More work for porting PerimeterGenerator to XS

This commit is contained in:
Alessandro Ranellucci 2015-07-07 01:17:31 +02:00
parent b8aecbd56c
commit 0e18b094d1
8 changed files with 538 additions and 103 deletions

View file

@ -48,7 +48,7 @@ sub BUILDARGS {
return { %args };
}
sub process {
sub __process {
my ($self) = @_;
# other perimeters
@ -335,7 +335,7 @@ sub process {
}
}
sub _traverse_loops {
sub ___traverse_loops {
my ($self, $loops, $thin_walls) = @_;
# loops is an arrayref of ::Loop objects
@ -451,54 +451,4 @@ sub _traverse_loops {
return @entities;
}
sub _fill_gaps {
my ($self, $min, $max, $w, $gaps) = @_;
$min *= (1 - &Slic3r::INSET_OVERLAP_TOLERANCE);
my $this = diff_ex(
offset2($gaps, -$min/2, +$min/2),
offset2($gaps, -$max/2, +$max/2),
1,
);
my @polylines = map @{$_->medial_axis($max, $min/2)}, @$this;
return if !@polylines;
Slic3r::debugf " %d gaps filled with extrusion width = %s\n", scalar @$this, $w
if @$this;
#my $flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL, 0, $w);
my $flow = Slic3r::Flow->new(
width => $w,
height => $self->layer_height,
nozzle_diameter => $self->solid_infill_flow->nozzle_diameter,
);
my %path_args = (
role => EXTR_ROLE_GAPFILL,
mm3_per_mm => $flow->mm3_per_mm,
width => $flow->width,
height => $self->layer_height,
);
my @entities = ();
foreach my $polyline (@polylines) {
#if ($polylines[$i]->isa('Slic3r::Polygon')) {
# my $loop = Slic3r::ExtrusionLoop->new;
# $loop->append(Slic3r::ExtrusionPath->new(polyline => $polylines[$i]->split_at_first_point, %path_args));
# $polylines[$i] = $loop;
if ($polyline->is_valid && $polyline->first_point->coincides_with($polyline->last_point)) {
# since medial_axis() now returns only Polyline objects, detect loops here
push @entities, my $loop = Slic3r::ExtrusionLoop->new;
$loop->append(Slic3r::ExtrusionPath->new(polyline => $polyline, %path_args));
} else {
push @entities, Slic3r::ExtrusionPath->new(polyline => $polyline, %path_args);
}
}
return @entities;
}
1;

View file

@ -122,6 +122,13 @@ ExPolygon::has_boundary_point(const Point &point) const
return false;
}
void
ExPolygon::simplify_p(double tolerance, Polygons* polygons) const
{
Polygons pp = this->simplify_p(tolerance);
polygons->insert(polygons->end(), pp.begin(), pp.end());
}
Polygons
ExPolygon::simplify_p(double tolerance) const
{

View file

@ -27,6 +27,7 @@ class ExPolygon
bool contains(const Point &point) const;
bool contains_b(const Point &point) const;
bool has_boundary_point(const Point &point) const;
void simplify_p(double tolerance, Polygons* polygons) const;
Polygons simplify_p(double tolerance) const;
ExPolygons simplify(double tolerance) const;
void simplify(double tolerance, ExPolygons &expolygons) const;

View file

@ -52,6 +52,7 @@ class ExtrusionEntity
virtual Point last_point() const = 0;
virtual Polygons grow() const = 0;
virtual double min_mm3_per_mm() const = 0;
virtual Polyline as_polyline() const = 0;
};
typedef std::vector<ExtrusionEntity*> ExtrusionEntitiesPtr;
@ -83,6 +84,9 @@ class ExtrusionPath : public ExtrusionEntity
double min_mm3_per_mm() const {
return this->mm3_per_mm;
};
Polyline as_polyline() const {
return this->polyline;
};
private:
void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const;
@ -97,6 +101,8 @@ class ExtrusionLoop : public ExtrusionEntity
ExtrusionLoopRole role;
ExtrusionLoop(ExtrusionLoopRole role = elrDefault) : role(role) {};
ExtrusionLoop(const ExtrusionPaths &paths, ExtrusionLoopRole role = elrDefault)
: paths(paths), role(role) {};
bool is_loop() const {
return true;
};
@ -120,6 +126,9 @@ class ExtrusionLoop : public ExtrusionEntity
bool is_solid_infill() const;
Polygons grow() const;
double min_mm3_per_mm() const;
Polyline as_polyline() const {
return this->polygon()->split_at_first_point();
};
};
}

View file

@ -8,9 +8,13 @@ namespace Slic3r {
ExtrusionEntityCollection::ExtrusionEntityCollection(const ExtrusionEntityCollection& collection)
: no_sort(collection.no_sort), orig_indices(collection.orig_indices)
{
this->entities.reserve(collection.entities.size());
for (ExtrusionEntitiesPtr::const_iterator it = collection.entities.begin(); it != collection.entities.end(); ++it)
this->entities.push_back((*it)->clone());
this->append(collection);
}
ExtrusionEntityCollection::ExtrusionEntityCollection(const ExtrusionPaths &paths)
: no_sort(false)
{
this->append(paths);
}
ExtrusionEntityCollection& ExtrusionEntityCollection::operator= (const ExtrusionEntityCollection &other)
@ -28,6 +32,16 @@ ExtrusionEntityCollection::swap (ExtrusionEntityCollection &c)
std::swap(this->no_sort, c.no_sort);
}
ExtrusionEntityCollection::operator ExtrusionPaths() const
{
ExtrusionPaths paths;
for (ExtrusionEntitiesPtr::const_iterator it = this->entities.begin(); it != this->entities.end(); ++it) {
if (const ExtrusionPath* path = dynamic_cast<const ExtrusionPath*>(*it))
paths.push_back(*path);
}
return paths;
}
ExtrusionEntityCollection*
ExtrusionEntityCollection::clone() const
{
@ -57,6 +71,33 @@ ExtrusionEntityCollection::last_point() const
return this->entities.back()->last_point();
}
void
ExtrusionEntityCollection::append(const ExtrusionEntity &entity)
{
this->entities.push_back(entity.clone());
}
void
ExtrusionEntityCollection::append(const ExtrusionEntityCollection &collection)
{
this->entities.insert(this->entities.end(), collection.entities.begin(), collection.entities.end());
}
void
ExtrusionEntityCollection::append(const ExtrusionPaths &paths)
{
for (ExtrusionPaths::const_iterator path = paths.begin(); path != paths.end(); ++path)
this->append(*path);
}
ExtrusionEntityCollection
ExtrusionEntityCollection::chained_path(bool no_reverse, std::vector<size_t>* orig_indices) const
{
ExtrusionEntityCollection coll;
this->chained_path(&coll, no_reverse, orig_indices);
return coll;
}
void
ExtrusionEntityCollection::chained_path(ExtrusionEntityCollection* retval, bool no_reverse, std::vector<size_t>* orig_indices) const
{
@ -145,15 +186,21 @@ ExtrusionEntityCollection::flatten(ExtrusionEntityCollection* retval) const
for (ExtrusionEntitiesPtr::const_iterator it = this->entities.begin(); it != this->entities.end(); ++it) {
if ((*it)->is_collection()) {
ExtrusionEntityCollection* collection = dynamic_cast<ExtrusionEntityCollection*>(*it);
ExtrusionEntityCollection contents;
collection->flatten(&contents);
retval->entities.insert(retval->entities.end(), contents.entities.begin(), contents.entities.end());
retval->append(collection->flatten());
} else {
retval->entities.push_back((*it)->clone());
retval->append(**it);
}
}
}
ExtrusionEntityCollection
ExtrusionEntityCollection::flatten() const
{
ExtrusionEntityCollection coll;
this->flatten(&coll);
return coll;
}
double
ExtrusionEntityCollection::min_mm3_per_mm() const
{

View file

@ -15,7 +15,10 @@ class ExtrusionEntityCollection : public ExtrusionEntity
bool no_sort;
ExtrusionEntityCollection(): no_sort(false) {};
ExtrusionEntityCollection(const ExtrusionEntityCollection &collection);
ExtrusionEntityCollection(const ExtrusionPaths &paths);
ExtrusionEntityCollection& operator= (const ExtrusionEntityCollection &other);
operator ExtrusionPaths() const;
bool is_collection() const {
return true;
};
@ -23,6 +26,10 @@ class ExtrusionEntityCollection : public ExtrusionEntity
return !this->no_sort;
};
void swap (ExtrusionEntityCollection &c);
void append(const ExtrusionEntity &entity);
void append(const ExtrusionEntityCollection &collection);
void append(const ExtrusionPaths &paths);
ExtrusionEntityCollection chained_path(bool no_reverse = false, std::vector<size_t>* orig_indices = NULL) const;
void chained_path(ExtrusionEntityCollection* retval, bool no_reverse = false, std::vector<size_t>* orig_indices = NULL) const;
void chained_path_from(Point start_near, ExtrusionEntityCollection* retval, bool no_reverse = false, std::vector<size_t>* orig_indices = NULL) const;
void reverse();
@ -31,6 +38,7 @@ class ExtrusionEntityCollection : public ExtrusionEntity
Polygons grow() const;
size_t items_count() const;
void flatten(ExtrusionEntityCollection* retval) const;
ExtrusionEntityCollection flatten() const;
double min_mm3_per_mm() const;
};

View file

@ -5,14 +5,439 @@ namespace Slic3r {
void
PerimeterGenerator::process()
{
// other perimeters
this->_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
coord_t pwidth = this->perimeter_flow.scaled_width();
coord_t pspacing = this->perimeter_flow.scaled_spacing();
// external perimeters
this->_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
coord_t = ext_pwidth = this->ext_perimeter_flow.scaled_width();
coord_t = ext_pspacing = scale_(this->ext_perimeter_flow.spacing_to(this->perimeter_flow));
// overhang perimeters
this->_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
// solid infill
coord_t ispacing = this->solid_infill_flow->scaled_spacing;
coord_t gap_area_threshold = pwidth * pwidth;
// Calculate the minimum required spacing between two adjacent traces.
// This should be equal to the nominal flow spacing but we experiment
// with some tolerance in order to avoid triggering medial axis when
// some squishing might work. Loops are still spaced by the entire
// flow spacing; this only applies to collapsing parts.
coord_t min_spacing = pspacing * (1 - INSET_OVERLAP_TOLERANCE);
coord_t ext_min_spacing = ext_pspacing * (1 - INSET_OVERLAP_TOLERANCE);
// prepare grown lower layer slices for overhang detection
if (this->lower_slices != NULL && this->config->overhangs) {
// We consider overhang any part where the entire nozzle diameter is not supported by the
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
// in the current layer
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
this->_lower_slices_p = offset(this->lower_slices, scale_(+nozzle_diameter/2));
}
// we need to process each island separately because we might have different
// extra perimeters for each one
for (Surfaces::const_iterator surface = this->slices->surfaces.begin();
surface != this->slices->surfaces.end(); ++surface) {
// detect how many perimeters must be generated for this island
unsigned short loop_number = this->config->perimeters + surface->extra_perimeters;
loop_number--; // 0-indexed loops
Polygons gaps;
Polygons last = surface->expolygon.simplify_p(SCALED_RESOLUTION);
if (loop_number >= 0) { // no loops = -1
std::vector<PerimeterGeneratorLoops> contours(loop_number); // depth => loops
std::vector<PerimeterGeneratorLoops> holes(loop_number); // depth => loops
Polylines thin_walls;
// we loop one time more than needed in order to find gaps after the last perimeter was applied
for (unsigned short i = 0; i <= loop_number+1; ++i) { // outer loop is 0
Polygons offsets;
if (i == 0) {
// the minimum thickness of a single loop is:
// ext_width/2 + ext_spacing/2 + spacing/2 + width/2
if (this->config->thin_walls) {
offsets = offset2(
\@last,
-(0.5*ext_pwidth + 0.5*ext_min_spacing - 1),
+(0.5*ext_min_spacing - 1)
);
} else {
offsets = offset(last, -0.5*ext_pwidth);
}
// look for thin walls
if (this->config->thin_walls) {
Polygons diff = diff(
last,
offset(offsets, +0.5*ext_pwidth),
true // medial axis requires non-overlapping geometry
);
// the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
// (actually, something larger than that still may exist due to mitering or other causes)
coord_t min_width = ext_pwidth / 2;
ExPolygons expp = offset2(diff, -min_width/2, +min_width/2)};
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
Polylines pp;
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
ex->medial_axis(ext_pwidth + ext_pspacing, min_width, &pp);
double threshold = ext_pwidth * ext_pwidth;
for (Polylines::const_iterator p = pp.begin(); p != pp.end(); ++p) {
if (p->length() > threshold) {
thin_walls.push_back(*p);
}
}
#ifdef DEBUG
printf(" %zu thin walls detected\n", thin_walls.size());
#endif
/*
if (false) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"medial_axis.svg",
no_arrows => 1,
#expolygons => \@expp,
polylines => \@thin_walls,
);
}
*/
}
} else {
coord_t distance = (i == 1) ? ext_pspacing : pspacing;
if (this->config->thin_walls) {
offsets = offset2(
last,
-(distance + 0.5*min_spacing - 1),
+(0.5*min_spacing - 1),
);
} else {
offsets = offset(
last,
-distance,
);
}
// look for gaps
if (this->config->gap_fill_speed > 0 && this->config->fill_density > 0) {
// not using safety offset here would "detect" very narrow gaps
// (but still long enough to escape the area threshold) that gap fill
// won't be able to fill but we'd still remove from infill area
ExPolygons diff = diff_ex(
offset(last, -0.5*distance),
offset(offsets, +0.5*distance + 10), // safety offset
);
for (ExPolygons::const_iterator ex = diff.begin(); ex != diff.end(); ++ex) {
if (fabs(ex->area()) >= gap_area_threshold)
gaps.push_back(*ex);
}
}
}
if (offsets.empty()) break;
if (i > loop_number) break; // we were only looking for gaps this time
last = offsets;
for (Polygons::const_iterator polygon = offsets.begin(); polygon != offsets.end(); ++polygon) {
PerimeterGeneratorLoop loop(*polygon, i);
loop.is_contour = polygon->is_counter_clockwise();
if (loop.is_contour) {
contours[i].push_back(loop);
} else {
holes[i].push_back(loop);
}
}
}
// nest loops: holes first
for (unsigned short d = 0; <= loop_number; ++d) {
PerimeterGeneratorLoops &holes_d = holes[d];
// loop through all holes having depth == d
for (unsigned short i = 0; i < holes_d.size(); ++i) {
const PerimeterGeneratorLoop &loop = holes_d[i];
// find the hole loop that contains this one, if any
for (unsigned short t = d+1; t <= loop_number; ++t) {
for (unsigned short j = 0; j < holes_d.size(); ++j) {
PerimeterGeneratorLoop &candidate_parent = holes[t][j];
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
candidate_parent.add_child(loop);
holes_d.erase(holes_d.begin() + i);
--i;
goto NEXT_HOLE;
}
}
}
// if no hole contains this hole, find the contour loop that contains it
for (unsigned short t = loop_number; t >= 0; --t) {
for (unsigned short j = 0; j < contours[t].size(); ++j) {
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
candidate_parent.add_child(loop);
holes_d.erase(holes_d.begin() + i);
--i;
goto NEXT_HOLE;
}
}
}
}
NEXT_HOLE:
}
// nest contour loops
for (unsigned short d = loop_number; d >= 1; --d) {
PerimeterGeneratorLoops &contours_d = contours[d];
// loop through all contours having depth == d
for (unsigned short i = 0; i < contours_d.size(); ++i) {
const PerimeterGeneratorLoop &loop = contours_d[i];
// find the contour loop that contains it
for (unsigned short t = d-1; t >= 0; --t) {
for (unsigned short j = 0; j < contours_d[t].size(); ++j) {
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
candidate_parent.add_child(loop);
contours_d.erase(contours_d.begin() + i);
--i;
goto NEXT_CONTOUR;
}
}
}
NEXT_CONTOUR:
}
}
// at this point, all loops should be in contours[0]
ExtrusionEntityCollection entities = this->_traverse_loops(contours.front(), thin_walls);
// if brim will be printed, reverse the order of perimeters so that
// we continue inwards after having finished the brim
// TODO: add test for perimeter order
if (this->config->external_perimeters_first
|| (this->layer_id == 0 && this->print_config->brim_width > 0))
entities.reverse();
// append perimeters for this slice as a collection
if (!entities.empty())
this->loops->append(entities);
}
// fill gaps
if (!gaps.empty()) {
/*
if (false) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"gaps.svg",
expolygons => union_ex(\@gaps),
);
}
*/
// where $pwidth < thickness < 2*$pspacing, infill with width = 2*$pwidth
// where 0.1*$pwidth < thickness < $pwidth, infill with width = 1*$pwidth
std::vector<PerimeterGeneratorGapSize> gap_sizes;
gap_sizes.push_back(PerimeterGeneratorGapSize(pwidth, 2*pspacing, unscale(2*pwidth)));
gap_sizes.push_back(PerimeterGeneratorGapSize(0.1*pwidth, pwidth, unscale(1*pwidth)));
for (std::vector<PerimeterGeneratorGapSize>::const_iterator gap_size = gap_sizes.begin();
gap_size != gap_sizes.end(); ++gap_size) {
ExtrusionEntityCollection gap_fill = this->_fill_gaps(gap_size.min, gap_size.max, gap_size.width);
this->gap_fill->append(gap_fill);
// Make sure we don't infill narrow parts that are already gap-filled
// (we only consider this surface's gaps to reduce the diff() complexity).
// Growing actual extrusions ensures that gaps not filled by medial axis
// are not subtracted from fill surfaces (they might be too short gaps
// that medial axis skips but infill might join with other infill regions
// and use zigzag).
double dist = scale_(gap_size->width/2);
Polygons filled;
for (ExtrusionEntitiesPtr::const_iterator it = gap_fill.entities.begin();
it != gap_fill.entities.end(); ++it)
offset((*it)->as_polyline(), &filled, dist);
last = diff(last, filled);
gaps = diff(gaps, filled); // prevent more gap fill here
}
}
// create one more offset to be used as boundary for fill
// we offset by half the perimeter spacing (to get to the actual infill boundary)
// and then we offset back and forth by half the infill spacing to only consider the
// non-collapsing regions
coord_t inset = 0;
if (loop_number == 0) {
// one loop
inset += ext_pspacing/2;
} else if (loop_number > 0) {
// two or more loops
inset += pspacing/2;
}
// only apply infill overlap if we actually have one perimeter
if (inset > 0)
inset -= this->config->get_abs_value("infill_overlap", inset + ispacing/2);
{
ExPolygons expp = union_(last);
// simplify infill contours according to resolution
Polygons pp;
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
ex->simplify_p(SCALED_RESOLUTION, &pp);
// collapse too narrow infill areas
coord_t min_perimeter_infill_spacing = ispacing * (1 - INSET_OVERLAP_TOLERANCE);
expp = offset2(
pp,
-inset -min_perimeter_infill_spacing/2,
+min_perimeter_infill_spacing/2,
);
// append infill areas to fill_surfaces
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
this->fill_surfaces->surfaces.push_back(Surface(stInternal, *ex)); // use a bogus surface type
}
}
}
ExtrusionEntityCollection
PerimeterGenerator::_traverse_loops(const std::vector<PerimeterGeneratorLoop> &loops,
PerimeterGenerator::_traverse_loops(const PerimeterGeneratorLoops &loops,
const Polylines &thin_walls) const
{
// loops is an arrayref of ::Loop objects
// turn each one into an ExtrusionLoop object
ExtrusionEntityCollection coll;
for (PerimeterGeneratorLoops::const_iterator loop = loops.begin();
loop != loops.end(); ++loop) {
bool is_external = loop->is_external();
ExtrusionRole role;
ExtrusionLoopRole loop_role;
role = is_external ? erExternalPerimeter : erPerimeter;
if (loop->is_internal_contour()) {
// Note that we set loop role to ContourInternalPerimeter
// also when loop is both internal and external (i.e.
// there's only one contour loop).
loop_role = elrContourInternalPerimeter;
} else {
loop_role = elrDefault;
}
// detect overhanging/bridging perimeters
ExtrusionPaths paths;
if (this->config->overhangs && this->layer_id > 0
&& !(this->object_config->support_material && this->object_config->support_material_contact_distance == 0)) {
// get non-overhang paths by intersecting this loop with the grown lower slices
{
Polylines polylines;
intersection(loop->polygon(), this->_lower_slices_p, &polylines);
for (Polylines::const_iterator polyline = polylines.begin(); polyline != polylines.end(); ++polyline) {
ExtrusionPath path(role);
path.polyline = *polyline;
path.mm3_per_mm = is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm;
path.width = is_external ? this->ext_perimeter_flow->width : this->perimeter_flow.width;
path.height = this->layer_height;
paths.push_back(path);
}
}
// get overhang paths by checking what parts of this loop fall
// outside the grown lower slices (thus where the distance between
// the loop centerline and original lower slices is >= half nozzle diameter
{
Polylines polylines;
diff(loop->polygon(), this->_lower_slices_p, &polylines);
for (Polylines::const_iterator polyline = polylines.begin(); polyline != polylines.end(); ++polyline) {
ExtrusionPath path(erOverhangPerimeter);
path.polyline = *polyline;
path.mm3_per_mm = this->_mm3_per_mm_overhang;
path.width = this->overhang_flow.width;
path.height = this->overhang_flow.height;
paths.push_back(path);
}
}
// reapply the nearest point search for starting point
// We allow polyline reversal because Clipper may have randomly
// reversed polylines during clipping.
paths = ExtrusionEntityCollection(paths).chained_path();
} else {
ExtrusionPath path(role);
path.polyline = loop.polygon().split_at_first_point();
path.mm3_per_mm = is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm;
path.width = is_external ? this->ext_perimeter_flow->width : this->perimeter_flow.width;
path.height = this->layer_height;
}
coll.append(ExtrusionLoop(paths, loop_role));
}
// append thin walls to the nearest-neighbor search (only for first iteration)
if (!thin_walls.empty()) {
for (Polylines::const_iterator polyline = thin_walls.begin(); polyline != thin_walls.end(); ++polyline) {
ExtrusionPath path(erExternalPerimeter);
path.polyline = *polyline;
path.mm3_per_mm = this->_mm3_per_mm;
path.width = this->perimeter_flow.width;
path.height = this->layer_height;
coll.append(path);
}
thin_walls.clear();
}
// sort entities
ExtrusionPathCollection sorted_coll;
coll.chained_path(&sorted_coll, false, &sorted_coll.orig_indices);
// traverse children
ExtrusionPathCollection entities;
for (unsigned short i = 0; i < sorted_coll.orig_indices.size(); ++i) {
size_t idx = sorted_coll.orig_indices[i];
if (idx >= loops.size()) {
// this is a thin wall
// let's get it from the sorted collection as it might have been reversed
entities.append(*sorted_coll.entities[i]);
} else {
PerimeterGeneratorLoop &loop = loops[i];
ExtrusionLoop eloop = *coll.entities[idx];
ExtrusionEntityCollection children = this->_traverse_loops(loop->children, thin_walls);
if (loop->is_contour()) {
eloop.make_counter_clockwise();
entities.append(children);
entities.append(elooop);
} else {
eloop.make_clockwise();
push @entities, $eloop, @children;
entities.append(elooop);
entities.append(children);
}
}
}
return entities;
}
ExtrusionEntityCollection
@ -47,44 +472,20 @@ PerimeterGenerator::_fill_gaps(double min, double max, double w,
double mm3_per_mm = flow.mm3_per_mm();
/*
my %path_args = (
role => EXTR_ROLE_GAPFILL,
mm3_per_mm => $flow->mm3_per_mm,
width => $flow->width,
height => $self->layer_height,
);
*/
for (Polylines::const_iterator p = polylines.begin(); p != polylines.end(); ++p) {
/*
#if ($polylines[$i]->isa('Slic3r::Polygon')) {
# my $loop = Slic3r::ExtrusionLoop->new;
# $loop->append(Slic3r::ExtrusionPath->new(polyline => $polylines[$i]->split_at_first_point, %path_args));
# $polylines[$i] = $loop;
*/
ExtrusionPath path(erGapFill);
path.polyline = *p;
path.mm3_per_mm = mm3_per_mm;
path.width = flow.width;
path.height = this->layer_height;
if (p->is_valid() && p->first_point().coincides_with(p->last_point())) {
// since medial_axis() now returns only Polyline objects, detect loops here
ExtrusionLoop loop;
loop.paths.push_back();
loop.paths.push_back(path);
coll.append(loop);
} else {
}
}
foreach my $polyline (@polylines) {
#if ($polylines[$i]->isa('Slic3r::Polygon')) {
# my $loop = Slic3r::ExtrusionLoop->new;
# $loop->append(Slic3r::ExtrusionPath->new(polyline => $polylines[$i]->split_at_first_point, %path_args));
# $polylines[$i] = $loop;
if ($polyline->is_valid && $polyline->first_point->coincides_with($polyline->last_point)) {
# since medial_axis() now returns only Polyline objects, detect loops here
push @entities, my $loop = Slic3r::ExtrusionLoop->new;
$loop->append(Slic3r::ExtrusionPath->new(polyline => $polyline, %path_args));
} else {
push @entities, Slic3r::ExtrusionPath->new(polyline => $polyline, %path_args);
coll.append(path);
}
}

View file

@ -6,6 +6,7 @@
namespace Slic3r {
class PerimeterGeneratorLoop;
typedef std::vector<PerimeterGeneratorLoop> PerimeterGeneratorLoops;
class PerimeterGeneratorLoop {
public:
@ -15,7 +16,7 @@ class PerimeterGeneratorLoop {
std::vector<PerimeterGeneratorLoop> children;
PerimeterGeneratorLoop(Polygon polygon, unsigned short depth)
: polygon(polygon), depth(depth)
: polygon(polygon), depth(depth), is_contour(false)
{};
bool is_external() const;
bool is_internal_contour() const;
@ -34,31 +35,42 @@ class PerimeterGenerator {
PrintRegionConfig* config;
PrintObjectConfig* object_config;
PrintConfig* print_config;
double _ext_mm3_per_mm;
double _mm3_per_mm;
double _mm3_per_mm_overhang;
ExtrusionEntityCollection* loops;
ExtrusionEntityCollection* gap_fill;
SurfaceCollection* fill_surfaces;
PerimeterGenerator(SurfaceCollection* slices, double layer_height,
ExtrusionEntityCollection* loops, ExtrusionEntityCollection* gap_fill,
SurfaceCollection* fill_surfaces)
: slices(slices), layer_height(layer_height), layer_id(-1),
_ext_mm3_per_mm(-1), _mm3_per_mm(-1), _mm3_per_mm_overhang(-1),
PrintRegionConfig* config, PrintObjectConfig* object_config,
PrintConfig* print_config, ExtrusionEntityCollection* loops,
ExtrusionEntityCollection* gap_fill, SurfaceCollection* fill_surfaces)
: slices(slices), lower_slices(NULL), layer_height(layer_height), layer_id(-1),
config(config), object_config(object_config), print_config(print_config),
loops(loops), gap_fill(gap_fill), fill_surfaces(fill_surfaces)
_ext_mm3_per_mm(-1), _mm3_per_mm(-1), _mm3_per_mm_overhang(-1)
{};
void process();
private:
double _ext_mm3_per_mm;
double _mm3_per_mm;
double _mm3_per_mm_overhang;
Polygons _lower_slices_p;
ExtrusionEntityCollection _traverse_loops(const std::vector<PerimeterGeneratorLoop> &loops,
ExtrusionEntityCollection _traverse_loops(const PerimeterGeneratorLoops &loops,
const Polylines &thin_walls) const;
ExtrusionEntityCollection _fill_gaps(double min, double max, double w,
const Polygons &gaps) const;
};
class PerimeterGeneratorGapSize {
public:
coord_t min;
coord_t max;
coord_t width;
PerimeterGeneratorGapSizes(coord_t min, coord_t max, coord_t width)
: min(min), max(max), width(width) {};
};
}
#endif