Disable "infill only where needed" option

Note: only commented out for now.
This commit is contained in:
PavelMikus 2023-03-27 13:26:57 +02:00
parent c654a6714a
commit 0eb2a2cf04
7 changed files with 180 additions and 178 deletions

View File

@ -727,7 +727,7 @@ void LayerRegion::prepare_fill_surfaces()
if (! spiral_vase && this->region().config().top_solid_layers == 0) {
for (Surface &surface : m_fill_surfaces)
if (surface.is_top())
surface.surface_type = this->layer()->object()->config().infill_only_where_needed && this->region().config().fill_pattern != ipLightning ? stInternalVoid : stInternal;
surface.surface_type = /*this->layer()->object()->config().infill_only_where_needed && this->region().config().fill_pattern != ipLightning ? stInternalVoid :*/ stInternal;
}
if (this->region().config().bottom_solid_layers == 0) {
for (Surface &surface : m_fill_surfaces)

View File

@ -425,7 +425,7 @@ static std::vector<std::string> s_Preset_print_options {
"top_solid_layers", "top_solid_min_thickness", "bottom_solid_layers", "bottom_solid_min_thickness",
"extra_perimeters", "extra_perimeters_on_overhangs", "avoid_crossing_curled_overhangs", "avoid_crossing_perimeters", "thin_walls", "overhangs",
"seam_position","staggered_inner_seams", "external_perimeters_first", "fill_density", "fill_pattern", "top_fill_pattern", "bottom_fill_pattern",
"infill_every_layers", "infill_only_where_needed", "solid_infill_every_layers", "fill_angle", "bridge_angle",
"infill_every_layers", /*"infill_only_where_needed",*/ "solid_infill_every_layers", "fill_angle", "bridge_angle",
"solid_infill_below_area", "only_retract_when_crossing_perimeters", "infill_first",
"ironing", "ironing_type", "ironing_flowrate", "ironing_speed", "ironing_spacing",
"max_print_speed", "max_volumetric_speed", "avoid_crossing_perimeters_max_detour",

View File

@ -1560,14 +1560,14 @@ void PrintConfigDef::init_fff_params()
def->mode = comExpert;
def->set_default_value(new ConfigOptionBool(false));
def = this->add("infill_only_where_needed", coBool);
def->label = L("Only infill where needed");
def->category = L("Infill");
def->tooltip = L("This option will limit infill to the areas actually needed for supporting ceilings "
"(it will act as internal support material). If enabled, slows down the G-code generation "
"due to the multiple checks involved.");
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionBool(false));
// def = this->add("infill_only_where_needed", coBool);
// def->label = L("Only infill where needed");
// def->category = L("Infill");
// def->tooltip = L("This option will limit infill to the areas actually needed for supporting ceilings "
// "(it will act as internal support material). If enabled, slows down the G-code generation "
// "due to the multiple checks involved.");
// def->mode = comAdvanced;
// def->set_default_value(new ConfigOptionBool(false));
def = this->add("infill_overlap", coFloatOrPercent);
def->label = L("Infill/perimeters overlap");
@ -4154,6 +4154,8 @@ static std::set<std::string> PrintConfigDef_ignore = {
"wall_add_middle_threshold", "wall_split_middle_threshold",
// Replaced by new concentric ensuring in 2.6.0-alpha5
"ensure_vertical_shell_thickness",
// Disabled in 2.6.0-alpha6, this option is problematic
"infill_only_where_needed",
};
void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &value)

View File

@ -495,7 +495,7 @@ PRINT_CONFIG_CLASS_DEFINE(
((ConfigOptionFloatOrPercent, extrusion_width))
((ConfigOptionFloat, first_layer_acceleration_over_raft))
((ConfigOptionFloatOrPercent, first_layer_speed_over_raft))
((ConfigOptionBool, infill_only_where_needed))
// ((ConfigOptionBool, infill_only_where_needed))
// Force the generation of solid shells between adjacent materials/volumes.
((ConfigOptionBool, interface_shells))
((ConfigOptionFloat, layer_height))

View File

@ -348,8 +348,8 @@ void PrintObject::prepare_infill()
//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
// Also one wishes the perimeters to be supported by a full infill.
this->clip_fill_surfaces();
m_print->throw_if_canceled();
// this->clip_fill_surfaces();
// m_print->throw_if_canceled();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
@ -2419,98 +2419,98 @@ bool PrintObject::update_layer_height_profile(const ModelObject &model_object, c
// Also one wishes the perimeters to be supported by a full infill.
// Idempotence of this method is guaranteed by the fact that we don't remove things from
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
void PrintObject::clip_fill_surfaces()
{
bool has_lightning_infill = false;
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id)
if (const PrintRegionConfig &config = this->printing_region(region_id).config(); config.fill_density > 0 && config.fill_pattern == ipLightning)
has_lightning_infill = true;
// void PrintObject::clip_fill_surfaces()
// {
// bool has_lightning_infill = false;
// for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id)
// if (const PrintRegionConfig &config = this->printing_region(region_id).config(); config.fill_density > 0 && config.fill_pattern == ipLightning)
// has_lightning_infill = true;
// For Lightning infill, infill_only_where_needed is ignored because both
// do a similar thing, and their combination doesn't make much sense.
if (! m_config.infill_only_where_needed.value || has_lightning_infill)
return;
bool has_infill = false;
for (size_t i = 0; i < this->num_printing_regions(); ++ i)
if (this->printing_region(i).config().fill_density > 0) {
has_infill = true;
break;
}
if (! has_infill)
return;
// // For Lightning infill, infill_only_where_needed is ignored because both
// // do a similar thing, and their combination doesn't make much sense.
// if (! m_config.infill_only_where_needed.value || has_lightning_infill)
// return;
// bool has_infill = false;
// for (size_t i = 0; i < this->num_printing_regions(); ++ i)
// if (this->printing_region(i).config().fill_density > 0) {
// has_infill = true;
// break;
// }
// if (! has_infill)
// return;
// We only want infill under ceilings; this is almost like an
// internal support material.
// Proceed top-down, skipping the bottom layer.
Polygons upper_internal;
for (int layer_id = int(m_layers.size()) - 1; layer_id > 0; -- layer_id) {
Layer *layer = m_layers[layer_id];
Layer *lower_layer = m_layers[layer_id - 1];
// Detect things that we need to support.
// Cummulative fill surfaces.
Polygons fill_surfaces;
// Solid surfaces to be supported.
Polygons overhangs;
for (const LayerRegion *layerm : layer->m_regions)
for (const Surface &surface : layerm->fill_surfaces()) {
Polygons polygons = to_polygons(surface.expolygon);
if (surface.is_solid())
polygons_append(overhangs, polygons);
polygons_append(fill_surfaces, std::move(polygons));
}
Polygons lower_layer_fill_surfaces;
Polygons lower_layer_internal_surfaces;
for (const LayerRegion *layerm : lower_layer->m_regions)
for (const Surface &surface : layerm->fill_surfaces()) {
Polygons polygons = to_polygons(surface.expolygon);
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
polygons_append(lower_layer_internal_surfaces, polygons);
polygons_append(lower_layer_fill_surfaces, std::move(polygons));
}
// We also need to support perimeters when there's at least one full unsupported loop
{
// Get perimeters area as the difference between slices and fill_surfaces
// Only consider the area that is not supported by lower perimeters
Polygons perimeters = intersection(diff(layer->lslices, fill_surfaces), lower_layer_fill_surfaces);
// Only consider perimeter areas that are at least one extrusion width thick.
//FIXME Offset2 eats out from both sides, while the perimeters are create outside in.
//Should the pw not be half of the current value?
float pw = FLT_MAX;
for (const LayerRegion *layerm : layer->m_regions)
pw = std::min(pw, (float)layerm->flow(frPerimeter).scaled_width());
// Append such thick perimeters to the areas that need support
polygons_append(overhangs, opening(perimeters, pw));
}
// Merge the new overhangs, find new internal infill.
polygons_append(upper_internal, std::move(overhangs));
static constexpr const auto closing_radius = scaled<float>(2.f);
upper_internal = intersection(
// Regularize the overhang regions, so that the infill areas will not become excessively jagged.
smooth_outward(
closing(upper_internal, closing_radius, ClipperLib::jtSquare, 0.),
scaled<coord_t>(0.1)),
lower_layer_internal_surfaces);
// Apply new internal infill to regions.
for (LayerRegion *layerm : lower_layer->m_regions) {
if (layerm->region().config().fill_density.value == 0)
continue;
Polygons internal;
for (Surface &surface : layerm->m_fill_surfaces.surfaces)
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
polygons_append(internal, std::move(surface.expolygon));
layerm->m_fill_surfaces.remove_types({ stInternal, stInternalVoid });
layerm->m_fill_surfaces.append(intersection_ex(internal, upper_internal, ApplySafetyOffset::Yes), stInternal);
layerm->m_fill_surfaces.append(diff_ex (internal, upper_internal, ApplySafetyOffset::Yes), stInternalVoid);
// If there are voids it means that our internal infill is not adjacent to
// perimeters. In this case it would be nice to add a loop around infill to
// make it more robust and nicer. TODO.
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces");
#endif
}
m_print->throw_if_canceled();
}
} // void PrintObject::clip_fill_surfaces()
// // We only want infill under ceilings; this is almost like an
// // internal support material.
// // Proceed top-down, skipping the bottom layer.
// Polygons upper_internal;
// for (int layer_id = int(m_layers.size()) - 1; layer_id > 0; -- layer_id) {
// Layer *layer = m_layers[layer_id];
// Layer *lower_layer = m_layers[layer_id - 1];
// // Detect things that we need to support.
// // Cummulative fill surfaces.
// Polygons fill_surfaces;
// // Solid surfaces to be supported.
// Polygons overhangs;
// for (const LayerRegion *layerm : layer->m_regions)
// for (const Surface &surface : layerm->fill_surfaces()) {
// Polygons polygons = to_polygons(surface.expolygon);
// if (surface.is_solid())
// polygons_append(overhangs, polygons);
// polygons_append(fill_surfaces, std::move(polygons));
// }
// Polygons lower_layer_fill_surfaces;
// Polygons lower_layer_internal_surfaces;
// for (const LayerRegion *layerm : lower_layer->m_regions)
// for (const Surface &surface : layerm->fill_surfaces()) {
// Polygons polygons = to_polygons(surface.expolygon);
// if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
// polygons_append(lower_layer_internal_surfaces, polygons);
// polygons_append(lower_layer_fill_surfaces, std::move(polygons));
// }
// // We also need to support perimeters when there's at least one full unsupported loop
// {
// // Get perimeters area as the difference between slices and fill_surfaces
// // Only consider the area that is not supported by lower perimeters
// Polygons perimeters = intersection(diff(layer->lslices, fill_surfaces), lower_layer_fill_surfaces);
// // Only consider perimeter areas that are at least one extrusion width thick.
// //FIXME Offset2 eats out from both sides, while the perimeters are create outside in.
// //Should the pw not be half of the current value?
// float pw = FLT_MAX;
// for (const LayerRegion *layerm : layer->m_regions)
// pw = std::min(pw, (float)layerm->flow(frPerimeter).scaled_width());
// // Append such thick perimeters to the areas that need support
// polygons_append(overhangs, opening(perimeters, pw));
// }
// // Merge the new overhangs, find new internal infill.
// polygons_append(upper_internal, std::move(overhangs));
// static constexpr const auto closing_radius = scaled<float>(2.f);
// upper_internal = intersection(
// // Regularize the overhang regions, so that the infill areas will not become excessively jagged.
// smooth_outward(
// closing(upper_internal, closing_radius, ClipperLib::jtSquare, 0.),
// scaled<coord_t>(0.1)),
// lower_layer_internal_surfaces);
// // Apply new internal infill to regions.
// for (LayerRegion *layerm : lower_layer->m_regions) {
// if (layerm->region().config().fill_density.value == 0)
// continue;
// Polygons internal;
// for (Surface &surface : layerm->m_fill_surfaces.surfaces)
// if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
// polygons_append(internal, std::move(surface.expolygon));
// layerm->m_fill_surfaces.remove_types({ stInternal, stInternalVoid });
// layerm->m_fill_surfaces.append(intersection_ex(internal, upper_internal, ApplySafetyOffset::Yes), stInternal);
// layerm->m_fill_surfaces.append(diff_ex (internal, upper_internal, ApplySafetyOffset::Yes), stInternalVoid);
// // If there are voids it means that our internal infill is not adjacent to
// // perimeters. In this case it would be nice to add a loop around infill to
// // make it more robust and nicer. TODO.
// #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
// layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces");
// #endif
// }
// m_print->throw_if_canceled();
// }
// } // void PrintObject::clip_fill_surfaces()
void PrintObject::discover_horizontal_shells()
{

View File

@ -1469,7 +1469,7 @@ void TabPrint::build()
optgroup = page->new_optgroup(L("Reducing printing time"));
category_path = "infill_42#";
optgroup->append_single_option_line("infill_every_layers", category_path + "combine-infill-every-x-layers");
optgroup->append_single_option_line("infill_only_where_needed", category_path + "only-infill-where-needed");
// optgroup->append_single_option_line("infill_only_where_needed", category_path + "only-infill-where-needed");
optgroup = page->new_optgroup(L("Advanced"));
optgroup->append_single_option_line("solid_infill_every_layers", category_path + "solid-infill-every-x-layers");

View File

@ -252,85 +252,85 @@ SCENARIO("Infill does not exceed perimeters", "[Fill]")
GIVEN("Concentric") { test("concentric"sv); }
}
SCENARIO("Infill only where needed", "[Fill]")
{
DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config();
config.set_deserialize_strict({
{ "nozzle_diameter", "0.4, 0.4, 0.4, 0.4" },
{ "infill_only_where_needed", true },
{ "bottom_solid_layers", 0 },
{ "infill_extruder", 2 },
{ "infill_extrusion_width", 0.5 },
{ "wipe_into_infill", false },
{ "fill_density", 0.4 },
// for preventing speeds from being altered
{ "cooling", "0, 0, 0, 0" },
// for preventing speeds from being altered
{ "first_layer_speed", "100%" }
});
// SCENARIO("Infill only where needed", "[Fill]")
// {
// DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config();
// config.set_deserialize_strict({
// { "nozzle_diameter", "0.4, 0.4, 0.4, 0.4" },
// { "infill_only_where_needed", true },
// { "bottom_solid_layers", 0 },
// { "infill_extruder", 2 },
// { "infill_extrusion_width", 0.5 },
// { "wipe_into_infill", false },
// { "fill_density", 0.4 },
// // for preventing speeds from being altered
// { "cooling", "0, 0, 0, 0" },
// // for preventing speeds from being altered
// { "first_layer_speed", "100%" }
// });
auto test = [&config]() -> double {
TriangleMesh pyramid = Test::mesh(Slic3r::Test::TestMesh::pyramid);
// Arachne doesn't use "Detect thin walls," and because of this, it filters out tiny infill areas differently.
// So, for Arachne, we cut the pyramid model to achieve similar results.
if (config.opt_enum<PerimeterGeneratorType>("perimeter_generator") == Slic3r::PerimeterGeneratorType::Arachne) {
indexed_triangle_set lower{};
cut_mesh(pyramid.its, 35, nullptr, &lower);
pyramid = TriangleMesh(lower);
}
std::string gcode = Slic3r::Test::slice({ pyramid }, config);
THEN("gcode not empty") {
REQUIRE(! gcode.empty());
}
// auto test = [&config]() -> double {
// TriangleMesh pyramid = Test::mesh(Slic3r::Test::TestMesh::pyramid);
// // Arachne doesn't use "Detect thin walls," and because of this, it filters out tiny infill areas differently.
// // So, for Arachne, we cut the pyramid model to achieve similar results.
// if (config.opt_enum<PerimeterGeneratorType>("perimeter_generator") == Slic3r::PerimeterGeneratorType::Arachne) {
// indexed_triangle_set lower{};
// cut_mesh(pyramid.its, 35, nullptr, &lower);
// pyramid = TriangleMesh(lower);
// }
// std::string gcode = Slic3r::Test::slice({ pyramid }, config);
// THEN("gcode not empty") {
// REQUIRE(! gcode.empty());
// }
GCodeReader parser;
int tool = -1;
const int infill_extruder = config.opt_int("infill_extruder");
Points infill_points;
parser.parse_buffer(gcode, [&tool, &infill_points, infill_extruder](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line)
{
// if the command is a T command, set the the current tool
if (boost::starts_with(line.cmd(), "T")) {
tool = atoi(line.cmd().data() + 1) + 1;
} else if (line.cmd() == "G1" && line.extruding(self) && line.dist_XY(self) > 0) {
if (tool == infill_extruder) {
infill_points.emplace_back(self.xy_scaled());
infill_points.emplace_back(line.new_XY_scaled(self));
}
}
});
// prevent calling convex_hull() with no points
THEN("infill not empty") {
REQUIRE(! infill_points.empty());
}
// GCodeReader parser;
// int tool = -1;
// const int infill_extruder = config.opt_int("infill_extruder");
// Points infill_points;
// parser.parse_buffer(gcode, [&tool, &infill_points, infill_extruder](Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line)
// {
// // if the command is a T command, set the the current tool
// if (boost::starts_with(line.cmd(), "T")) {
// tool = atoi(line.cmd().data() + 1) + 1;
// } else if (line.cmd() == "G1" && line.extruding(self) && line.dist_XY(self) > 0) {
// if (tool == infill_extruder) {
// infill_points.emplace_back(self.xy_scaled());
// infill_points.emplace_back(line.new_XY_scaled(self));
// }
// }
// });
// // prevent calling convex_hull() with no points
// THEN("infill not empty") {
// REQUIRE(! infill_points.empty());
// }
auto opt_width = config.opt<ConfigOptionFloatOrPercent>("infill_extrusion_width");
REQUIRE(! opt_width->percent);
Polygons convex_hull = expand(Geometry::convex_hull(infill_points), scaled<float>(opt_width->value / 2));
return SCALING_FACTOR * SCALING_FACTOR * std::accumulate(convex_hull.begin(), convex_hull.end(), 0., [](double acc, const Polygon &poly){ return acc + poly.area(); });
};
// auto opt_width = config.opt<ConfigOptionFloatOrPercent>("infill_extrusion_width");
// REQUIRE(! opt_width->percent);
// Polygons convex_hull = expand(Geometry::convex_hull(infill_points), scaled<float>(opt_width->value / 2));
// return SCALING_FACTOR * SCALING_FACTOR * std::accumulate(convex_hull.begin(), convex_hull.end(), 0., [](double acc, const Polygon &poly){ return acc + poly.area(); });
// };
double tolerance = 5; // mm^2
// double tolerance = 5; // mm^2
// GIVEN("solid_infill_below_area == 0") {
// config.opt_float("solid_infill_below_area") = 0;
// WHEN("pyramid is sliced ") {
// auto area = test();
// THEN("no infill is generated when using infill_only_where_needed on a pyramid") {
// REQUIRE(area < tolerance);
// }
// }
// }
// GIVEN("solid_infill_below_area == 70") {
// config.opt_float("solid_infill_below_area") = 70;
// WHEN("pyramid is sliced ") {
// auto area = test();
// THEN("infill is only generated under the forced solid shells") {
// REQUIRE(std::abs(area - 70) < tolerance);
// }
// }
// }
}
// // GIVEN("solid_infill_below_area == 0") {
// // config.opt_float("solid_infill_below_area") = 0;
// // WHEN("pyramid is sliced ") {
// // auto area = test();
// // THEN("no infill is generated when using infill_only_where_needed on a pyramid") {
// // REQUIRE(area < tolerance);
// // }
// // }
// // }
// // GIVEN("solid_infill_below_area == 70") {
// // config.opt_float("solid_infill_below_area") = 70;
// // WHEN("pyramid is sliced ") {
// // auto area = test();
// // THEN("infill is only generated under the forced solid shells") {
// // REQUIRE(std::abs(area - 70) < tolerance);
// // }
// // }
// // }
// }
SCENARIO("Combine infill", "[Fill]")
{