i - 1, [] {})));
layer_begin -= LayerIndex(bottom_extra_slices.size());
slices.insert(slices.begin(), bottom_extra_slices.size(), {});
auto it_dst = slices.begin();
for (auto it_src = bottom_extra_slices.rbegin(); it_src != bottom_extra_slices.rend(); ++ it_src)
*it_dst ++ = std::move(it_src->polygons);
}
}
#if 0
//FIXME branch.has_tip seems to not be reliable.
if (branch.has_tip && interface_placer.support_parameters.has_top_contacts)
// Add top slices to top contacts / interfaces / base interfaces.
for (int i = int(branch.path.size()) - 1; i >= 0; -- i) {
const SupportElement &el = *branch.path[i];
if (el.state.missing_roof_layers == 0)
break;
//FIXME Move or not?
interface_placer.add_roof(std::move(slices[int(slices.size()) - i - 1]), el.state.layer_idx,
interface_placer.support_parameters.num_top_interface_layers + 1 - el.state.missing_roof_layers);
}
#endif
}
layer_begin += LayerIndex(num_empty);
while (! slices.empty() && slices.back().empty()) {
slices.pop_back();
-- layer_end;
}
if (layer_begin < layer_end) {
LayerIndex new_begin = tree.first_layer_id == -1 ? layer_begin : std::min(tree.first_layer_id, layer_begin);
LayerIndex new_end = tree.first_layer_id == -1 ? layer_end : std::max(tree.first_layer_id + LayerIndex(tree.slices.size()), layer_end);
size_t new_size = size_t(new_end - new_begin);
if (tree.first_layer_id == -1) {
} else if (tree.slices.capacity() < new_size) {
std::vector<Slice> new_slices;
new_slices.reserve(new_size);
if (LayerIndex dif = tree.first_layer_id - new_begin; dif > 0)
new_slices.insert(new_slices.end(), dif, {});
append(new_slices, std::move(tree.slices));
tree.slices.swap(new_slices);
} else if (LayerIndex dif = tree.first_layer_id - new_begin; dif > 0)
tree.slices.insert(tree.slices.begin(), tree.first_layer_id - new_begin, {});
tree.slices.insert(tree.slices.end(), new_size - tree.slices.size(), {});
layer_begin -= LayerIndex(num_empty);
for (LayerIndex i = layer_begin; i != layer_end; ++ i) {
int j = i - layer_begin;
if (Polygons &src = slices[j]; ! src.empty()) {
Slice &dst = tree.slices[i - new_begin];
if (++ dst.num_branches > 1) {
append(dst.polygons, std::move(src));
if (j < bottom_contacts.size())
append(dst.bottom_contacts, std::move(bottom_contacts[j]));
} else {
dst.polygons = std::move(std::move(src));
if (j < bottom_contacts.size())
dst.bottom_contacts = std::move(bottom_contacts[j]);
}
}
}
tree.first_layer_id = new_begin;
}
}
}
}, tbb::simple_partitioner());
tbb::parallel_for(tbb::blocked_range<size_t>(0, trees.size(), 1),
[&trees, &throw_on_cancel](const tbb::blocked_range<size_t> &range) {
for (size_t tree_id = range.begin(); tree_id < range.end(); ++ tree_id) {
Tree &tree = trees[tree_id];
for (Slice &slice : tree.slices)
if (slice.num_branches > 1) {
slice.polygons = union_(slice.polygons);
slice.bottom_contacts = union_(slice.bottom_contacts);
slice.num_branches = 1;
}
throw_on_cancel();
}
}, tbb::simple_partitioner());
size_t num_layers = 0;
for (Tree &tree : trees)
if (tree.first_layer_id >= 0)
num_layers = std::max(num_layers, size_t(tree.first_layer_id + tree.slices.size()));
std::vector<Slice> slices(num_layers, Slice{});
for (Tree &tree : trees)
if (tree.first_layer_id >= 0) {
for (LayerIndex i = tree.first_layer_id; i != tree.first_layer_id + LayerIndex(tree.slices.size()); ++ i)
if (Slice &src = tree.slices[i - tree.first_layer_id]; ! src.polygons.empty()) {
Slice &dst = slices[i];
if (++ dst.num_branches > 1) {
append(dst.polygons, std::move(src.polygons));
append(dst.bottom_contacts, std::move(src.bottom_contacts));
} else {
dst.polygons = std::move(src.polygons);
dst.bottom_contacts = std::move(src.bottom_contacts);
}
}
}
tbb::parallel_for(tbb::blocked_range<size_t>(0, std::min(move_bounds.size(), slices.size()), 1),
[&print_object, &config, &slices, &bottom_contacts, &top_contacts, &intermediate_layers, &layer_storage, &throw_on_cancel](const tbb::blocked_range<size_t> &range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
Slice &slice = slices[layer_idx];
assert(intermediate_layers[layer_idx] == nullptr);
Polygons base_layer_polygons = slice.num_branches > 1 ? union_(slice.polygons) : std::move(slice.polygons);
Polygons bottom_contact_polygons = slice.num_branches > 1 ? union_(slice.bottom_contacts) : std::move(slice.bottom_contacts);
if (! base_layer_polygons.empty()) {
// Most of the time in this function is this union call. Can take 300+ ms when a lot of areas are to be unioned.
base_layer_polygons = smooth_outward(union_(base_layer_polygons), config.support_line_width); //FIXME was .smooth(50);
//smooth_outward(closing(std::move(bottom), closing_distance + minimum_island_radius, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS), smoothing_distance) :
// simplify a bit, to ensure the output does not contain outrageous amounts of vertices. Should not be necessary, just a precaution.
base_layer_polygons = polygons_simplify(base_layer_polygons, std::min(scaled<double>(0.03), double(config.resolution)), polygons_strictly_simple);
}
// Subtract top contact layer polygons from support base.
SupportGeneratorLayer *top_contact_layer = top_contacts.empty() ? nullptr : top_contacts[layer_idx];
if (top_contact_layer && ! top_contact_layer->polygons.empty() && ! base_layer_polygons.empty()) {
base_layer_polygons = diff(base_layer_polygons, top_contact_layer->polygons);
if (! bottom_contact_polygons.empty())
//FIXME it may be better to clip bottom contacts with top contacts first after they are propagated to produce interface layers.
bottom_contact_polygons = diff(bottom_contact_polygons, top_contact_layer->polygons);
}
if (! bottom_contact_polygons.empty()) {
base_layer_polygons = diff(base_layer_polygons, bottom_contact_polygons);
SupportGeneratorLayer *bottom_contact_layer = bottom_contacts[layer_idx] = &layer_allocate(
layer_storage, SupporLayerType::BottomContact, print_object.slicing_parameters(), config, layer_idx);
bottom_contact_layer->polygons = std::move(bottom_contact_polygons);
}
if (! base_layer_polygons.empty()) {
SupportGeneratorLayer *base_layer = intermediate_layers[layer_idx] = &layer_allocate(
layer_storage, SupporLayerType::Base, print_object.slicing_parameters(), config, layer_idx);
base_layer->polygons = union_(base_layer_polygons);
}
throw_on_cancel();
}
}, tbb::simple_partitioner());
}
} // namespace FFFTreeSupport
} // namespace Slic3r

View File

@ -0,0 +1,39 @@
#ifndef slic3r_OrganicSupport_hpp
#define slic3r_OrganicSupport_hpp
#include "SupportCommon.hpp"
#include "TreeSupport.hpp"
namespace Slic3r
{
class PrintObject;
namespace FFFTreeSupport
{
class TreeModelVolumes;
// Organic specific: Smooth branches and produce one cummulative mesh to be sliced.
void organic_draw_branches(
PrintObject &print_object,
TreeModelVolumes &volumes,
const TreeSupportSettings &config,
std::vector<SupportElements> &move_bounds,
// I/O:
SupportGeneratorLayersPtr &bottom_contacts,
SupportGeneratorLayersPtr &top_contacts,
InterfacePlacer &interface_placer,
// Output:
SupportGeneratorLayersPtr &intermediate_layers,
SupportGeneratorLayerStorage &layer_storage,
std::function<void()> throw_on_cancel);
} // namespace FFFTreeSupport
} // namespace Slic3r
#endif // slic3r_OrganicSupport_hpp

View File

@ -1,7 +1,9 @@
#ifndef slic3r_SupportCommon_hpp_ #ifndef slic3r_SupportCommon_hpp_
#define slic3r_SupportCommon_hpp_ #define slic3r_SupportCommon_hpp_
#include "../Layer.hpp"
#include "../Polygon.hpp" #include "../Polygon.hpp"
#include "../Print.hpp"
#include "SupportLayer.hpp" #include "SupportLayer.hpp"
#include "SupportParameters.hpp" #include "SupportParameters.hpp"

View File

@ -35,75 +35,6 @@ using namespace std::literals;
// had to use a define beacuse the macro processing inside macro BOOST_LOG_TRIVIAL() // had to use a define beacuse the macro processing inside macro BOOST_LOG_TRIVIAL()
#define error_level_not_in_cache error #define error_level_not_in_cache error
static constexpr const bool polygons_strictly_simple = false;
TreeSupportMeshGroupSettings::TreeSupportMeshGroupSettings(const PrintObject &print_object)
{
const PrintConfig &print_config = print_object.print()->config();
const PrintObjectConfig &config = print_object.config();
const SlicingParameters &slicing_params = print_object.slicing_parameters();
// const std::vector<unsigned int> printing_extruders = print_object.object_extruders();
// Support must be enabled and set to Tree style.
assert(config.support_material || config.support_material_enforce_layers > 0);
assert(config.support_material_style == smsTree || config.support_material_style == smsOrganic);
// Calculate maximum external perimeter width over all printing regions, taking into account the default layer height.
coordf_t external_perimeter_width = 0.;
for (size_t region_id = 0; region_id < print_object.num_printing_regions(); ++ region_id) {
const PrintRegion &region = print_object.printing_region(region_id);
external_perimeter_width = std::max<coordf_t>(external_perimeter_width, region.flow(print_object, frExternalPerimeter, config.layer_height).width());
}
this->layer_height = scaled<coord_t>(config.layer_height.value);
this->resolution = scaled<coord_t>(print_config.gcode_resolution.value);
// Arache feature
this->min_feature_size = scaled<coord_t>(config.min_feature_size.value);
// +1 makes the threshold inclusive
this->support_angle = 0.5 * M_PI - std::clamp<double>((config.support_material_threshold + 1) * M_PI / 180., 0., 0.5 * M_PI);
this->support_line_width = support_material_flow(&print_object, config.layer_height).scaled_width();
this->support_roof_line_width = support_material_interface_flow(&print_object, config.layer_height).scaled_width();
//FIXME add it to SlicingParameters and reuse in both tree and normal supports?
this->support_bottom_enable = config.support_material_interface_layers.value > 0 && config.support_material_bottom_interface_layers.value != 0;
this->support_bottom_height = this->support_bottom_enable ?
(config.support_material_bottom_interface_layers.value > 0 ?
config.support_material_bottom_interface_layers.value :
config.support_material_interface_layers.value) * this->layer_height :
0;
this->support_material_buildplate_only = config.support_material_buildplate_only;
this->support_xy_distance = scaled<coord_t>(config.support_material_xy_spacing.get_abs_value(external_perimeter_width));
// Separation of interfaces, it is likely smaller than support_xy_distance.
this->support_xy_distance_overhang = std::min(this->support_xy_distance, scaled<coord_t>(0.5 * external_perimeter_width));
this->support_top_distance = scaled<coord_t>(slicing_params.gap_support_object);
this->support_bottom_distance = scaled<coord_t>(slicing_params.gap_object_support);
// this->support_interface_skip_height =
// this->support_infill_angles =
this->support_roof_enable = config.support_material_interface_layers.value > 0;
this->support_roof_layers = this->support_roof_enable ? config.support_material_interface_layers.value : 0;
this->support_floor_enable = config.support_material_interface_layers.value > 0 && config.support_material_bottom_interface_layers.value > 0;
this->support_floor_layers = this->support_floor_enable ? config.support_material_bottom_interface_layers.value : 0;
// this->minimum_roof_area =
// this->support_roof_angles =
this->support_roof_pattern = config.support_material_interface_pattern;
this->support_pattern = config.support_material_pattern;
this->support_line_spacing = scaled<coord_t>(config.support_material_spacing.value);
// this->support_bottom_offset =
// this->support_wall_count = config.support_material_with_sheath ? 1 : 0;
this->support_wall_count = 1;
this->support_roof_line_distance = scaled<coord_t>(config.support_material_interface_spacing.value) + this->support_roof_line_width;
// this->minimum_support_area =
// this->minimum_bottom_area =
// this->support_offset =
this->support_tree_branch_distance = scaled<coord_t>(config.support_tree_branch_distance.value);
this->support_tree_angle = std::clamp<double>(config.support_tree_angle * M_PI / 180., 0., 0.5 * M_PI - EPSILON);
this->support_tree_angle_slow = std::clamp<double>(config.support_tree_angle_slow * M_PI / 180., 0., this->support_tree_angle - EPSILON);
this->support_tree_branch_diameter = scaled<coord_t>(config.support_tree_branch_diameter.value);
this->support_tree_branch_diameter_angle = std::clamp<double>(config.support_tree_branch_diameter_angle * M_PI / 180., 0., 0.5 * M_PI - EPSILON);
this->support_tree_top_rate = config.support_tree_top_rate.value; // percent
// this->support_tree_tip_diameter = this->support_line_width;
this->support_tree_tip_diameter = std::clamp(scaled<coord_t>(config.support_tree_tip_diameter.value), 0, this->support_tree_branch_diameter);
}
//FIXME Machine border is currently ignored. //FIXME Machine border is currently ignored.
static Polygons calculateMachineBorderCollision(Polygon machine_border) static Polygons calculateMachineBorderCollision(Polygon machine_border)
{ {

View File

@ -14,6 +14,8 @@
#include <boost/functional/hash.hpp> #include <boost/functional/hash.hpp>
#include "TreeSupportCommon.hpp"
#include "../Point.hpp" #include "../Point.hpp"
#include "../Polygon.hpp" #include "../Polygon.hpp"
#include "../PrintConfig.hpp" #include "../PrintConfig.hpp"
@ -27,176 +29,6 @@ class PrintObject;
namespace FFFTreeSupport namespace FFFTreeSupport
{ {
using LayerIndex = int;
struct TreeSupportMeshGroupSettings {
TreeSupportMeshGroupSettings() = default;
explicit TreeSupportMeshGroupSettings(const PrintObject &print_object);
/*********************************************************************/
/* Print parameters, not support specific: */
/*********************************************************************/
coord_t layer_height { scaled<coord_t>(0.15) };
// Maximum Deviation (meshfix_maximum_deviation)
// The maximum deviation allowed when reducing the resolution for the Maximum Resolution setting. If you increase this,
// the print will be less accurate, but the g-code will be smaller. Maximum Deviation is a limit for Maximum Resolution,
// so if the two conflict the Maximum Deviation will always be held true.
coord_t resolution { scaled<coord_t>(0.025) };
// Minimum Feature Size (aka minimum line width) - Arachne specific
// Minimum thickness of thin features. Model features that are thinner than this value will not be printed, while features thicker
// than the Minimum Feature Size will be widened to the Minimum Wall Line Width.
coord_t min_feature_size { scaled<coord_t>(0.1) };
/*********************************************************************/
/* General support parameters: */
/*********************************************************************/
// Support Overhang Angle
// The minimum angle of overhangs for which support is added. At a value of 0° all overhangs are supported, 90° will not provide any support.
double support_angle { 50. * M_PI / 180. };
// Support Line Width
// Width of a single support structure line.
coord_t support_line_width { scaled<coord_t>(0.4) };
// Support Roof Line Width: Width of a single support roof line.
coord_t support_roof_line_width { scaled<coord_t>(0.4) };
// Enable Support Floor (aka bottom interfaces)
// Generate a dense slab of material between the bottom of the support and the model. This will create a skin between the model and support.
bool support_bottom_enable { false };
// Support Floor Thickness
// The thickness of the support floors. This controls the number of dense layers that are printed on top of places of a model on which support rests.
coord_t support_bottom_height { scaled<coord_t>(1.) };
bool support_material_buildplate_only { false };
// Support X/Y Distance
// Distance of the support structure from the print in the X/Y directions.
// minimum: 0, maximum warning: 1.5 * machine_nozzle_tip_outer_diameter
coord_t support_xy_distance { scaled<coord_t>(0.7) };
// Minimum Support X/Y Distance
// Distance of the support structure from the overhang in the X/Y directions.
// minimum_value: 0, minimum warning": support_xy_distance - support_line_width * 2, maximum warning: support_xy_distance
coord_t support_xy_distance_overhang { scaled<coord_t>(0.2) };
// Support Top Distance
// Distance from the top of the support to the print.
coord_t support_top_distance { scaled<coord_t>(0.1) };
// Support Bottom Distance
// Distance from the print to the bottom of the support.
coord_t support_bottom_distance { scaled<coord_t>(0.1) };
//FIXME likely not needed, optimization for clipping of interface layers
// When checking where there's model above and below the support, take steps of the given height. Lower values will slice slower, while higher values
// may cause normal support to be printed in some places where there should have been support interface.
coord_t support_interface_skip_height { scaled<coord_t>(0.3) };
// Support Infill Line Directions
// A list of integer line directions to use. Elements from the list are used sequentially as the layers progress and when the end
// of the list is reached, it starts at the beginning again. The list items are separated by commas and the whole list is contained
// in square brackets. Default is an empty list which means use the default angle 0 degrees.
// std::vector<double> support_infill_angles {};
// Enable Support Roof
// Generate a dense slab of material between the top of support and the model. This will create a skin between the model and support.
bool support_roof_enable { false };
// Support Roof Thickness
// The thickness of the support roofs. This controls the amount of dense layers at the top of the support on which the model rests.
coord_t support_roof_layers { 2 };
bool support_floor_enable { false };
coord_t support_floor_layers { 2 };
// Minimum Support Roof Area
// Minimum area size for the roofs of the support. Polygons which have an area smaller than this value will be printed as normal support.
double minimum_roof_area { scaled<double>(scaled<double>(1.)) };
// A list of integer line directions to use. Elements from the list are used sequentially as the layers progress
// and when the end of the list is reached, it starts at the beginning again. The list items are separated
// by commas and the whole list is contained in square brackets. Default is an empty list which means
// use the default angles (alternates between 45 and 135 degrees if interfaces are quite thick or 90 degrees).
std::vector<double> support_roof_angles {};
// Support Roof Pattern (aka top interface)
// The pattern with which the roofs of the support are printed.
SupportMaterialInterfacePattern support_roof_pattern { smipAuto };
// Support Pattern
// The pattern of the support structures of the print. The different options available result in sturdy or easy to remove support.
SupportMaterialPattern support_pattern { smpRectilinear };
// Support Line Distance
// Distance between the printed support structure lines. This setting is calculated by the support density.
coord_t support_line_spacing { scaled<coord_t>(2.66 - 0.4) };
// Support Floor Horizontal Expansion
// Amount of offset applied to the floors of the support.
coord_t support_bottom_offset { scaled<coord_t>(0.) };
// Support Wall Line Count
// The number of walls with which to surround support infill. Adding a wall can make support print more reliably
// and can support overhangs better, but increases print time and material used.
// tree: 1, zig-zag: 0, concentric: 1
int support_wall_count { 1 };
// Support Roof Line Distance
// Distance between the printed support roof lines. This setting is calculated by the Support Roof Density, but can be adjusted separately.
coord_t support_roof_line_distance { scaled<coord_t>(0.4) };
// Minimum Support Area
// Minimum area size for support polygons. Polygons which have an area smaller than this value will not be generated.
coord_t minimum_support_area { scaled<coord_t>(0.) };
// Minimum Support Floor Area
// Minimum area size for the floors of the support. Polygons which have an area smaller than this value will be printed as normal support.
coord_t minimum_bottom_area { scaled<coord_t>(1.0) };
// Support Horizontal Expansion
// Amount of offset applied to all support polygons in each layer. Positive values can smooth out the support areas and result in more sturdy support.
coord_t support_offset { scaled<coord_t>(0.) };
/*********************************************************************/
/* Parameters for the Cura tree supports implementation: */
/*********************************************************************/
// Tree Support Maximum Branch Angle
// The maximum angle of the branches, when the branches have to avoid the model. Use a lower angle to make them more vertical and more stable. Use a higher angle to be able to have more reach.
// minimum: 0, minimum warning: 20, maximum: 89, maximum warning": 85
double support_tree_angle { 60. * M_PI / 180. };
// Tree Support Branch Diameter Angle
// The angle of the branches' diameter as they gradually become thicker towards the bottom. An angle of 0 will cause the branches to have uniform thickness over their length.
// A bit of an angle can increase stability of the tree support.
// minimum: 0, maximum: 89.9999, maximum warning: 15
double support_tree_branch_diameter_angle { 5. * M_PI / 180. };
// Tree Support Branch Distance
// How far apart the branches need to be when they touch the model. Making this distance small will cause
// the tree support to touch the model at more points, causing better overhang but making support harder to remove.
coord_t support_tree_branch_distance { scaled<coord_t>(1.) };
// Tree Support Branch Diameter
// The diameter of the thinnest branches of tree support. Thicker branches are more sturdy. Branches towards the base will be thicker than this.
// minimum: 0.001, minimum warning: support_line_width * 2
coord_t support_tree_branch_diameter { scaled<coord_t>(2.) };
/*********************************************************************/
/* Parameters new to the Thomas Rahm's tree supports implementation: */
/*********************************************************************/
// Tree Support Preferred Branch Angle
// The preferred angle of the branches, when they do not have to avoid the model. Use a lower angle to make them more vertical and more stable. Use a higher angle for branches to merge faster.
// minimum: 0, minimum warning: 10, maximum: support_tree_angle, maximum warning: support_tree_angle-1
double support_tree_angle_slow { 50. * M_PI / 180. };
// Tree Support Diameter Increase To Model
// The most the diameter of a branch that has to connect to the model may increase by merging with branches that could reach the buildplate.
// Increasing this reduces print time, but increases the area of support that rests on model
// minimum: 0
coord_t support_tree_max_diameter_increase_by_merges_when_support_to_model { scaled<coord_t>(1.0) };
// Tree Support Minimum Height To Model
// How tall a branch has to be if it is placed on the model. Prevents small blobs of support. This setting is ignored when a branch is supporting a support roof.
// minimum: 0, maximum warning: 5
coord_t support_tree_min_height_to_model { scaled<coord_t>(1.0) };
// Tree Support Inital Layer Diameter
// Diameter every branch tries to achieve when reaching the buildplate. Improves bed adhesion.
// minimum: 0, maximum warning: 20
coord_t support_tree_bp_diameter { scaled<coord_t>(7.5) };
// Tree Support Branch Density
// Adjusts the density of the support structure used to generate the tips of the branches. A higher value results in better overhangs,
// but the supports are harder to remove. Use Support Roof for very high values or ensure support density is similarly high at the top.
// ->
// Adjusts the density of the support structure used to generate the tips of the branches.
// A higher value results in better overhangs but the supports are harder to remove, thus it is recommended to enable top support interfaces
// instead of a high branch density value if dense interfaces are needed.
// 5%-35%
double support_tree_top_rate { 15. };
// Tree Support Tip Diameter
// The diameter of the top of the tip of the branches of tree support.
// minimum: min_wall_line_width, minimum warning: min_wall_line_width+0.05, maximum_value: support_tree_branch_diameter, value: support_line_width
coord_t support_tree_tip_diameter { scaled<coord_t>(0.4) };
// Support Interface Priority
// How support interface and support will interact when they overlap. Currently only implemented for support roof.
//enum support_interface_priority { support_lines_overwrite_interface_area };
};
class TreeModelVolumes class TreeModelVolumes
{ {
public: public:

File diff suppressed because it is too large Load Diff

View File

@ -9,14 +9,16 @@
#ifndef slic3r_TreeSupport_hpp #ifndef slic3r_TreeSupport_hpp
#define slic3r_TreeSupport_hpp #define slic3r_TreeSupport_hpp
#include "SupportLayer.hpp"
#include "TreeModelVolumes.hpp" #include "TreeModelVolumes.hpp"
#include "Point.hpp" #include "TreeSupportCommon.hpp"
#include "Support/SupportLayer.hpp"
#include "../BoundingBox.hpp"
#include "../Point.hpp"
#include "../Utils.hpp"
#include <boost/container/small_vector.hpp> #include <boost/container/small_vector.hpp>
#include "BoundingBox.hpp"
#include "Utils.hpp"
// #define TREE_SUPPORT_SHOW_ERRORS // #define TREE_SUPPORT_SHOW_ERRORS
@ -45,8 +47,6 @@ struct SlicingParameters;
namespace FFFTreeSupport namespace FFFTreeSupport
{ {
using LayerIndex = int;
static constexpr const double SUPPORT_TREE_EXPONENTIAL_FACTOR = 1.5; static constexpr const double SUPPORT_TREE_EXPONENTIAL_FACTOR = 1.5;
static constexpr const coord_t SUPPORT_TREE_EXPONENTIAL_THRESHOLD = scaled<coord_t>(1. * SUPPORT_TREE_EXPONENTIAL_FACTOR); static constexpr const coord_t SUPPORT_TREE_EXPONENTIAL_THRESHOLD = scaled<coord_t>(1. * SUPPORT_TREE_EXPONENTIAL_FACTOR);
static constexpr const coord_t SUPPORT_TREE_COLLISION_RESOLUTION = scaled<coord_t>(0.5); static constexpr const coord_t SUPPORT_TREE_COLLISION_RESOLUTION = scaled<coord_t>(0.5);
@ -55,15 +55,6 @@ static constexpr const coord_t SUPPORT_TREE_COLLISION_RESOLUTION = scaled<coord_
static constexpr const size_t SUPPORT_TREE_CIRCLE_RESOLUTION = 25; static constexpr const size_t SUPPORT_TREE_CIRCLE_RESOLUTION = 25;
static constexpr const bool SUPPORT_TREE_AVOID_SUPPORT_BLOCKER = true; static constexpr const bool SUPPORT_TREE_AVOID_SUPPORT_BLOCKER = true;
enum class InterfacePreference
{
InterfaceAreaOverwritesSupport,
SupportAreaOverwritesInterface,
InterfaceLinesOverwriteSupport,
SupportLinesOverwriteInterface,
Nothing
};
struct AreaIncreaseSettings struct AreaIncreaseSettings
{ {
AreaIncreaseSettings( AreaIncreaseSettings(
@ -89,8 +80,6 @@ struct AreaIncreaseSettings
} }
}; };
struct TreeSupportSettings;
#define TREE_SUPPORTS_TRACK_LOST #define TREE_SUPPORTS_TRACK_LOST
// C++17 does not support in place initializers of bit values, thus a constructor zeroing the bits is provided. // C++17 does not support in place initializers of bit values, thus a constructor zeroing the bits is provided.
@ -232,6 +221,38 @@ struct SupportElementState : public SupportElementStateBits
[[nodiscard]] bool locked() const { return this->distance_to_top < this->dont_move_until; } [[nodiscard]] bool locked() const { return this->distance_to_top < this->dont_move_until; }
}; };
/*!
* \brief Get the Distance to top regarding the real radius this part will have. This is different from distance_to_top, which is can be used to calculate the top most layer of the branch.
* \param elem[in] The SupportElement one wants to know the effectiveDTT
* \return The Effective DTT.
*/
[[nodiscard]] inline size_t getEffectiveDTT(const TreeSupportSettings &settings, const SupportElementState &elem)
{
return elem.effective_radius_height < settings.increase_radius_until_layer ?
(elem.distance_to_top < settings.increase_radius_until_layer ? elem.distance_to_top : settings.increase_radius_until_layer) :
elem.effective_radius_height;
}
/*!
* \brief Get the Radius, that this element will have.
* \param elem[in] The Element.
* \return The radius the element has.
*/
[[nodiscard]] inline coord_t getRadius(const TreeSupportSettings &settings, const SupportElementState &elem)
{
return settings.getRadius(getEffectiveDTT(settings, elem), elem.elephant_foot_increases);
}
/*!
* \brief Get the collision Radius of this Element. This can be smaller then the actual radius, as the drawAreas will cut off areas that may collide with the model.
* \param elem[in] The Element.
* \return The collision radius the element has.
*/
[[nodiscard]] inline coord_t getCollisionRadius(const TreeSupportSettings &settings, const SupportElementState &elem)
{
return settings.getRadius(elem.effective_radius_height, elem.elephant_foot_increases);
}
struct SupportElement struct SupportElement
{ {
using ParentIndices = using ParentIndices =
@ -262,281 +283,12 @@ struct SupportElement
Polygons influence_area; Polygons influence_area;
}; };
/*! using SupportElements = std::deque<SupportElement>;
* \brief This struct contains settings used in the tree support. Thanks to this most functions do not need to know of meshes etc. Also makes the code shorter.
*/ [[nodiscard]] inline coord_t getRadius(const TreeSupportSettings &settings, const SupportElement &elem)
struct TreeSupportSettings
{ {
TreeSupportSettings() = default; // required for the definition of the config variable in the TreeSupportGenerator class. return getRadius(settings, elem.state);
explicit TreeSupportSettings(const TreeSupportMeshGroupSettings &mesh_group_settings, const SlicingParameters &slicing_params); }
private:
double angle;
double angle_slow;
std::vector<coord_t> known_z;
public:
// some static variables dependent on other meshes that are not currently processed.
// Has to be static because TreeSupportConfig will be used in TreeModelVolumes as this reduces redundancy.
inline static bool soluble = false;
/*!
* \brief Width of a single line of support.
*/
coord_t support_line_width;
/*!
* \brief Height of a single layer
*/
coord_t layer_height;
/*!
* \brief Radius of a branch when it has left the tip.
*/
coord_t branch_radius;
/*!
* \brief smallest allowed radius, required to ensure that even at DTT 0 every circle will still be printed
*/
coord_t min_radius;
/*!
* \brief How far an influence area may move outward every layer at most.
*/
coord_t maximum_move_distance;
/*!
* \brief How far every influence area will move outward every layer if possible.
*/
coord_t maximum_move_distance_slow;
/*!
* \brief Amount of bottom layers. 0 if disabled.
*/
size_t support_bottom_layers;
/*!
* \brief Amount of effectiveDTT increases are required to reach branch radius.
*/
size_t tip_layers;
/*!
* \brief How much a branch radius increases with each layer to guarantee the prescribed tree widening.
*/
double branch_radius_increase_per_layer;
/*!
* \brief How much a branch resting on the model may grow in radius by merging with branches that can reach the buildplate.
*/
coord_t max_to_model_radius_increase;
/*!
* \brief If smaller (in layers) than that, all branches to model will be deleted
*/
size_t min_dtt_to_model;
/*!
* \brief Increase radius in the resulting drawn branches, even if the avoidance does not allow it. Will be cut later to still fit.
*/
coord_t increase_radius_until_radius;
/*!
* \brief Same as increase_radius_until_radius, but contains the DTT at which the radius will be reached.
*/
size_t increase_radius_until_layer;
/*!
* \brief True if the branches may connect to the model.
*/
bool support_rests_on_model;
/*!
* \brief How far should support be from the model.
*/
coord_t xy_distance;
/*!
* \brief A minimum radius a tree trunk should expand to at the buildplate if possible.
*/
coord_t bp_radius;
/*!
* \brief The layer index at which an increase in radius may be required to reach the bp_radius.
*/
LayerIndex layer_start_bp_radius;
/*!
* \brief How much one is allowed to increase the tree branch radius close to print bed to reach the required bp_radius at layer 0.
* Note that this radius increase will not happen in the tip, to ensure the tip is structurally sound.
*/
double bp_radius_increase_per_layer;
/*!
* \brief minimum xy_distance. Only relevant when Z overrides XY, otherwise equal to xy_distance-
*/
coord_t xy_min_distance;
/*!
* \brief Amount of layers distance required the top of the support to the model
*/
size_t z_distance_top_layers;
/*!
* \brief Amount of layers distance required from the top of the model to the bottom of a support structure.
*/
size_t z_distance_bottom_layers;
/*!
* \brief User specified angles for the support infill.
*/
// std::vector<double> support_infill_angles;
/*!
* \brief User specified angles for the support roof infill.
*/
std::vector<double> support_roof_angles;
/*!
* \brief Pattern used in the support roof. May contain non relevant data if support roof is disabled.
*/
SupportMaterialInterfacePattern roof_pattern;
/*!
* \brief Pattern used in the support infill.
*/
SupportMaterialPattern support_pattern;
/*!
* \brief Line width of the support roof.
*/
coord_t support_roof_line_width;
/*!
* \brief Distance between support infill lines.
*/
coord_t support_line_spacing;
/*!
* \brief Offset applied to the support floor area.
*/
coord_t support_bottom_offset;
/*
* \brief Amount of walls the support area will have.
*/
int support_wall_count;
/*
* \brief Maximum allowed deviation when simplifying.
*/
coord_t resolution;
/*
* \brief Distance between the lines of the roof.
*/
coord_t support_roof_line_distance;
/*
* \brief How overlaps of an interface area with a support area should be handled.
*/
InterfacePreference interface_preference;
/*
* \brief The infill class wants a settings object. This one will be the correct one for all settings it uses.
*/
TreeSupportMeshGroupSettings settings;
/*
* \brief Minimum thickness of any model features.
*/
coord_t min_feature_size;
// Extra raft layers below the object.
std::vector<coordf_t> raft_layers;
public:
bool operator==(const TreeSupportSettings& other) const
{
return branch_radius == other.branch_radius && tip_layers == other.tip_layers && branch_radius_increase_per_layer == other.branch_radius_increase_per_layer && layer_start_bp_radius == other.layer_start_bp_radius && bp_radius == other.bp_radius &&
// as a recalculation of the collision areas is required to set a new min_radius.
bp_radius_increase_per_layer == other.bp_radius_increase_per_layer && min_radius == other.min_radius && xy_min_distance == other.xy_min_distance &&
xy_distance - xy_min_distance == other.xy_distance - other.xy_min_distance && // if the delta of xy_min_distance and xy_distance is different the collision areas have to be recalculated.
support_rests_on_model == other.support_rests_on_model && increase_radius_until_layer == other.increase_radius_until_layer && min_dtt_to_model == other.min_dtt_to_model && max_to_model_radius_increase == other.max_to_model_radius_increase && maximum_move_distance == other.maximum_move_distance && maximum_move_distance_slow == other.maximum_move_distance_slow && z_distance_bottom_layers == other.z_distance_bottom_layers && support_line_width == other.support_line_width &&
support_line_spacing == other.support_line_spacing && support_roof_line_width == other.support_roof_line_width && // can not be set on a per-mesh basis currently, so code to enable processing different roof line width in the same iteration seems useless.
support_bottom_offset == other.support_bottom_offset && support_wall_count == other.support_wall_count && support_pattern == other.support_pattern && roof_pattern == other.roof_pattern && // can not be set on a per-mesh basis currently, so code to enable processing different roof patterns in the same iteration seems useless.
support_roof_angles == other.support_roof_angles &&
//support_infill_angles == other.support_infill_angles &&
increase_radius_until_radius == other.increase_radius_until_radius && support_bottom_layers == other.support_bottom_layers && layer_height == other.layer_height && z_distance_top_layers == other.z_distance_top_layers && resolution == other.resolution && // Infill generation depends on deviation and resolution.
support_roof_line_distance == other.support_roof_line_distance && interface_preference == other.interface_preference
&& min_feature_size == other.min_feature_size // interface_preference should be identical to ensure the tree will correctly interact with the roof.
// The infill class now wants the settings object and reads a lot of settings, and as the infill class is used to calculate support roof lines for interface-preference. Not all of these may be required to be identical, but as I am not sure, better safe than sorry
#if 0
&& (interface_preference == InterfacePreference::InterfaceAreaOverwritesSupport || interface_preference == InterfacePreference::SupportAreaOverwritesInterface
// Perimeter generator parameters
||
(settings.get<bool>("fill_outline_gaps") == other.settings.get<bool>("fill_outline_gaps") &&
settings.get<coord_t>("min_bead_width") == other.settings.get<coord_t>("min_bead_width") &&
settings.get<double>("wall_transition_angle") == other.settings.get<double>("wall_transition_angle") &&
settings.get<coord_t>("wall_transition_length") == other.settings.get<coord_t>("wall_transition_length") &&
settings.get<Ratio>("wall_split_middle_threshold") == other.settings.get<Ratio>("wall_split_middle_threshold") &&
settings.get<Ratio>("wall_add_middle_threshold") == other.settings.get<Ratio>("wall_add_middle_threshold") &&
settings.get<int>("wall_distribution_count") == other.settings.get<int>("wall_distribution_count") &&
settings.get<coord_t>("wall_transition_filter_distance") == other.settings.get<coord_t>("wall_transition_filter_distance") &&
settings.get<coord_t>("wall_transition_filter_deviation") == other.settings.get<coord_t>("wall_transition_filter_deviation") &&
settings.get<coord_t>("wall_line_width_x") == other.settings.get<coord_t>("wall_line_width_x") &&
settings.get<int>("meshfix_maximum_extrusion_area_deviation") == other.settings.get<int>("meshfix_maximum_extrusion_area_deviation"))
)
#endif
&& raft_layers == other.raft_layers
;
}
/*!
* \brief Get the Distance to top regarding the real radius this part will have. This is different from distance_to_top, which is can be used to calculate the top most layer of the branch.
* \param elem[in] The SupportElement one wants to know the effectiveDTT
* \return The Effective DTT.
*/
[[nodiscard]] inline size_t getEffectiveDTT(const SupportElementState &elem) const
{
return elem.effective_radius_height < increase_radius_until_layer ? (elem.distance_to_top < increase_radius_until_layer ? elem.distance_to_top : increase_radius_until_layer) : elem.effective_radius_height;
}
/*!
* \brief Get the Radius part will have based on numeric values.
* \param distance_to_top[in] The effective distance_to_top of the element
* \param elephant_foot_increases[in] The elephant_foot_increases of the element.
* \return The radius an element with these attributes would have.
*/
[[nodiscard]] inline coord_t getRadius(size_t distance_to_top, const double elephant_foot_increases = 0) const
{
return (distance_to_top <= tip_layers ? min_radius + (branch_radius - min_radius) * distance_to_top / tip_layers : // tip
branch_radius + // base
(distance_to_top - tip_layers) * branch_radius_increase_per_layer)
+ // gradual increase
elephant_foot_increases * (std::max(bp_radius_increase_per_layer - branch_radius_increase_per_layer, 0.0));
}
/*!
* \brief Get the Radius, that this element will have.
* \param elem[in] The Element.
* \return The radius the element has.
*/
[[nodiscard]] inline coord_t getRadius(const SupportElementState &elem) const
{ return getRadius(getEffectiveDTT(elem), elem.elephant_foot_increases); }
[[nodiscard]] inline coord_t getRadius(const SupportElement &elem) const
{ return this->getRadius(elem.state); }
/*!
* \brief Get the collision Radius of this Element. This can be smaller then the actual radius, as the drawAreas will cut off areas that may collide with the model.
* \param elem[in] The Element.
* \return The collision radius the element has.
*/
[[nodiscard]] inline coord_t getCollisionRadius(const SupportElementState &elem) const
{
return getRadius(elem.effective_radius_height, elem.elephant_foot_increases);
}
/*!
* \brief Get the Radius an element should at least have at a given layer.
* \param layer_idx[in] The layer.
* \return The radius every element should aim to achieve.
*/
[[nodiscard]] inline coord_t recommendedMinRadius(LayerIndex layer_idx) const
{
double num_layers_widened = layer_start_bp_radius - layer_idx;
return num_layers_widened > 0 ? branch_radius + num_layers_widened * bp_radius_increase_per_layer : 0;
}
/*!
* \brief Return on which z in microns the layer will be printed. Used only for support infill line generation.
* \param layer_idx[in] The layer.
* \return The radius every element should aim to achieve.
*/
[[nodiscard]] inline coord_t getActualZ(LayerIndex layer_idx)
{
return layer_idx < coord_t(known_z.size()) ? known_z[layer_idx] : (layer_idx - known_z.size()) * layer_height + known_z.size() ? known_z.back() : 0;
}
/*!
* \brief Set the z every Layer is printed at. Required for getActualZ to work
* \param z[in] The z every LayerIndex is printed. Vector is used as a map<LayerIndex,coord_t> with the index of each element being the corresponding LayerIndex
* \return The radius every element should aim to achieve.
*/
void setActualZ(std::vector<coord_t>& z)
{
known_z = z;
}
};
void tree_supports_show_error(std::string_view message, bool critical);
} // namespace FFFTreeSupport } // namespace FFFTreeSupport

View File

@ -0,0 +1,190 @@
// Tree supports by Thomas Rahm, losely based on Tree Supports by CuraEngine.
// Original source of Thomas Rahm's tree supports:
// https://github.com/ThomasRahm/CuraEngine
//
// Original CuraEngine copyright:
// Copyright (c) 2021 Ultimaker B.V.
// CuraEngine is released under the terms of the AGPLv3 or higher.
#include "TreeSupportCommon.hpp"
namespace Slic3r::FFFTreeSupport {
TreeSupportMeshGroupSettings::TreeSupportMeshGroupSettings(const PrintObject &print_object)
{
const PrintConfig &print_config = print_object.print()->config();
const PrintObjectConfig &config = print_object.config();
const SlicingParameters &slicing_params = print_object.slicing_parameters();
// const std::vector<unsigned int> printing_extruders = print_object.object_extruders();
// Support must be enabled and set to Tree style.
assert(config.support_material || config.support_material_enforce_layers > 0);
assert(config.support_material_style == smsTree || config.support_material_style == smsOrganic);
// Calculate maximum external perimeter width over all printing regions, taking into account the default layer height.
coordf_t external_perimeter_width = 0.;
for (size_t region_id = 0; region_id < print_object.num_printing_regions(); ++ region_id) {
const PrintRegion &region = print_object.printing_region(region_id);
external_perimeter_width = std::max<coordf_t>(external_perimeter_width, region.flow(print_object, frExternalPerimeter, config.layer_height).width());
}
this->layer_height = scaled<coord_t>(config.layer_height.value);
this->resolution = scaled<coord_t>(print_config.gcode_resolution.value);
// Arache feature
this->min_feature_size = scaled<coord_t>(config.min_feature_size.value);
// +1 makes the threshold inclusive
this->support_angle = 0.5 * M_PI - std::clamp<double>((config.support_material_threshold + 1) * M_PI / 180., 0., 0.5 * M_PI);
this->support_line_width = support_material_flow(&print_object, config.layer_height).scaled_width();
this->support_roof_line_width = support_material_interface_flow(&print_object, config.layer_height).scaled_width();
//FIXME add it to SlicingParameters and reuse in both tree and normal supports?
this->support_bottom_enable = config.support_material_interface_layers.value > 0 && config.support_material_bottom_interface_layers.value != 0;
this->support_bottom_height = this->support_bottom_enable ?
(config.support_material_bottom_interface_layers.value > 0 ?
config.support_material_bottom_interface_layers.value :
config.support_material_interface_layers.value) * this->layer_height :
0;
this->support_material_buildplate_only = config.support_material_buildplate_only;
this->support_xy_distance = scaled<coord_t>(config.support_material_xy_spacing.get_abs_value(external_perimeter_width));
// Separation of interfaces, it is likely smaller than support_xy_distance.
this->support_xy_distance_overhang = std::min(this->support_xy_distance, scaled<coord_t>(0.5 * external_perimeter_width));
this->support_top_distance = scaled<coord_t>(slicing_params.gap_support_object);
this->support_bottom_distance = scaled<coord_t>(slicing_params.gap_object_support);
// this->support_interface_skip_height =
// this->support_infill_angles =
this->support_roof_enable = config.support_material_interface_layers.value > 0;
this->support_roof_layers = this->support_roof_enable ? config.support_material_interface_layers.value : 0;
this->support_floor_enable = config.support_material_interface_layers.value > 0 && config.support_material_bottom_interface_layers.value > 0;
this->support_floor_layers = this->support_floor_enable ? config.support_material_bottom_interface_layers.value : 0;
// this->minimum_roof_area =
// this->support_roof_angles =
this->support_roof_pattern = config.support_material_interface_pattern;
this->support_pattern = config.support_material_pattern;
this->support_line_spacing = scaled<coord_t>(config.support_material_spacing.value);
// this->support_bottom_offset =
// this->support_wall_count = config.support_material_with_sheath ? 1 : 0;
this->support_wall_count = 1;
this->support_roof_line_distance = scaled<coord_t>(config.support_material_interface_spacing.value) + this->support_roof_line_width;
// this->minimum_support_area =
// this->minimum_bottom_area =
// this->support_offset =
this->support_tree_branch_distance = scaled<coord_t>(config.support_tree_branch_distance.value);
this->support_tree_angle = std::clamp<double>(config.support_tree_angle * M_PI / 180., 0., 0.5 * M_PI - EPSILON);
this->support_tree_angle_slow = std::clamp<double>(config.support_tree_angle_slow * M_PI / 180., 0., this->support_tree_angle - EPSILON);
this->support_tree_branch_diameter = scaled<coord_t>(config.support_tree_branch_diameter.value);
this->support_tree_branch_diameter_angle = std::clamp<double>(config.support_tree_branch_diameter_angle * M_PI / 180., 0., 0.5 * M_PI - EPSILON);
this->support_tree_top_rate = config.support_tree_top_rate.value; // percent
// this->support_tree_tip_diameter = this->support_line_width;
this->support_tree_tip_diameter = std::clamp(scaled<coord_t>(config.support_tree_tip_diameter.value), 0, this->support_tree_branch_diameter);
}
TreeSupportSettings::TreeSupportSettings(const TreeSupportMeshGroupSettings &mesh_group_settings, const SlicingParameters &slicing_params)
: angle(mesh_group_settings.support_tree_angle),
angle_slow(mesh_group_settings.support_tree_angle_slow),
support_line_width(mesh_group_settings.support_line_width),
layer_height(mesh_group_settings.layer_height),
branch_radius(mesh_group_settings.support_tree_branch_diameter / 2),
min_radius(mesh_group_settings.support_tree_tip_diameter / 2), // The actual radius is 50 microns larger as the resulting branches will be increased by 50 microns to avoid rounding errors effectively increasing the xydistance
maximum_move_distance((angle < M_PI / 2.) ? (coord_t)(tan(angle) * layer_height) : std::numeric_limits<coord_t>::max()),
maximum_move_distance_slow((angle_slow < M_PI / 2.) ? (coord_t)(tan(angle_slow) * layer_height) : std::numeric_limits<coord_t>::max()),
support_bottom_layers(mesh_group_settings.support_bottom_enable ? (mesh_group_settings.support_bottom_height + layer_height / 2) / layer_height : 0),
tip_layers(std::max((branch_radius - min_radius) / (support_line_width / 3), branch_radius / layer_height)), // Ensure lines always stack nicely even if layer height is large
branch_radius_increase_per_layer(tan(mesh_group_settings.support_tree_branch_diameter_angle) * layer_height),
max_to_model_radius_increase(mesh_group_settings.support_tree_max_diameter_increase_by_merges_when_support_to_model / 2),
min_dtt_to_model(round_up_divide(mesh_group_settings.support_tree_min_height_to_model, layer_height)),
increase_radius_until_radius(mesh_group_settings.support_tree_branch_diameter / 2),
increase_radius_until_layer(increase_radius_until_radius <= branch_radius ? tip_layers * (increase_radius_until_radius / branch_radius) : (increase_radius_until_radius - branch_radius) / branch_radius_increase_per_layer),
support_rests_on_model(! mesh_group_settings.support_material_buildplate_only),
xy_distance(mesh_group_settings.support_xy_distance),
xy_min_distance(std::min(mesh_group_settings.support_xy_distance, mesh_group_settings.support_xy_distance_overhang)),
bp_radius(mesh_group_settings.support_tree_bp_diameter / 2),
// Increase by half a line overlap, but not faster than 40 degrees angle (0 degrees means zero increase in radius).
bp_radius_increase_per_layer(std::min(tan(0.7) * layer_height, 0.5 * support_line_width)),
z_distance_bottom_layers(size_t(round(double(mesh_group_settings.support_bottom_distance) / double(layer_height)))),
z_distance_top_layers(size_t(round(double(mesh_group_settings.support_top_distance) / double(layer_height)))),
// support_infill_angles(mesh_group_settings.support_infill_angles),
support_roof_angles(mesh_group_settings.support_roof_angles),
roof_pattern(mesh_group_settings.support_roof_pattern),
support_pattern(mesh_group_settings.support_pattern),
support_roof_line_width(mesh_group_settings.support_roof_line_width),
support_line_spacing(mesh_group_settings.support_line_spacing),
support_bottom_offset(mesh_group_settings.support_bottom_offset),
support_wall_count(mesh_group_settings.support_wall_count),
resolution(mesh_group_settings.resolution),
support_roof_line_distance(mesh_group_settings.support_roof_line_distance), // in the end the actual infill has to be calculated to subtract interface from support areas according to interface_preference.
settings(mesh_group_settings),
min_feature_size(mesh_group_settings.min_feature_size)
{
layer_start_bp_radius = (bp_radius - branch_radius) / bp_radius_increase_per_layer;
if (TreeSupportSettings::soluble) {
// safeOffsetInc can only work in steps of the size xy_min_distance in the worst case => xy_min_distance has to be a bit larger than 0 in this worst case and should be large enough for performance to not suffer extremely
// When for all meshes the z bottom and top distance is more than one layer though the worst case is xy_min_distance + min_feature_size
// This is not the best solution, but the only one to ensure areas can not lag though walls at high maximum_move_distance.
xy_min_distance = std::max(xy_min_distance, scaled<coord_t>(0.1));
xy_distance = std::max(xy_distance, xy_min_distance);
}
// const std::unordered_map<std::string, InterfacePreference> interface_map = { { "support_area_overwrite_interface_area", InterfacePreference::SupportAreaOverwritesInterface }, { "interface_area_overwrite_support_area", InterfacePreference::InterfaceAreaOverwritesSupport }, { "support_lines_overwrite_interface_area", InterfacePreference::SupportLinesOverwriteInterface }, { "interface_lines_overwrite_support_area", InterfacePreference::InterfaceLinesOverwriteSupport }, { "nothing", InterfacePreference::Nothing } };
// interface_preference = interface_map.at(mesh_group_settings.get<std::string>("support_interface_priority"));
//FIXME this was the default
// interface_preference = InterfacePreference::SupportLinesOverwriteInterface;
//interface_preference = InterfacePreference::SupportAreaOverwritesInterface;
interface_preference = InterfacePreference::InterfaceAreaOverwritesSupport;
if (slicing_params.raft_layers() > 0) {
// Fill in raft_layers with the heights of the layers below the first object layer.
// First layer
double z = slicing_params.first_print_layer_height;
this->raft_layers.emplace_back(z);
// Raft base layers
for (size_t i = 1; i < slicing_params.base_raft_layers; ++ i) {
z += slicing_params.base_raft_layer_height;
this->raft_layers.emplace_back(z);
}
// Raft interface layers
for (size_t i = 0; i + 1 < slicing_params.interface_raft_layers; ++ i) {
z += slicing_params.interface_raft_layer_height;
this->raft_layers.emplace_back(z);
}
// Raft contact layer
if (slicing_params.raft_layers() > 1) {
z = slicing_params.raft_contact_top_z;
this->raft_layers.emplace_back(z);
}
if (double dist_to_go = slicing_params.object_print_z_min - z; dist_to_go > EPSILON) {
// Layers between the raft contacts and bottom of the object.
auto nsteps = int(ceil(dist_to_go / slicing_params.max_suport_layer_height));
double step = dist_to_go / nsteps;
for (size_t i = 0; i < nsteps; ++ i) {
z += step;
this->raft_layers.emplace_back(z);
}
}
}
}
#if defined(TREE_SUPPORT_SHOW_ERRORS) && defined(_WIN32)
#define TREE_SUPPORT_SHOW_ERRORS_WIN32
#include <windows.h>
#endif
// Shared with generate_support_areas()
bool g_showed_critical_error = false;
bool g_showed_performance_warning = false;
void tree_supports_show_error(std::string_view message, bool critical)
{ // todo Remove! ONLY FOR PUBLIC BETA!!
printf("Error: %s, critical: %d\n", message.data(), int(critical));
#ifdef TREE_SUPPORT_SHOW_ERRORS_WIN32
static bool showed_critical = false;
static bool showed_performance = false;
auto bugtype = std::string(critical ? " This is a critical bug. It may cause missing or malformed branches.\n" : "This bug should only decrease performance.\n");
bool show = (critical && !g_showed_critical_error) || (!critical && !g_showed_performance_warning);
(critical ? g_showed_critical_error : g_showed_performance_warning) = true;
if (show)
MessageBoxA(nullptr, std::string("TreeSupport_2 MOD detected an error while generating the tree support.\nPlease report this back to me with profile and model.\nRevision 5.0\n" + std::string(message) + "\n" + bugtype).c_str(),
"Bug detected!", MB_OK | MB_SYSTEMMODAL | MB_SETFOREGROUND | MB_ICONWARNING);
#endif // TREE_SUPPORT_SHOW_ERRORS_WIN32
}
} // namespace Slic3r::FFFTreeSupport

View File

@ -0,0 +1,593 @@
// Tree supports by Thomas Rahm, losely based on Tree Supports by CuraEngine.
// Original source of Thomas Rahm's tree supports:
// https://github.com/ThomasRahm/CuraEngine
//
// Original CuraEngine copyright:
// Copyright (c) 2021 Ultimaker B.V.
// CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef slic3r_TreeSupportCommon_hpp
#define slic3r_TreeSupportCommon_hpp
#include "../libslic3r.h"
#include "../Polygon.hpp"
#include "SupportCommon.hpp"
#include <string_view>
using namespace Slic3r::FFFSupport;
namespace Slic3r
{
namespace FFFTreeSupport
{
using LayerIndex = int;
enum class InterfacePreference
{
InterfaceAreaOverwritesSupport,
SupportAreaOverwritesInterface,
InterfaceLinesOverwriteSupport,
SupportLinesOverwriteInterface,
Nothing
};
struct TreeSupportMeshGroupSettings {
TreeSupportMeshGroupSettings() = default;
explicit TreeSupportMeshGroupSettings(const PrintObject &print_object);
/*********************************************************************/
/* Print parameters, not support specific: */
/*********************************************************************/
coord_t layer_height { scaled<coord_t>(0.15) };
// Maximum Deviation (meshfix_maximum_deviation)
// The maximum deviation allowed when reducing the resolution for the Maximum Resolution setting. If you increase this,
// the print will be less accurate, but the g-code will be smaller. Maximum Deviation is a limit for Maximum Resolution,
// so if the two conflict the Maximum Deviation will always be held true.
coord_t resolution { scaled<coord_t>(0.025) };
// Minimum Feature Size (aka minimum line width) - Arachne specific
// Minimum thickness of thin features. Model features that are thinner than this value will not be printed, while features thicker
// than the Minimum Feature Size will be widened to the Minimum Wall Line Width.
coord_t min_feature_size { scaled<coord_t>(0.1) };
/*********************************************************************/
/* General support parameters: */
/*********************************************************************/
// Support Overhang Angle
// The minimum angle of overhangs for which support is added. At a value of 0° all overhangs are supported, 90° will not provide any support.
double support_angle { 50. * M_PI / 180. };
// Support Line Width
// Width of a single support structure line.
coord_t support_line_width { scaled<coord_t>(0.4) };
// Support Roof Line Width: Width of a single support roof line.
coord_t support_roof_line_width { scaled<coord_t>(0.4) };
// Enable Support Floor (aka bottom interfaces)
// Generate a dense slab of material between the bottom of the support and the model. This will create a skin between the model and support.
bool support_bottom_enable { false };
// Support Floor Thickness
// The thickness of the support floors. This controls the number of dense layers that are printed on top of places of a model on which support rests.
coord_t support_bottom_height { scaled<coord_t>(1.) };
bool support_material_buildplate_only { false };
// Support X/Y Distance
// Distance of the support structure from the print in the X/Y directions.
// minimum: 0, maximum warning: 1.5 * machine_nozzle_tip_outer_diameter
coord_t support_xy_distance { scaled<coord_t>(0.7) };
// Minimum Support X/Y Distance
// Distance of the support structure from the overhang in the X/Y directions.
// minimum_value: 0, minimum warning": support_xy_distance - support_line_width * 2, maximum warning: support_xy_distance
coord_t support_xy_distance_overhang { scaled<coord_t>(0.2) };
// Support Top Distance
// Distance from the top of the support to the print.
coord_t support_top_distance { scaled<coord_t>(0.1) };
// Support Bottom Distance
// Distance from the print to the bottom of the support.
coord_t support_bottom_distance { scaled<coord_t>(0.1) };
//FIXME likely not needed, optimization for clipping of interface layers
// When checking where there's model above and below the support, take steps of the given height. Lower values will slice slower, while higher values
// may cause normal support to be printed in some places where there should have been support interface.
coord_t support_interface_skip_height { scaled<coord_t>(0.3) };
// Support Infill Line Directions
// A list of integer line directions to use. Elements from the list are used sequentially as the layers progress and when the end
// of the list is reached, it starts at the beginning again. The list items are separated by commas and the whole list is contained
// in square brackets. Default is an empty list which means use the default angle 0 degrees.
// std::vector<double> support_infill_angles {};
// Enable Support Roof
// Generate a dense slab of material between the top of support and the model. This will create a skin between the model and support.
bool support_roof_enable { false };
// Support Roof Thickness
// The thickness of the support roofs. This controls the amount of dense layers at the top of the support on which the model rests.
coord_t support_roof_layers { 2 };
bool support_floor_enable { false };
coord_t support_floor_layers { 2 };
// Minimum Support Roof Area
// Minimum area size for the roofs of the support. Polygons which have an area smaller than this value will be printed as normal support.
double minimum_roof_area { scaled<double>(scaled<double>(1.)) };
// A list of integer line directions to use. Elements from the list are used sequentially as the layers progress
// and when the end of the list is reached, it starts at the beginning again. The list items are separated
// by commas and the whole list is contained in square brackets. Default is an empty list which means
// use the default angles (alternates between 45 and 135 degrees if interfaces are quite thick or 90 degrees).
std::vector<double> support_roof_angles {};
// Support Roof Pattern (aka top interface)
// The pattern with which the roofs of the support are printed.
SupportMaterialInterfacePattern support_roof_pattern { smipAuto };
// Support Pattern
// The pattern of the support structures of the print. The different options available result in sturdy or easy to remove support.
SupportMaterialPattern support_pattern { smpRectilinear };
// Support Line Distance
// Distance between the printed support structure lines. This setting is calculated by the support density.
coord_t support_line_spacing { scaled<coord_t>(2.66 - 0.4) };
// Support Floor Horizontal Expansion
// Amount of offset applied to the floors of the support.
coord_t support_bottom_offset { scaled<coord_t>(0.) };
// Support Wall Line Count
// The number of walls with which to surround support infill. Adding a wall can make support print more reliably
// and can support overhangs better, but increases print time and material used.
// tree: 1, zig-zag: 0, concentric: 1
int support_wall_count { 1 };
// Support Roof Line Distance
// Distance between the printed support roof lines. This setting is calculated by the Support Roof Density, but can be adjusted separately.
coord_t support_roof_line_distance { scaled<coord_t>(0.4) };
// Minimum Support Area
// Minimum area size for support polygons. Polygons which have an area smaller than this value will not be generated.
coord_t minimum_support_area { scaled<coord_t>(0.) };
// Minimum Support Floor Area
// Minimum area size for the floors of the support. Polygons which have an area smaller than this value will be printed as normal support.
coord_t minimum_bottom_area { scaled<coord_t>(1.0) };
// Support Horizontal Expansion
// Amount of offset applied to all support polygons in each layer. Positive values can smooth out the support areas and result in more sturdy support.
coord_t support_offset { scaled<coord_t>(0.) };
/*********************************************************************/
/* Parameters for the Cura tree supports implementation: */
/*********************************************************************/
// Tree Support Maximum Branch Angle
// The maximum angle of the branches, when the branches have to avoid the model. Use a lower angle to make them more vertical and more stable. Use a higher angle to be able to have more reach.
// minimum: 0, minimum warning: 20, maximum: 89, maximum warning": 85
double support_tree_angle { 60. * M_PI / 180. };
// Tree Support Branch Diameter Angle
// The angle of the branches' diameter as they gradually become thicker towards the bottom. An angle of 0 will cause the branches to have uniform thickness over their length.
// A bit of an angle can increase stability of the tree support.
// minimum: 0, maximum: 89.9999, maximum warning: 15
double support_tree_branch_diameter_angle { 5. * M_PI / 180. };
// Tree Support Branch Distance
// How far apart the branches need to be when they touch the model. Making this distance small will cause
// the tree support to touch the model at more points, causing better overhang but making support harder to remove.
coord_t support_tree_branch_distance { scaled<coord_t>(1.) };
// Tree Support Branch Diameter
// The diameter of the thinnest branches of tree support. Thicker branches are more sturdy. Branches towards the base will be thicker than this.
// minimum: 0.001, minimum warning: support_line_width * 2
coord_t support_tree_branch_diameter { scaled<coord_t>(2.) };
/*********************************************************************/
/* Parameters new to the Thomas Rahm's tree supports implementation: */
/*********************************************************************/
// Tree Support Preferred Branch Angle
// The preferred angle of the branches, when they do not have to avoid the model. Use a lower angle to make them more vertical and more stable. Use a higher angle for branches to merge faster.
// minimum: 0, minimum warning: 10, maximum: support_tree_angle, maximum warning: support_tree_angle-1
double support_tree_angle_slow { 50. * M_PI / 180. };
// Tree Support Diameter Increase To Model
// The most the diameter of a branch that has to connect to the model may increase by merging with branches that could reach the buildplate.
// Increasing this reduces print time, but increases the area of support that rests on model
// minimum: 0
coord_t support_tree_max_diameter_increase_by_merges_when_support_to_model { scaled<coord_t>(1.0) };
// Tree Support Minimum Height To Model
// How tall a branch has to be if it is placed on the model. Prevents small blobs of support. This setting is ignored when a branch is supporting a support roof.
// minimum: 0, maximum warning: 5
coord_t support_tree_min_height_to_model { scaled<coord_t>(1.0) };
// Tree Support Inital Layer Diameter
// Diameter every branch tries to achieve when reaching the buildplate. Improves bed adhesion.
// minimum: 0, maximum warning: 20
coord_t support_tree_bp_diameter { scaled<coord_t>(7.5) };
// Tree Support Branch Density
// Adjusts the density of the support structure used to generate the tips of the branches. A higher value results in better overhangs,
// but the supports are harder to remove. Use Support Roof for very high values or ensure support density is similarly high at the top.
// ->
// Adjusts the density of the support structure used to generate the tips of the branches.
// A higher value results in better overhangs but the supports are harder to remove, thus it is recommended to enable top support interfaces
// instead of a high branch density value if dense interfaces are needed.
// 5%-35%
double support_tree_top_rate { 15. };
// Tree Support Tip Diameter
// The diameter of the top of the tip of the branches of tree support.
// minimum: min_wall_line_width, minimum warning: min_wall_line_width+0.05, maximum_value: support_tree_branch_diameter, value: support_line_width
coord_t support_tree_tip_diameter { scaled<coord_t>(0.4) };
// Support Interface Priority
// How support interface and support will interact when they overlap. Currently only implemented for support roof.
//enum support_interface_priority { support_lines_overwrite_interface_area };
};
/*!
* \brief This struct contains settings used in the tree support. Thanks to this most functions do not need to know of meshes etc. Also makes the code shorter.
*/
struct TreeSupportSettings
{
public:
TreeSupportSettings() = default; // required for the definition of the config variable in the TreeSupportGenerator class.
explicit TreeSupportSettings(const TreeSupportMeshGroupSettings &mesh_group_settings, const SlicingParameters &slicing_params);
// some static variables dependent on other meshes that are not currently processed.
// Has to be static because TreeSupportConfig will be used in TreeModelVolumes as this reduces redundancy.
inline static bool soluble = false;
/*!
* \brief Width of a single line of support.
*/
coord_t support_line_width;
/*!
* \brief Height of a single layer
*/
coord_t layer_height;
/*!
* \brief Radius of a branch when it has left the tip.
*/
coord_t branch_radius;
/*!
* \brief smallest allowed radius, required to ensure that even at DTT 0 every circle will still be printed
*/
coord_t min_radius;
/*!
* \brief How far an influence area may move outward every layer at most.
*/
coord_t maximum_move_distance;
/*!
* \brief How far every influence area will move outward every layer if possible.
*/
coord_t maximum_move_distance_slow;
/*!
* \brief Amount of bottom layers. 0 if disabled.
*/
size_t support_bottom_layers;
/*!
* \brief Amount of effectiveDTT increases are required to reach branch radius.
*/
size_t tip_layers;
/*!
* \brief How much a branch radius increases with each layer to guarantee the prescribed tree widening.
*/
double branch_radius_increase_per_layer;
/*!
* \brief How much a branch resting on the model may grow in radius by merging with branches that can reach the buildplate.
*/
coord_t max_to_model_radius_increase;
/*!
* \brief If smaller (in layers) than that, all branches to model will be deleted
*/
size_t min_dtt_to_model;
/*!
* \brief Increase radius in the resulting drawn branches, even if the avoidance does not allow it. Will be cut later to still fit.
*/
coord_t increase_radius_until_radius;
/*!
* \brief Same as increase_radius_until_radius, but contains the DTT at which the radius will be reached.
*/
size_t increase_radius_until_layer;
/*!
* \brief True if the branches may connect to the model.
*/
bool support_rests_on_model;
/*!
* \brief How far should support be from the model.
*/
coord_t xy_distance;
/*!
* \brief A minimum radius a tree trunk should expand to at the buildplate if possible.
*/
coord_t bp_radius;
/*!
* \brief The layer index at which an increase in radius may be required to reach the bp_radius.
*/
LayerIndex layer_start_bp_radius;
/*!
* \brief How much one is allowed to increase the tree branch radius close to print bed to reach the required bp_radius at layer 0.
* Note that this radius increase will not happen in the tip, to ensure the tip is structurally sound.
*/
double bp_radius_increase_per_layer;
/*!
* \brief minimum xy_distance. Only relevant when Z overrides XY, otherwise equal to xy_distance-
*/
coord_t xy_min_distance;
/*!
* \brief Amount of layers distance required the top of the support to the model
*/
size_t z_distance_top_layers;
/*!
* \brief Amount of layers distance required from the top of the model to the bottom of a support structure.
*/
size_t z_distance_bottom_layers;
/*!
* \brief User specified angles for the support infill.
*/
// std::vector<double> support_infill_angles;
/*!
* \brief User specified angles for the support roof infill.
*/
std::vector<double> support_roof_angles;
/*!
* \brief Pattern used in the support roof. May contain non relevant data if support roof is disabled.
*/
SupportMaterialInterfacePattern roof_pattern;
/*!
* \brief Pattern used in the support infill.
*/
SupportMaterialPattern support_pattern;
/*!
* \brief Line width of the support roof.
*/
coord_t support_roof_line_width;
/*!
* \brief Distance between support infill lines.
*/
coord_t support_line_spacing;
/*!
* \brief Offset applied to the support floor area.
*/
coord_t support_bottom_offset;
/*
* \brief Amount of walls the support area will have.
*/
int support_wall_count;
/*
* \brief Maximum allowed deviation when simplifying.
*/
coord_t resolution;
/*
* \brief Distance between the lines of the roof.
*/
coord_t support_roof_line_distance;
/*
* \brief How overlaps of an interface area with a support area should be handled.
*/
InterfacePreference interface_preference;
/*
* \brief The infill class wants a settings object. This one will be the correct one for all settings it uses.
*/
TreeSupportMeshGroupSettings settings;
/*
* \brief Minimum thickness of any model features.
*/
coord_t min_feature_size;
// Extra raft layers below the object.
std::vector<coordf_t> raft_layers;
public:
bool operator==(const TreeSupportSettings& other) const
{
return branch_radius == other.branch_radius && tip_layers == other.tip_layers && branch_radius_increase_per_layer == other.branch_radius_increase_per_layer && layer_start_bp_radius == other.layer_start_bp_radius && bp_radius == other.bp_radius &&
// as a recalculation of the collision areas is required to set a new min_radius.
bp_radius_increase_per_layer == other.bp_radius_increase_per_layer && min_radius == other.min_radius && xy_min_distance == other.xy_min_distance &&
xy_distance - xy_min_distance == other.xy_distance - other.xy_min_distance && // if the delta of xy_min_distance and xy_distance is different the collision areas have to be recalculated.
support_rests_on_model == other.support_rests_on_model && increase_radius_until_layer == other.increase_radius_until_layer && min_dtt_to_model == other.min_dtt_to_model && max_to_model_radius_increase == other.max_to_model_radius_increase && maximum_move_distance == other.maximum_move_distance && maximum_move_distance_slow == other.maximum_move_distance_slow && z_distance_bottom_layers == other.z_distance_bottom_layers && support_line_width == other.support_line_width &&
support_line_spacing == other.support_line_spacing && support_roof_line_width == other.support_roof_line_width && // can not be set on a per-mesh basis currently, so code to enable processing different roof line width in the same iteration seems useless.
support_bottom_offset == other.support_bottom_offset && support_wall_count == other.support_wall_count && support_pattern == other.support_pattern && roof_pattern == other.roof_pattern && // can not be set on a per-mesh basis currently, so code to enable processing different roof patterns in the same iteration seems useless.
support_roof_angles == other.support_roof_angles &&
//support_infill_angles == other.support_infill_angles &&
increase_radius_until_radius == other.increase_radius_until_radius && support_bottom_layers == other.support_bottom_layers && layer_height == other.layer_height && z_distance_top_layers == other.z_distance_top_layers && resolution == other.resolution && // Infill generation depends on deviation and resolution.
support_roof_line_distance == other.support_roof_line_distance && interface_preference == other.interface_preference
&& min_feature_size == other.min_feature_size // interface_preference should be identical to ensure the tree will correctly interact with the roof.
// The infill class now wants the settings object and reads a lot of settings, and as the infill class is used to calculate support roof lines for interface-preference. Not all of these may be required to be identical, but as I am not sure, better safe than sorry
#if 0
&& (interface_preference == InterfacePreference::InterfaceAreaOverwritesSupport || interface_preference == InterfacePreference::SupportAreaOverwritesInterface
// Perimeter generator parameters
||
(settings.get<bool>("fill_outline_gaps") == other.settings.get<bool>("fill_outline_gaps") &&
settings.get<coord_t>("min_bead_width") == other.settings.get<coord_t>("min_bead_width") &&
settings.get<double>("wall_transition_angle") == other.settings.get<double>("wall_transition_angle") &&
settings.get<coord_t>("wall_transition_length") == other.settings.get<coord_t>("wall_transition_length") &&
settings.get<Ratio>("wall_split_middle_threshold") == other.settings.get<Ratio>("wall_split_middle_threshold") &&
settings.get<Ratio>("wall_add_middle_threshold") == other.settings.get<Ratio>("wall_add_middle_threshold") &&
settings.get<int>("wall_distribution_count") == other.settings.get<int>("wall_distribution_count") &&
settings.get<coord_t>("wall_transition_filter_distance") == other.settings.get<coord_t>("wall_transition_filter_distance") &&
settings.get<coord_t>("wall_transition_filter_deviation") == other.settings.get<coord_t>("wall_transition_filter_deviation") &&
settings.get<coord_t>("wall_line_width_x") == other.settings.get<coord_t>("wall_line_width_x") &&
settings.get<int>("meshfix_maximum_extrusion_area_deviation") == other.settings.get<int>("meshfix_maximum_extrusion_area_deviation"))
)
#endif
&& raft_layers == other.raft_layers
;
}
/*!
* \brief Get the Radius part will have based on numeric values.
* \param distance_to_top[in] The effective distance_to_top of the element
* \param elephant_foot_increases[in] The elephant_foot_increases of the element.
* \return The radius an element with these attributes would have.
*/
[[nodiscard]] inline coord_t getRadius(size_t distance_to_top, const double elephant_foot_increases = 0) const
{
return (distance_to_top <= tip_layers ? min_radius + (branch_radius - min_radius) * distance_to_top / tip_layers : // tip
branch_radius + // base
(distance_to_top - tip_layers) * branch_radius_increase_per_layer)
+ // gradual increase
elephant_foot_increases * (std::max(bp_radius_increase_per_layer - branch_radius_increase_per_layer, 0.0));
}
/*!
* \brief Get the Radius an element should at least have at a given layer.
* \param layer_idx[in] The layer.
* \return The radius every element should aim to achieve.
*/
[[nodiscard]] inline coord_t recommendedMinRadius(LayerIndex layer_idx) const
{
double num_layers_widened = layer_start_bp_radius - layer_idx;
return num_layers_widened > 0 ? branch_radius + num_layers_widened * bp_radius_increase_per_layer : 0;
}
#if 0
/*!
* \brief Return on which z in microns the layer will be printed. Used only for support infill line generation.
* \param layer_idx[in] The layer.
* \return The radius every element should aim to achieve.
*/
[[nodiscard]] inline coord_t getActualZ(LayerIndex layer_idx)
{
return layer_idx < coord_t(known_z.size()) ? known_z[layer_idx] : (layer_idx - known_z.size()) * layer_height + known_z.size() ? known_z.back() : 0;
}
/*!
* \brief Set the z every Layer is printed at. Required for getActualZ to work
* \param z[in] The z every LayerIndex is printed. Vector is used as a map<LayerIndex,coord_t> with the index of each element being the corresponding LayerIndex
* \return The radius every element should aim to achieve.
*/
void setActualZ(std::vector<coord_t>& z)
{
known_z = z;
}
#endif
private:
double angle;
double angle_slow;
// std::vector<coord_t> known_z;
};
static constexpr const bool polygons_strictly_simple = false;
static constexpr const auto tiny_area_threshold = sqr(scaled<double>(0.001));
void tree_supports_show_error(std::string_view message, bool critical);
inline double layer_z(const SlicingParameters &slicing_params, const TreeSupportSettings &config, const size_t layer_idx)
{
return layer_idx >= config.raft_layers.size() ?
slicing_params.object_print_z_min + slicing_params.first_object_layer_height + (layer_idx - config.raft_layers.size()) * slicing_params.layer_height :
config.raft_layers[layer_idx];
}
// Lowest collision layer
inline LayerIndex layer_idx_ceil(const SlicingParameters &slicing_params, const TreeSupportSettings &config, const double z)
{
return
LayerIndex(config.raft_layers.size()) +
std::max<LayerIndex>(0, ceil((z - slicing_params.object_print_z_min - slicing_params.first_object_layer_height) / slicing_params.layer_height));
}
// Highest collision layer
inline LayerIndex layer_idx_floor(const SlicingParameters &slicing_params, const TreeSupportSettings &config, const double z)
{
return
LayerIndex(config.raft_layers.size()) +
std::max<LayerIndex>(0, floor((z - slicing_params.object_print_z_min - slicing_params.first_object_layer_height) / slicing_params.layer_height));
}
inline SupportGeneratorLayer& layer_initialize(
SupportGeneratorLayer &layer_new,
const SlicingParameters &slicing_params,
const TreeSupportSettings &config,
const size_t layer_idx)
{
layer_new.print_z = layer_z(slicing_params, config, layer_idx);
layer_new.bottom_z = layer_idx > 0 ? layer_z(slicing_params, config, layer_idx - 1) : 0;
layer_new.height = layer_new.print_z - layer_new.bottom_z;
return layer_new;
}
// Using the std::deque as an allocator.
inline SupportGeneratorLayer& layer_allocate_unguarded(
SupportGeneratorLayerStorage &layer_storage,
SupporLayerType layer_type,
const SlicingParameters &slicing_params,
const TreeSupportSettings &config,
size_t layer_idx)
{
SupportGeneratorLayer &layer = layer_storage.allocate_unguarded(layer_type);
return layer_initialize(layer, slicing_params, config, layer_idx);
}
inline SupportGeneratorLayer& layer_allocate(
SupportGeneratorLayerStorage &layer_storage,
SupporLayerType layer_type,
const SlicingParameters &slicing_params,
const TreeSupportSettings &config,
size_t layer_idx)
{
SupportGeneratorLayer &layer = layer_storage.allocate(layer_type);
return layer_initialize(layer, slicing_params, config, layer_idx);
}
// Used by generate_initial_areas() in parallel by multiple layers.
class InterfacePlacer {
public:
InterfacePlacer(
const SlicingParameters &slicing_parameters,
const SupportParameters &support_parameters,
const TreeSupportSettings &config,
SupportGeneratorLayerStorage &layer_storage,
SupportGeneratorLayersPtr &top_contacts,
SupportGeneratorLayersPtr &top_interfaces,
SupportGeneratorLayersPtr &top_base_interfaces)
:
slicing_parameters(slicing_parameters), support_parameters(support_parameters), config(config),
layer_storage(layer_storage), top_contacts(top_contacts), top_interfaces(top_interfaces), top_base_interfaces(top_base_interfaces)
{}
InterfacePlacer(const InterfacePlacer& rhs) :
slicing_parameters(rhs.slicing_parameters), support_parameters(rhs.support_parameters), config(rhs.config),
layer_storage(rhs.layer_storage), top_contacts(rhs.top_contacts), top_interfaces(rhs.top_interfaces), top_base_interfaces(rhs.top_base_interfaces)
{}
const SlicingParameters &slicing_parameters;
const SupportParameters &support_parameters;
const TreeSupportSettings &config;
SupportGeneratorLayersPtr& top_contacts_mutable() { return this->top_contacts; }
public:
// Insert the contact layer and some of the inteface and base interface layers below.
void add_roofs(std::vector<Polygons> &&new_roofs, const size_t insert_layer_idx)
{
if (! new_roofs.empty()) {
std::lock_guard<std::mutex> lock(m_mutex_layer_storage);
for (size_t idx = 0; idx < new_roofs.size(); ++ idx)
if (! new_roofs[idx].empty())
add_roof_unguarded(std::move(new_roofs[idx]), insert_layer_idx - idx, idx);
}
}
void add_roof(Polygons &&new_roof, const size_t insert_layer_idx, const size_t dtt_tip)
{
std::lock_guard<std::mutex> lock(m_mutex_layer_storage);
add_roof_unguarded(std::move(new_roof), insert_layer_idx, dtt_tip);
}
// called by sample_overhang_area()
void add_roof_build_plate(Polygons &&overhang_areas, size_t dtt_roof)
{
std::lock_guard<std::mutex> lock(m_mutex_layer_storage);
this->add_roof_unguarded(std::move(overhang_areas), 0, std::min(dtt_roof, this->support_parameters.num_top_interface_layers));
}
void add_roof_unguarded(Polygons &&new_roofs, const size_t insert_layer_idx, const size_t dtt_roof)
{
assert(support_parameters.has_top_contacts);
assert(dtt_roof <= support_parameters.num_top_interface_layers);
SupportGeneratorLayersPtr &layers =
dtt_roof == 0 ? this->top_contacts :
dtt_roof <= support_parameters.num_top_interface_layers_only() ? this->top_interfaces : this->top_base_interfaces;
SupportGeneratorLayer*& l = layers[insert_layer_idx];
if (l == nullptr)
l = &layer_allocate_unguarded(layer_storage, dtt_roof == 0 ? SupporLayerType::TopContact : SupporLayerType::TopInterface,
slicing_parameters, config, insert_layer_idx);
// will be unioned in finalize_interface_and_support_areas()
append(l->polygons, std::move(new_roofs));
}
private:
// Outputs
SupportGeneratorLayerStorage &layer_storage;
SupportGeneratorLayersPtr &top_contacts;
SupportGeneratorLayersPtr &top_interfaces;
SupportGeneratorLayersPtr &top_base_interfaces;
// Mutexes, guards
std::mutex m_mutex_layer_storage;
};
} // namespace FFFTreeSupport
} // namespace Slic3r
#endif // slic3r_TreeSupportCommon_hpp