Updated the Eigen library to 3.3.5
This commit is contained in:
parent
5b94f53cd7
commit
0eba590fc6
@ -9,6 +9,7 @@
|
||||
#define EIGEN_CHOLESKY_MODULE_H
|
||||
|
||||
#include "Core"
|
||||
#include "Jacobi"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
@ -31,7 +32,11 @@
|
||||
#include "src/Cholesky/LLT.h"
|
||||
#include "src/Cholesky/LDLT.h"
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
#ifdef EIGEN_USE_MKL
|
||||
#include "mkl_lapacke.h"
|
||||
#else
|
||||
#include "src/misc/lapacke.h"
|
||||
#endif
|
||||
#include "src/Cholesky/LLT_LAPACKE.h"
|
||||
#endif
|
||||
|
||||
|
@ -14,6 +14,22 @@
|
||||
// first thing Eigen does: stop the compiler from committing suicide
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
#if defined(__CUDACC__) && !defined(EIGEN_NO_CUDA)
|
||||
#define EIGEN_CUDACC __CUDACC__
|
||||
#endif
|
||||
|
||||
#if defined(__CUDA_ARCH__) && !defined(EIGEN_NO_CUDA)
|
||||
#define EIGEN_CUDA_ARCH __CUDA_ARCH__
|
||||
#endif
|
||||
|
||||
#if defined(__CUDACC_VER_MAJOR__) && (__CUDACC_VER_MAJOR__ >= 9)
|
||||
#define EIGEN_CUDACC_VER ((__CUDACC_VER_MAJOR__ * 10000) + (__CUDACC_VER_MINOR__ * 100))
|
||||
#elif defined(__CUDACC_VER__)
|
||||
#define EIGEN_CUDACC_VER __CUDACC_VER__
|
||||
#else
|
||||
#define EIGEN_CUDACC_VER 0
|
||||
#endif
|
||||
|
||||
// Handle NVCC/CUDA/SYCL
|
||||
#if defined(__CUDACC__) || defined(__SYCL_DEVICE_ONLY__)
|
||||
// Do not try asserts on CUDA and SYCL!
|
||||
@ -155,6 +171,9 @@
|
||||
#ifdef __AVX512DQ__
|
||||
#define EIGEN_VECTORIZE_AVX512DQ
|
||||
#endif
|
||||
#ifdef __AVX512ER__
|
||||
#define EIGEN_VECTORIZE_AVX512ER
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// include files
|
||||
@ -229,7 +248,7 @@
|
||||
#if defined __CUDACC__
|
||||
#define EIGEN_VECTORIZE_CUDA
|
||||
#include <vector_types.h>
|
||||
#if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500
|
||||
#if EIGEN_CUDACC_VER >= 70500
|
||||
#define EIGEN_HAS_CUDA_FP16
|
||||
#endif
|
||||
#endif
|
||||
@ -352,6 +371,7 @@ using std::ptrdiff_t;
|
||||
#include "src/Core/MathFunctions.h"
|
||||
#include "src/Core/GenericPacketMath.h"
|
||||
#include "src/Core/MathFunctionsImpl.h"
|
||||
#include "src/Core/arch/Default/ConjHelper.h"
|
||||
|
||||
#if defined EIGEN_VECTORIZE_AVX512
|
||||
#include "src/Core/arch/SSE/PacketMath.h"
|
||||
@ -367,6 +387,7 @@ using std::ptrdiff_t;
|
||||
#include "src/Core/arch/AVX/MathFunctions.h"
|
||||
#include "src/Core/arch/AVX/Complex.h"
|
||||
#include "src/Core/arch/AVX/TypeCasting.h"
|
||||
#include "src/Core/arch/SSE/TypeCasting.h"
|
||||
#elif defined EIGEN_VECTORIZE_SSE
|
||||
#include "src/Core/arch/SSE/PacketMath.h"
|
||||
#include "src/Core/arch/SSE/MathFunctions.h"
|
||||
|
@ -45,7 +45,11 @@
|
||||
#include "src/Eigenvalues/GeneralizedEigenSolver.h"
|
||||
#include "src/Eigenvalues/MatrixBaseEigenvalues.h"
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
#ifdef EIGEN_USE_MKL
|
||||
#include "mkl_lapacke.h"
|
||||
#else
|
||||
#include "src/misc/lapacke.h"
|
||||
#endif
|
||||
#include "src/Eigenvalues/RealSchur_LAPACKE.h"
|
||||
#include "src/Eigenvalues/ComplexSchur_LAPACKE.h"
|
||||
#include "src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h"
|
||||
|
@ -28,7 +28,11 @@
|
||||
#include "src/LU/FullPivLU.h"
|
||||
#include "src/LU/PartialPivLU.h"
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
#ifdef EIGEN_USE_MKL
|
||||
#include "mkl_lapacke.h"
|
||||
#else
|
||||
#include "src/misc/lapacke.h"
|
||||
#endif
|
||||
#include "src/LU/PartialPivLU_LAPACKE.h"
|
||||
#endif
|
||||
#include "src/LU/Determinant.h"
|
||||
|
@ -36,7 +36,11 @@
|
||||
#include "src/QR/ColPivHouseholderQR.h"
|
||||
#include "src/QR/CompleteOrthogonalDecomposition.h"
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
#ifdef EIGEN_USE_MKL
|
||||
#include "mkl_lapacke.h"
|
||||
#else
|
||||
#include "src/misc/lapacke.h"
|
||||
#endif
|
||||
#include "src/QR/HouseholderQR_LAPACKE.h"
|
||||
#include "src/QR/ColPivHouseholderQR_LAPACKE.h"
|
||||
#endif
|
||||
|
@ -27,7 +27,7 @@ void qFree(void *ptr)
|
||||
void *qRealloc(void *ptr, std::size_t size)
|
||||
{
|
||||
void* newPtr = Eigen::internal::aligned_malloc(size);
|
||||
memcpy(newPtr, ptr, size);
|
||||
std::memcpy(newPtr, ptr, size);
|
||||
Eigen::internal::aligned_free(ptr);
|
||||
return newPtr;
|
||||
}
|
||||
|
@ -37,7 +37,11 @@
|
||||
#include "src/SVD/JacobiSVD.h"
|
||||
#include "src/SVD/BDCSVD.h"
|
||||
#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
|
||||
#ifdef EIGEN_USE_MKL
|
||||
#include "mkl_lapacke.h"
|
||||
#else
|
||||
#include "src/misc/lapacke.h"
|
||||
#endif
|
||||
#include "src/SVD/JacobiSVD_LAPACKE.h"
|
||||
#endif
|
||||
|
||||
|
@ -248,7 +248,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful,
|
||||
* \c NumericalIssue if the matrix.appears to be negative.
|
||||
* \c NumericalIssue if the factorization failed because of a zero pivot.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
@ -376,6 +376,8 @@ template<> struct ldlt_inplace<Lower>
|
||||
|
||||
if((rs>0) && pivot_is_valid)
|
||||
A21 /= realAkk;
|
||||
else if(rs>0)
|
||||
ret = ret && (A21.array()==Scalar(0)).all();
|
||||
|
||||
if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed
|
||||
else if(!pivot_is_valid) found_zero_pivot = true;
|
||||
@ -568,13 +570,14 @@ void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) cons
|
||||
// more precisely, use pseudo-inverse of D (see bug 241)
|
||||
using std::abs;
|
||||
const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD());
|
||||
// In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
|
||||
// as motivated by LAPACK's xGELSS:
|
||||
// In some previous versions, tolerance was set to the max of 1/highest (or rather numeric_limits::min())
|
||||
// and the maximal diagonal entry * epsilon as motivated by LAPACK's xGELSS:
|
||||
// RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
|
||||
// However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
|
||||
// diagonal element is not well justified and leads to numerical issues in some cases.
|
||||
// Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
|
||||
RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
|
||||
// Using numeric_limits::min() gives us more robustness to denormals.
|
||||
RealScalar tolerance = (std::numeric_limits<RealScalar>::min)();
|
||||
|
||||
for (Index i = 0; i < vecD.size(); ++i)
|
||||
{
|
||||
|
@ -24,7 +24,7 @@ template<typename MatrixType, int UpLo> struct LLT_Traits;
|
||||
*
|
||||
* \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
|
||||
* \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
|
||||
* The other triangular part won't be read.
|
||||
* The other triangular part won't be read.
|
||||
*
|
||||
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
|
||||
* matrix A such that A = LL^* = U^*U, where L is lower triangular.
|
||||
@ -41,14 +41,18 @@ template<typename MatrixType, int UpLo> struct LLT_Traits;
|
||||
* Example: \include LLT_example.cpp
|
||||
* Output: \verbinclude LLT_example.out
|
||||
*
|
||||
* \b Performance: for best performance, it is recommended to use a column-major storage format
|
||||
* with the Lower triangular part (the default), or, equivalently, a row-major storage format
|
||||
* with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization
|
||||
* step, and rank-updates can be up to 3 times slower.
|
||||
*
|
||||
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
|
||||
*
|
||||
* Note that during the decomposition, only the lower (or upper, as defined by _UpLo) triangular part of A is considered.
|
||||
* Therefore, the strict lower part does not have to store correct values.
|
||||
*
|
||||
* \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT
|
||||
*/
|
||||
/* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
|
||||
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
|
||||
* the strict lower part does not have to store correct values.
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo> class LLT
|
||||
{
|
||||
public:
|
||||
@ -146,7 +150,7 @@ template<typename _MatrixType, int _UpLo> class LLT
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
void solveInPlace(MatrixBase<Derived> &bAndX) const;
|
||||
void solveInPlace(const MatrixBase<Derived> &bAndX) const;
|
||||
|
||||
template<typename InputType>
|
||||
LLT& compute(const EigenBase<InputType>& matrix);
|
||||
@ -177,7 +181,7 @@ template<typename _MatrixType, int _UpLo> class LLT
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful,
|
||||
* \c NumericalIssue if the matrix.appears to be negative.
|
||||
* \c NumericalIssue if the matrix.appears not to be positive definite.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
@ -425,7 +429,8 @@ LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
m_matrix.resize(size, size);
|
||||
m_matrix = a.derived();
|
||||
if (!internal::is_same_dense(m_matrix, a.derived()))
|
||||
m_matrix = a.derived();
|
||||
|
||||
// Compute matrix L1 norm = max abs column sum.
|
||||
m_l1_norm = RealScalar(0);
|
||||
@ -485,11 +490,14 @@ void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
||||
*
|
||||
* This version avoids a copy when the right hand side matrix b is not needed anymore.
|
||||
*
|
||||
* \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
|
||||
* This function will const_cast it, so constness isn't honored here.
|
||||
*
|
||||
* \sa LLT::solve(), MatrixBase::llt()
|
||||
*/
|
||||
template<typename MatrixType, int _UpLo>
|
||||
template<typename Derived>
|
||||
void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
|
||||
void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
||||
eigen_assert(m_matrix.rows()==bAndX.rows());
|
||||
|
@ -231,10 +231,16 @@ class Array
|
||||
: Base(other)
|
||||
{ }
|
||||
|
||||
private:
|
||||
struct PrivateType {};
|
||||
public:
|
||||
|
||||
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other)
|
||||
EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other,
|
||||
typename internal::enable_if<internal::is_convertible<typename OtherDerived::Scalar,Scalar>::value,
|
||||
PrivateType>::type = PrivateType())
|
||||
: Base(other.derived())
|
||||
{ }
|
||||
|
||||
|
@ -175,7 +175,7 @@ template<typename Derived> class ArrayBase
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived &
|
||||
ArrayBase<Derived>::operator-=(const ArrayBase<OtherDerived> &other)
|
||||
{
|
||||
call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar,typename OtherDerived::Scalar>());
|
||||
@ -188,7 +188,7 @@ ArrayBase<Derived>::operator-=(const ArrayBase<OtherDerived> &other)
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived &
|
||||
ArrayBase<Derived>::operator+=(const ArrayBase<OtherDerived>& other)
|
||||
{
|
||||
call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar,typename OtherDerived::Scalar>());
|
||||
@ -201,7 +201,7 @@ ArrayBase<Derived>::operator+=(const ArrayBase<OtherDerived>& other)
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived &
|
||||
ArrayBase<Derived>::operator*=(const ArrayBase<OtherDerived>& other)
|
||||
{
|
||||
call_assignment(derived(), other.derived(), internal::mul_assign_op<Scalar,typename OtherDerived::Scalar>());
|
||||
@ -214,7 +214,7 @@ ArrayBase<Derived>::operator*=(const ArrayBase<OtherDerived>& other)
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived &
|
||||
ArrayBase<Derived>::operator/=(const ArrayBase<OtherDerived>& other)
|
||||
{
|
||||
call_assignment(derived(), other.derived(), internal::div_assign_op<Scalar,typename OtherDerived::Scalar>());
|
||||
|
@ -32,7 +32,8 @@ struct traits<ArrayWrapper<ExpressionType> >
|
||||
// Let's remove NestByRefBit
|
||||
enum {
|
||||
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
|
||||
Flags = Flags0 & ~NestByRefBit
|
||||
LvalueBitFlag = is_lvalue<ExpressionType>::value ? LvalueBit : 0,
|
||||
Flags = (Flags0 & ~(NestByRefBit | LvalueBit)) | LvalueBitFlag
|
||||
};
|
||||
};
|
||||
}
|
||||
@ -129,7 +130,8 @@ struct traits<MatrixWrapper<ExpressionType> >
|
||||
// Let's remove NestByRefBit
|
||||
enum {
|
||||
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
|
||||
Flags = Flags0 & ~NestByRefBit
|
||||
LvalueBitFlag = is_lvalue<ExpressionType>::value ? LvalueBit : 0,
|
||||
Flags = (Flags0 & ~(NestByRefBit | LvalueBit)) | LvalueBitFlag
|
||||
};
|
||||
};
|
||||
}
|
||||
|
@ -39,7 +39,7 @@ public:
|
||||
enum {
|
||||
DstAlignment = DstEvaluator::Alignment,
|
||||
SrcAlignment = SrcEvaluator::Alignment,
|
||||
DstHasDirectAccess = DstFlags & DirectAccessBit,
|
||||
DstHasDirectAccess = (DstFlags & DirectAccessBit) == DirectAccessBit,
|
||||
JointAlignment = EIGEN_PLAIN_ENUM_MIN(DstAlignment,SrcAlignment)
|
||||
};
|
||||
|
||||
@ -83,7 +83,7 @@ private:
|
||||
&& int(OuterStride)!=Dynamic && int(OuterStride)%int(InnerPacketSize)==0
|
||||
&& (EIGEN_UNALIGNED_VECTORIZE || int(JointAlignment)>=int(InnerRequiredAlignment)),
|
||||
MayLinearize = bool(StorageOrdersAgree) && (int(DstFlags) & int(SrcFlags) & LinearAccessBit),
|
||||
MayLinearVectorize = bool(MightVectorize) && MayLinearize && DstHasDirectAccess
|
||||
MayLinearVectorize = bool(MightVectorize) && bool(MayLinearize) && bool(DstHasDirectAccess)
|
||||
&& (EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment)>=int(LinearRequiredAlignment)) || MaxSizeAtCompileTime == Dynamic),
|
||||
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
|
||||
so it's only good for large enough sizes. */
|
||||
|
@ -84,7 +84,8 @@ class vml_assign_traits
|
||||
struct Assignment<DstXprType, CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested>, assign_op<EIGENTYPE,EIGENTYPE>, \
|
||||
Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>::type> { \
|
||||
typedef CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested> SrcXprType; \
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &/*func*/) { \
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &func) { \
|
||||
resize_if_allowed(dst, src, func); \
|
||||
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \
|
||||
if(vml_assign_traits<DstXprType,SrcXprNested>::Traversal==LinearTraversal) { \
|
||||
VMLOP(dst.size(), (const VMLTYPE*)src.nestedExpression().data(), \
|
||||
@ -144,7 +145,8 @@ EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(ceil, Ceil, _)
|
||||
Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>::type> { \
|
||||
typedef CwiseBinaryOp<scalar_##EIGENOP##_op<EIGENTYPE,EIGENTYPE>, SrcXprNested, \
|
||||
const CwiseNullaryOp<internal::scalar_constant_op<EIGENTYPE>,Plain> > SrcXprType; \
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &/*func*/) { \
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &func) { \
|
||||
resize_if_allowed(dst, src, func); \
|
||||
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \
|
||||
VMLTYPE exponent = reinterpret_cast<const VMLTYPE&>(src.rhs().functor().m_other); \
|
||||
if(vml_assign_traits<DstXprType,SrcXprNested>::Traversal==LinearTraversal) \
|
||||
|
@ -977,7 +977,7 @@ struct evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
|
||||
OuterStrideAtCompileTime = HasSameStorageOrderAsArgType
|
||||
? int(outer_stride_at_compile_time<ArgType>::ret)
|
||||
: int(inner_stride_at_compile_time<ArgType>::ret),
|
||||
MaskPacketAccessBit = (InnerStrideAtCompileTime == 1) ? PacketAccessBit : 0,
|
||||
MaskPacketAccessBit = (InnerStrideAtCompileTime == 1 || HasSameStorageOrderAsArgType) ? PacketAccessBit : 0,
|
||||
|
||||
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (evaluator<ArgType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
|
||||
FlagsRowMajorBit = XprType::Flags&RowMajorBit,
|
||||
@ -987,7 +987,9 @@ struct evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
|
||||
Flags = Flags0 | FlagsLinearAccessBit | FlagsRowMajorBit,
|
||||
|
||||
PacketAlignment = unpacket_traits<PacketScalar>::alignment,
|
||||
Alignment0 = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % int(PacketAlignment)) == 0)) ? int(PacketAlignment) : 0,
|
||||
Alignment0 = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic)
|
||||
&& (OuterStrideAtCompileTime!=0)
|
||||
&& (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % int(PacketAlignment)) == 0)) ? int(PacketAlignment) : 0,
|
||||
Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<ArgType>::Alignment, Alignment0)
|
||||
};
|
||||
typedef block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel> block_evaluator_type;
|
||||
@ -1018,14 +1020,16 @@ struct unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IndexBa
|
||||
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& block)
|
||||
: m_argImpl(block.nestedExpression()),
|
||||
m_startRow(block.startRow()),
|
||||
m_startCol(block.startCol())
|
||||
m_startCol(block.startCol()),
|
||||
m_linear_offset(InnerPanel?(XprType::IsRowMajor ? block.startRow()*block.cols() : block.startCol()*block.rows()):0)
|
||||
{ }
|
||||
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = XprType::RowsAtCompileTime
|
||||
RowsAtCompileTime = XprType::RowsAtCompileTime,
|
||||
ForwardLinearAccess = InnerPanel && bool(evaluator<ArgType>::Flags&LinearAccessBit)
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
@ -1037,7 +1041,10 @@ struct unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IndexBa
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
return coeff(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
|
||||
if (ForwardLinearAccess)
|
||||
return m_argImpl.coeff(m_linear_offset.value() + index);
|
||||
else
|
||||
return coeff(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
@ -1049,7 +1056,10 @@ struct unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IndexBa
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Scalar& coeffRef(Index index)
|
||||
{
|
||||
return coeffRef(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
|
||||
if (ForwardLinearAccess)
|
||||
return m_argImpl.coeffRef(m_linear_offset.value() + index);
|
||||
else
|
||||
return coeffRef(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
|
||||
}
|
||||
|
||||
template<int LoadMode, typename PacketType>
|
||||
@ -1063,8 +1073,11 @@ struct unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IndexBa
|
||||
EIGEN_STRONG_INLINE
|
||||
PacketType packet(Index index) const
|
||||
{
|
||||
return packet<LoadMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index,
|
||||
RowsAtCompileTime == 1 ? index : 0);
|
||||
if (ForwardLinearAccess)
|
||||
return m_argImpl.template packet<LoadMode,PacketType>(m_linear_offset.value() + index);
|
||||
else
|
||||
return packet<LoadMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index,
|
||||
RowsAtCompileTime == 1 ? index : 0);
|
||||
}
|
||||
|
||||
template<int StoreMode, typename PacketType>
|
||||
@ -1078,15 +1091,19 @@ struct unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IndexBa
|
||||
EIGEN_STRONG_INLINE
|
||||
void writePacket(Index index, const PacketType& x)
|
||||
{
|
||||
return writePacket<StoreMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index,
|
||||
RowsAtCompileTime == 1 ? index : 0,
|
||||
x);
|
||||
if (ForwardLinearAccess)
|
||||
return m_argImpl.template writePacket<StoreMode,PacketType>(m_linear_offset.value() + index, x);
|
||||
else
|
||||
return writePacket<StoreMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index,
|
||||
RowsAtCompileTime == 1 ? index : 0,
|
||||
x);
|
||||
}
|
||||
|
||||
protected:
|
||||
evaluator<ArgType> m_argImpl;
|
||||
const variable_if_dynamic<Index, (ArgType::RowsAtCompileTime == 1 && BlockRows==1) ? 0 : Dynamic> m_startRow;
|
||||
const variable_if_dynamic<Index, (ArgType::ColsAtCompileTime == 1 && BlockCols==1) ? 0 : Dynamic> m_startCol;
|
||||
const variable_if_dynamic<Index, InnerPanel ? Dynamic : 0> m_linear_offset;
|
||||
};
|
||||
|
||||
// TODO: This evaluator does not actually use the child evaluator;
|
||||
|
@ -105,7 +105,7 @@ class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp<NullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename CustomNullaryOp>
|
||||
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject>
|
||||
DenseBase<Derived>::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func)
|
||||
{
|
||||
return CwiseNullaryOp<CustomNullaryOp, PlainObject>(rows, cols, func);
|
||||
@ -150,7 +150,7 @@ DenseBase<Derived>::NullaryExpr(Index size, const CustomNullaryOp& func)
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename CustomNullaryOp>
|
||||
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject>
|
||||
DenseBase<Derived>::NullaryExpr(const CustomNullaryOp& func)
|
||||
{
|
||||
return CwiseNullaryOp<CustomNullaryOp, PlainObject>(RowsAtCompileTime, ColsAtCompileTime, func);
|
||||
@ -192,7 +192,7 @@ DenseBase<Derived>::Constant(Index rows, Index cols, const Scalar& value)
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Constant(Index size, const Scalar& value)
|
||||
{
|
||||
return DenseBase<Derived>::NullaryExpr(size, internal::scalar_constant_op<Scalar>(value));
|
||||
@ -208,7 +208,7 @@ DenseBase<Derived>::Constant(Index size, const Scalar& value)
|
||||
* \sa class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Constant(const Scalar& value)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
@ -220,7 +220,7 @@ DenseBase<Derived>::Constant(const Scalar& value)
|
||||
* \sa LinSpaced(Index,Scalar,Scalar), setLinSpaced(Index,const Scalar&,const Scalar&)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
|
||||
DenseBase<Derived>::LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
@ -232,7 +232,7 @@ DenseBase<Derived>::LinSpaced(Sequential_t, Index size, const Scalar& low, const
|
||||
* \sa LinSpaced(Scalar,Scalar)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
|
||||
DenseBase<Derived>::LinSpaced(Sequential_t, const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
@ -264,7 +264,7 @@ DenseBase<Derived>::LinSpaced(Sequential_t, const Scalar& low, const Scalar& hig
|
||||
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
|
||||
DenseBase<Derived>::LinSpaced(Index size, const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
@ -276,7 +276,7 @@ DenseBase<Derived>::LinSpaced(Index size, const Scalar& low, const Scalar& high)
|
||||
* Special version for fixed size types which does not require the size parameter.
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
|
||||
DenseBase<Derived>::LinSpaced(const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
@ -286,7 +286,7 @@ DenseBase<Derived>::LinSpaced(const Scalar& low, const Scalar& high)
|
||||
|
||||
/** \returns true if all coefficients in this matrix are approximately equal to \a val, to within precision \a prec */
|
||||
template<typename Derived>
|
||||
bool DenseBase<Derived>::isApproxToConstant
|
||||
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isApproxToConstant
|
||||
(const Scalar& val, const RealScalar& prec) const
|
||||
{
|
||||
typename internal::nested_eval<Derived,1>::type self(derived());
|
||||
@ -301,7 +301,7 @@ bool DenseBase<Derived>::isApproxToConstant
|
||||
*
|
||||
* \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */
|
||||
template<typename Derived>
|
||||
bool DenseBase<Derived>::isConstant
|
||||
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isConstant
|
||||
(const Scalar& val, const RealScalar& prec) const
|
||||
{
|
||||
return isApproxToConstant(val, prec);
|
||||
@ -312,7 +312,7 @@ bool DenseBase<Derived>::isConstant
|
||||
* \sa setConstant(), Constant(), class CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE void DenseBase<Derived>::fill(const Scalar& val)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void DenseBase<Derived>::fill(const Scalar& val)
|
||||
{
|
||||
setConstant(val);
|
||||
}
|
||||
@ -322,7 +322,7 @@ EIGEN_STRONG_INLINE void DenseBase<Derived>::fill(const Scalar& val)
|
||||
* \sa fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setConstant(const Scalar& val)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setConstant(const Scalar& val)
|
||||
{
|
||||
return derived() = Constant(rows(), cols(), val);
|
||||
}
|
||||
@ -337,7 +337,7 @@ EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setConstant(const Scalar& val)
|
||||
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setConstant(Index size, const Scalar& val)
|
||||
{
|
||||
resize(size);
|
||||
@ -356,7 +356,7 @@ PlainObjectBase<Derived>::setConstant(Index size, const Scalar& val)
|
||||
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setConstant(Index rows, Index cols, const Scalar& val)
|
||||
{
|
||||
resize(rows, cols);
|
||||
@ -380,7 +380,7 @@ PlainObjectBase<Derived>::setConstant(Index rows, Index cols, const Scalar& val)
|
||||
* \sa LinSpaced(Index,const Scalar&,const Scalar&), CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(Index newSize, const Scalar& low, const Scalar& high)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(Index newSize, const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op<Scalar,PacketScalar>(low,high,newSize));
|
||||
@ -400,7 +400,7 @@ EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(Index newSize, con
|
||||
* \sa LinSpaced(Index,const Scalar&,const Scalar&), setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(const Scalar& low, const Scalar& high)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(const Scalar& low, const Scalar& high)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return setLinSpaced(size(), low, high);
|
||||
@ -423,7 +423,7 @@ EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(const Scalar& low,
|
||||
* \sa Zero(), Zero(Index)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Zero(Index rows, Index cols)
|
||||
{
|
||||
return Constant(rows, cols, Scalar(0));
|
||||
@ -446,7 +446,7 @@ DenseBase<Derived>::Zero(Index rows, Index cols)
|
||||
* \sa Zero(), Zero(Index,Index)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Zero(Index size)
|
||||
{
|
||||
return Constant(size, Scalar(0));
|
||||
@ -463,7 +463,7 @@ DenseBase<Derived>::Zero(Index size)
|
||||
* \sa Zero(Index), Zero(Index,Index)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Zero()
|
||||
{
|
||||
return Constant(Scalar(0));
|
||||
@ -478,7 +478,7 @@ DenseBase<Derived>::Zero()
|
||||
* \sa class CwiseNullaryOp, Zero()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool DenseBase<Derived>::isZero(const RealScalar& prec) const
|
||||
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isZero(const RealScalar& prec) const
|
||||
{
|
||||
typename internal::nested_eval<Derived,1>::type self(derived());
|
||||
for(Index j = 0; j < cols(); ++j)
|
||||
@ -496,7 +496,7 @@ bool DenseBase<Derived>::isZero(const RealScalar& prec) const
|
||||
* \sa class CwiseNullaryOp, Zero()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setZero()
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setZero()
|
||||
{
|
||||
return setConstant(Scalar(0));
|
||||
}
|
||||
@ -511,7 +511,7 @@ EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setZero()
|
||||
* \sa DenseBase::setZero(), setZero(Index,Index), class CwiseNullaryOp, DenseBase::Zero()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setZero(Index newSize)
|
||||
{
|
||||
resize(newSize);
|
||||
@ -529,7 +529,7 @@ PlainObjectBase<Derived>::setZero(Index newSize)
|
||||
* \sa DenseBase::setZero(), setZero(Index), class CwiseNullaryOp, DenseBase::Zero()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setZero(Index rows, Index cols)
|
||||
{
|
||||
resize(rows, cols);
|
||||
@ -553,7 +553,7 @@ PlainObjectBase<Derived>::setZero(Index rows, Index cols)
|
||||
* \sa Ones(), Ones(Index), isOnes(), class Ones
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Ones(Index rows, Index cols)
|
||||
{
|
||||
return Constant(rows, cols, Scalar(1));
|
||||
@ -576,7 +576,7 @@ DenseBase<Derived>::Ones(Index rows, Index cols)
|
||||
* \sa Ones(), Ones(Index,Index), isOnes(), class Ones
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Ones(Index newSize)
|
||||
{
|
||||
return Constant(newSize, Scalar(1));
|
||||
@ -593,7 +593,7 @@ DenseBase<Derived>::Ones(Index newSize)
|
||||
* \sa Ones(Index), Ones(Index,Index), isOnes(), class Ones
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
|
||||
DenseBase<Derived>::Ones()
|
||||
{
|
||||
return Constant(Scalar(1));
|
||||
@ -608,7 +608,7 @@ DenseBase<Derived>::Ones()
|
||||
* \sa class CwiseNullaryOp, Ones()
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool DenseBase<Derived>::isOnes
|
||||
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isOnes
|
||||
(const RealScalar& prec) const
|
||||
{
|
||||
return isApproxToConstant(Scalar(1), prec);
|
||||
@ -622,7 +622,7 @@ bool DenseBase<Derived>::isOnes
|
||||
* \sa class CwiseNullaryOp, Ones()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setOnes()
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setOnes()
|
||||
{
|
||||
return setConstant(Scalar(1));
|
||||
}
|
||||
@ -637,7 +637,7 @@ EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setOnes()
|
||||
* \sa MatrixBase::setOnes(), setOnes(Index,Index), class CwiseNullaryOp, MatrixBase::Ones()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setOnes(Index newSize)
|
||||
{
|
||||
resize(newSize);
|
||||
@ -655,7 +655,7 @@ PlainObjectBase<Derived>::setOnes(Index newSize)
|
||||
* \sa MatrixBase::setOnes(), setOnes(Index), class CwiseNullaryOp, MatrixBase::Ones()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived&
|
||||
PlainObjectBase<Derived>::setOnes(Index rows, Index cols)
|
||||
{
|
||||
resize(rows, cols);
|
||||
@ -679,7 +679,7 @@ PlainObjectBase<Derived>::setOnes(Index rows, Index cols)
|
||||
* \sa Identity(), setIdentity(), isIdentity()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
|
||||
MatrixBase<Derived>::Identity(Index rows, Index cols)
|
||||
{
|
||||
return DenseBase<Derived>::NullaryExpr(rows, cols, internal::scalar_identity_op<Scalar>());
|
||||
@ -696,7 +696,7 @@ MatrixBase<Derived>::Identity(Index rows, Index cols)
|
||||
* \sa Identity(Index,Index), setIdentity(), isIdentity()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
|
||||
MatrixBase<Derived>::Identity()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
@ -771,7 +771,7 @@ struct setIdentity_impl<Derived, true>
|
||||
* \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity()
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity()
|
||||
{
|
||||
return internal::setIdentity_impl<Derived>::run(derived());
|
||||
}
|
||||
@ -787,7 +787,7 @@ EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity()
|
||||
* \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity(Index rows, Index cols)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity(Index rows, Index cols)
|
||||
{
|
||||
derived().resize(rows, cols);
|
||||
return setIdentity();
|
||||
@ -800,7 +800,7 @@ EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity(Index rows, Index
|
||||
* \sa MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index newSize, Index i)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index newSize, Index i)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return BasisReturnType(SquareMatrixType::Identity(newSize,newSize), i);
|
||||
@ -815,7 +815,7 @@ EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBa
|
||||
* \sa MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index i)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index i)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return BasisReturnType(SquareMatrixType::Identity(),i);
|
||||
@ -828,7 +828,7 @@ EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBa
|
||||
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitX()
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitX()
|
||||
{ return Derived::Unit(0); }
|
||||
|
||||
/** \returns an expression of the Y axis unit vector (0,1{,0}^*)
|
||||
@ -838,7 +838,7 @@ EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBa
|
||||
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitY()
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitY()
|
||||
{ return Derived::Unit(1); }
|
||||
|
||||
/** \returns an expression of the Z axis unit vector (0,0,1{,0}^*)
|
||||
@ -848,7 +848,7 @@ EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBa
|
||||
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitZ()
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitZ()
|
||||
{ return Derived::Unit(2); }
|
||||
|
||||
/** \returns an expression of the W axis unit vector (0,0,0,1)
|
||||
@ -858,7 +858,7 @@ EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBa
|
||||
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitW()
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitW()
|
||||
{ return Derived::Unit(3); }
|
||||
|
||||
} // end namespace Eigen
|
||||
|
@ -296,7 +296,7 @@ template<typename Derived> class DenseBase
|
||||
EIGEN_DEVICE_FUNC
|
||||
Derived& operator=(const ReturnByValue<OtherDerived>& func);
|
||||
|
||||
/** \ínternal
|
||||
/** \internal
|
||||
* Copies \a other into *this without evaluating other. \returns a reference to *this.
|
||||
* \deprecated */
|
||||
template<typename OtherDerived>
|
||||
@ -484,9 +484,9 @@ template<typename Derived> class DenseBase
|
||||
return derived().coeff(0,0);
|
||||
}
|
||||
|
||||
bool all() const;
|
||||
bool any() const;
|
||||
Index count() const;
|
||||
EIGEN_DEVICE_FUNC bool all() const;
|
||||
EIGEN_DEVICE_FUNC bool any() const;
|
||||
EIGEN_DEVICE_FUNC Index count() const;
|
||||
|
||||
typedef VectorwiseOp<Derived, Horizontal> RowwiseReturnType;
|
||||
typedef const VectorwiseOp<const Derived, Horizontal> ConstRowwiseReturnType;
|
||||
|
@ -70,7 +70,10 @@ template<typename MatrixType, int _DiagIndex> class Diagonal
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Diagonal)
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit inline Diagonal(MatrixType& matrix, Index a_index = DiagIndex) : m_matrix(matrix), m_index(a_index) {}
|
||||
explicit inline Diagonal(MatrixType& matrix, Index a_index = DiagIndex) : m_matrix(matrix), m_index(a_index)
|
||||
{
|
||||
eigen_assert( a_index <= m_matrix.cols() && -a_index <= m_matrix.rows() );
|
||||
}
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Diagonal)
|
||||
|
||||
|
@ -31,7 +31,8 @@ struct dot_nocheck
|
||||
typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod;
|
||||
typedef typename conj_prod::result_type ResScalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
||||
EIGEN_STRONG_INLINE
|
||||
static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
||||
{
|
||||
return a.template binaryExpr<conj_prod>(b).sum();
|
||||
}
|
||||
@ -43,7 +44,8 @@ struct dot_nocheck<T, U, true>
|
||||
typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod;
|
||||
typedef typename conj_prod::result_type ResScalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
||||
EIGEN_STRONG_INLINE
|
||||
static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
||||
{
|
||||
return a.transpose().template binaryExpr<conj_prod>(b).sum();
|
||||
}
|
||||
@ -65,6 +67,7 @@ struct dot_nocheck<T, U, true>
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE
|
||||
typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
|
||||
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
@ -102,7 +105,7 @@ EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scala
|
||||
* \sa lpNorm(), dot(), squaredNorm()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
|
||||
EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
|
||||
{
|
||||
return numext::sqrt(squaredNorm());
|
||||
}
|
||||
@ -117,7 +120,7 @@ inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real Matr
|
||||
* \sa norm(), normalize()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const typename MatrixBase<Derived>::PlainObject
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject
|
||||
MatrixBase<Derived>::normalized() const
|
||||
{
|
||||
typedef typename internal::nested_eval<Derived,2>::type _Nested;
|
||||
@ -139,7 +142,7 @@ MatrixBase<Derived>::normalized() const
|
||||
* \sa norm(), normalized()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline void MatrixBase<Derived>::normalize()
|
||||
EIGEN_STRONG_INLINE void MatrixBase<Derived>::normalize()
|
||||
{
|
||||
RealScalar z = squaredNorm();
|
||||
// NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU
|
||||
@ -160,7 +163,7 @@ inline void MatrixBase<Derived>::normalize()
|
||||
* \sa stableNorm(), stableNormalize(), normalized()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const typename MatrixBase<Derived>::PlainObject
|
||||
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject
|
||||
MatrixBase<Derived>::stableNormalized() const
|
||||
{
|
||||
typedef typename internal::nested_eval<Derived,3>::type _Nested;
|
||||
@ -185,7 +188,7 @@ MatrixBase<Derived>::stableNormalized() const
|
||||
* \sa stableNorm(), stableNormalized(), normalize()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline void MatrixBase<Derived>::stableNormalize()
|
||||
EIGEN_STRONG_INLINE void MatrixBase<Derived>::stableNormalize()
|
||||
{
|
||||
RealScalar w = cwiseAbs().maxCoeff();
|
||||
RealScalar z = (derived()/w).squaredNorm();
|
||||
|
@ -14,6 +14,7 @@
|
||||
namespace Eigen {
|
||||
|
||||
/** \class EigenBase
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T).
|
||||
*
|
||||
@ -128,6 +129,7 @@ template<typename Derived> struct EigenBase
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
Derived& DenseBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
call_assignment(derived(), other.derived());
|
||||
@ -136,6 +138,7 @@ Derived& DenseBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
Derived& DenseBase<Derived>::operator+=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar,typename OtherDerived::Scalar>());
|
||||
@ -144,6 +147,7 @@ Derived& DenseBase<Derived>::operator+=(const EigenBase<OtherDerived> &other)
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
Derived& DenseBase<Derived>::operator-=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar,typename OtherDerived::Scalar>());
|
||||
|
@ -24,12 +24,17 @@ template<int Rows, int Cols, int Depth> struct product_type_selector;
|
||||
|
||||
template<int Size, int MaxSize> struct product_size_category
|
||||
{
|
||||
enum { is_large = MaxSize == Dynamic ||
|
||||
Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD ||
|
||||
(Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD),
|
||||
value = is_large ? Large
|
||||
: Size == 1 ? 1
|
||||
: Small
|
||||
enum {
|
||||
#ifndef EIGEN_CUDA_ARCH
|
||||
is_large = MaxSize == Dynamic ||
|
||||
Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD ||
|
||||
(Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD),
|
||||
#else
|
||||
is_large = 0,
|
||||
#endif
|
||||
value = is_large ? Large
|
||||
: Size == 1 ? 1
|
||||
: Small
|
||||
};
|
||||
};
|
||||
|
||||
@ -379,8 +384,6 @@ template<> struct gemv_dense_selector<OnTheRight,RowMajor,false>
|
||||
*
|
||||
* \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
|
||||
*/
|
||||
#ifndef __CUDACC__
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline const Product<Derived, OtherDerived>
|
||||
@ -412,8 +415,6 @@ MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
|
||||
return Product<Derived, OtherDerived>(derived(), other.derived());
|
||||
}
|
||||
|
||||
#endif // __CUDACC__
|
||||
|
||||
/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
|
||||
*
|
||||
* The returned product will behave like any other expressions: the coefficients of the product will be
|
||||
|
@ -230,7 +230,7 @@ pload1(const typename unpacket_traits<Packet>::type *a) { return pset1<Packet>(
|
||||
* duplicated to form: {from[0],from[0],from[1],from[1],from[2],from[2],from[3],from[3]}
|
||||
* Currently, this function is only used for scalar * complex products.
|
||||
*/
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet
|
||||
ploaddup(const typename unpacket_traits<Packet>::type* from) { return *from; }
|
||||
|
||||
/** \internal \returns a packet with elements of \a *from quadrupled.
|
||||
@ -278,7 +278,7 @@ inline void pbroadcast2(const typename unpacket_traits<Packet>::type *a,
|
||||
}
|
||||
|
||||
/** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */
|
||||
template<typename Packet> inline Packet
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet
|
||||
plset(const typename unpacket_traits<Packet>::type& a) { return a; }
|
||||
|
||||
/** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */
|
||||
@ -482,7 +482,7 @@ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret(Scalar* to, const Packet& fro
|
||||
* by the current computation.
|
||||
*/
|
||||
template<typename Packet, int LoadMode>
|
||||
inline Packet ploadt_ro(const typename unpacket_traits<Packet>::type* from)
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_ro(const typename unpacket_traits<Packet>::type* from)
|
||||
{
|
||||
return ploadt<Packet, LoadMode>(from);
|
||||
}
|
||||
|
@ -20,11 +20,17 @@ struct traits<Map<PlainObjectType, MapOptions, StrideType> >
|
||||
{
|
||||
typedef traits<PlainObjectType> TraitsBase;
|
||||
enum {
|
||||
PlainObjectTypeInnerSize = ((traits<PlainObjectType>::Flags&RowMajorBit)==RowMajorBit)
|
||||
? PlainObjectType::ColsAtCompileTime
|
||||
: PlainObjectType::RowsAtCompileTime,
|
||||
|
||||
InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
|
||||
? int(PlainObjectType::InnerStrideAtCompileTime)
|
||||
: int(StrideType::InnerStrideAtCompileTime),
|
||||
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
|
||||
? int(PlainObjectType::OuterStrideAtCompileTime)
|
||||
? (InnerStrideAtCompileTime==Dynamic || PlainObjectTypeInnerSize==Dynamic
|
||||
? Dynamic
|
||||
: int(InnerStrideAtCompileTime) * int(PlainObjectTypeInnerSize))
|
||||
: int(StrideType::OuterStrideAtCompileTime),
|
||||
Alignment = int(MapOptions)&int(AlignedMask),
|
||||
Flags0 = TraitsBase::Flags & (~NestByRefBit),
|
||||
@ -107,10 +113,11 @@ template<typename PlainObjectType, int MapOptions, typename StrideType> class Ma
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline Index outerStride() const
|
||||
{
|
||||
return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
|
||||
: IsVectorAtCompileTime ? this->size()
|
||||
: int(Flags)&RowMajorBit ? this->cols()
|
||||
: this->rows();
|
||||
return int(StrideType::OuterStrideAtCompileTime) != 0 ? m_stride.outer()
|
||||
: int(internal::traits<Map>::OuterStrideAtCompileTime) != Dynamic ? Index(internal::traits<Map>::OuterStrideAtCompileTime)
|
||||
: IsVectorAtCompileTime ? (this->size() * innerStride())
|
||||
: (int(Flags)&RowMajorBit) ? (this->cols() * innerStride())
|
||||
: (this->rows() * innerStride());
|
||||
}
|
||||
|
||||
/** Constructor in the fixed-size case.
|
||||
|
@ -348,31 +348,7 @@ struct norm1_retval
|
||||
* Implementation of hypot *
|
||||
****************************************************************************/
|
||||
|
||||
template<typename Scalar>
|
||||
struct hypot_impl
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline RealScalar run(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
EIGEN_USING_STD_MATH(abs);
|
||||
EIGEN_USING_STD_MATH(sqrt);
|
||||
RealScalar _x = abs(x);
|
||||
RealScalar _y = abs(y);
|
||||
Scalar p, qp;
|
||||
if(_x>_y)
|
||||
{
|
||||
p = _x;
|
||||
qp = _y / p;
|
||||
}
|
||||
else
|
||||
{
|
||||
p = _y;
|
||||
qp = _x / p;
|
||||
}
|
||||
if(p==RealScalar(0)) return RealScalar(0);
|
||||
return p * sqrt(RealScalar(1) + qp*qp);
|
||||
}
|
||||
};
|
||||
template<typename Scalar> struct hypot_impl;
|
||||
|
||||
template<typename Scalar>
|
||||
struct hypot_retval
|
||||
@ -495,7 +471,7 @@ namespace std_fallback {
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
EIGEN_USING_STD_MATH(log);
|
||||
Scalar x1p = RealScalar(1) + x;
|
||||
return ( x1p == Scalar(1) ) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) );
|
||||
return numext::equal_strict(x1p, Scalar(1)) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) );
|
||||
}
|
||||
}
|
||||
|
||||
@ -1061,11 +1037,24 @@ double log(const double &x) { return ::log(x); }
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
typename NumTraits<T>::Real abs(const T &x) {
|
||||
typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type
|
||||
abs(const T &x) {
|
||||
EIGEN_USING_STD_MATH(abs);
|
||||
return abs(x);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
typename internal::enable_if<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>::type
|
||||
abs(const T &x) {
|
||||
return x;
|
||||
}
|
||||
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
EIGEN_ALWAYS_INLINE float abs(float x) { return cl::sycl::fabs(x); }
|
||||
EIGEN_ALWAYS_INLINE double abs(double x) { return cl::sycl::fabs(x); }
|
||||
#endif // defined(__SYCL_DEVICE_ONLY__)
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float abs(const float &x) { return ::fabsf(x); }
|
||||
|
@ -71,6 +71,29 @@ T generic_fast_tanh_float(const T& a_x)
|
||||
return pdiv(p, q);
|
||||
}
|
||||
|
||||
template<typename RealScalar>
|
||||
EIGEN_STRONG_INLINE
|
||||
RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y)
|
||||
{
|
||||
EIGEN_USING_STD_MATH(sqrt);
|
||||
RealScalar p, qp;
|
||||
p = numext::maxi(x,y);
|
||||
if(p==RealScalar(0)) return RealScalar(0);
|
||||
qp = numext::mini(y,x) / p;
|
||||
return p * sqrt(RealScalar(1) + qp*qp);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
struct hypot_impl
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static inline RealScalar run(const Scalar& x, const Scalar& y)
|
||||
{
|
||||
EIGEN_USING_STD_MATH(abs);
|
||||
return positive_real_hypot<RealScalar>(abs(x), abs(y));
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
@ -160,20 +160,11 @@ template<typename Derived> class MatrixBase
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Derived& operator-=(const MatrixBase<OtherDerived>& other);
|
||||
|
||||
#ifdef __CUDACC__
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
const Product<Derived,OtherDerived,LazyProduct>
|
||||
operator*(const MatrixBase<OtherDerived> &other) const
|
||||
{ return this->lazyProduct(other); }
|
||||
#else
|
||||
|
||||
template<typename OtherDerived>
|
||||
const Product<Derived,OtherDerived>
|
||||
operator*(const MatrixBase<OtherDerived> &other) const;
|
||||
|
||||
#endif
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
const Product<Derived,OtherDerived,LazyProduct>
|
||||
@ -294,7 +285,7 @@ template<typename Derived> class MatrixBase
|
||||
* fuzzy comparison such as isApprox()
|
||||
* \sa isApprox(), operator!= */
|
||||
template<typename OtherDerived>
|
||||
inline bool operator==(const MatrixBase<OtherDerived>& other) const
|
||||
EIGEN_DEVICE_FUNC inline bool operator==(const MatrixBase<OtherDerived>& other) const
|
||||
{ return cwiseEqual(other).all(); }
|
||||
|
||||
/** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other.
|
||||
@ -302,7 +293,7 @@ template<typename Derived> class MatrixBase
|
||||
* fuzzy comparison such as isApprox()
|
||||
* \sa isApprox(), operator== */
|
||||
template<typename OtherDerived>
|
||||
inline bool operator!=(const MatrixBase<OtherDerived>& other) const
|
||||
EIGEN_DEVICE_FUNC inline bool operator!=(const MatrixBase<OtherDerived>& other) const
|
||||
{ return cwiseNotEqual(other).any(); }
|
||||
|
||||
NoAlias<Derived,Eigen::MatrixBase > noalias();
|
||||
|
@ -215,6 +215,8 @@ struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
|
||||
static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); }
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); }
|
||||
|
||||
static inline int digits10() { return NumTraits<Scalar>::digits10(); }
|
||||
};
|
||||
|
||||
template<> struct NumTraits<std::string>
|
||||
|
@ -577,6 +577,10 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
* while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
|
||||
* \a data pointers.
|
||||
*
|
||||
* Here is an example using strides:
|
||||
* \include Matrix_Map_stride.cpp
|
||||
* Output: \verbinclude Matrix_Map_stride.out
|
||||
*
|
||||
* \see class Map
|
||||
*/
|
||||
//@{
|
||||
|
@ -97,8 +97,8 @@ class Product : public ProductImpl<_Lhs,_Rhs,Option,
|
||||
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); }
|
||||
EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); }
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
|
||||
|
||||
EIGEN_DEVICE_FUNC const LhsNestedCleaned& lhs() const { return m_lhs; }
|
||||
EIGEN_DEVICE_FUNC const RhsNestedCleaned& rhs() const { return m_rhs; }
|
||||
@ -127,7 +127,7 @@ public:
|
||||
using Base::derived;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
|
||||
operator const Scalar() const
|
||||
EIGEN_STRONG_INLINE operator const Scalar() const
|
||||
{
|
||||
return internal::evaluator<ProductXpr>(derived()).coeff(0,0);
|
||||
}
|
||||
@ -162,7 +162,7 @@ class ProductImpl<Lhs,Rhs,Option,Dense>
|
||||
|
||||
public:
|
||||
|
||||
EIGEN_DEVICE_FUNC Scalar coeff(Index row, Index col) const
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
|
||||
eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
|
||||
@ -170,7 +170,7 @@ class ProductImpl<Lhs,Rhs,Option,Dense>
|
||||
return internal::evaluator<Derived>(derived()).coeff(row,col);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC Scalar coeff(Index i) const
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar coeff(Index i) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
|
||||
eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
|
||||
|
@ -32,7 +32,7 @@ struct evaluator<Product<Lhs, Rhs, Options> >
|
||||
typedef Product<Lhs, Rhs, Options> XprType;
|
||||
typedef product_evaluator<XprType> Base;
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {}
|
||||
};
|
||||
|
||||
// Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B"
|
||||
@ -55,7 +55,7 @@ struct evaluator<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
|
||||
const Product<Lhs, Rhs, DefaultProduct> > XprType;
|
||||
typedef evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> > Base;
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
|
||||
: Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs())
|
||||
{}
|
||||
};
|
||||
@ -68,7 +68,7 @@ struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> >
|
||||
typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType;
|
||||
typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base;
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
|
||||
: Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>(
|
||||
Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()),
|
||||
xpr.index() ))
|
||||
@ -207,6 +207,12 @@ struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_sum_op<typename
|
||||
static const bool value = true;
|
||||
};
|
||||
|
||||
template<typename OtherXpr, typename Lhs, typename Rhs>
|
||||
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_difference_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
|
||||
const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
|
||||
static const bool value = true;
|
||||
};
|
||||
|
||||
template<typename DstXprType, typename OtherXpr, typename ProductType, typename Func1, typename Func2>
|
||||
struct assignment_from_xpr_op_product
|
||||
{
|
||||
@ -240,19 +246,19 @@ template<typename Lhs, typename Rhs>
|
||||
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct>
|
||||
{
|
||||
template<typename Dst>
|
||||
static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
|
||||
}
|
||||
|
||||
template<typename Dst>
|
||||
static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum();
|
||||
}
|
||||
|
||||
template<typename Dst>
|
||||
static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{ dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); }
|
||||
};
|
||||
|
||||
@ -306,25 +312,25 @@ struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct>
|
||||
};
|
||||
|
||||
template<typename Dst>
|
||||
static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major<Dst>());
|
||||
}
|
||||
|
||||
template<typename Dst>
|
||||
static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major<Dst>());
|
||||
}
|
||||
|
||||
template<typename Dst>
|
||||
static inline void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major<Dst>());
|
||||
}
|
||||
|
||||
template<typename Dst>
|
||||
static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
||||
static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
||||
{
|
||||
internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major<Dst>());
|
||||
}
|
||||
@ -779,7 +785,11 @@ public:
|
||||
_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))),
|
||||
_LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0,
|
||||
Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0),
|
||||
Alignment = evaluator<MatrixType>::Alignment
|
||||
Alignment = evaluator<MatrixType>::Alignment,
|
||||
|
||||
AsScalarProduct = (DiagonalType::SizeAtCompileTime==1)
|
||||
|| (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::RowsAtCompileTime==1 && ProductOrder==OnTheLeft)
|
||||
|| (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime==1 && ProductOrder==OnTheRight)
|
||||
};
|
||||
|
||||
diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag)
|
||||
@ -791,7 +801,10 @@ public:
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
|
||||
{
|
||||
return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx);
|
||||
if(AsScalarProduct)
|
||||
return m_diagImpl.coeff(0) * m_matImpl.coeff(idx);
|
||||
else
|
||||
return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx);
|
||||
}
|
||||
|
||||
protected:
|
||||
|
@ -407,7 +407,7 @@ protected:
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename Func>
|
||||
typename internal::traits<Derived>::Scalar
|
||||
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
||||
DenseBase<Derived>::redux(const Func& func) const
|
||||
{
|
||||
eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
|
||||
|
@ -95,6 +95,8 @@ protected:
|
||||
template<typename Expression>
|
||||
EIGEN_DEVICE_FUNC void construct(Expression& expr)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(PlainObjectType,Expression);
|
||||
|
||||
if(PlainObjectType::RowsAtCompileTime==1)
|
||||
{
|
||||
eigen_assert(expr.rows()==1 || expr.cols()==1);
|
||||
|
@ -71,7 +71,9 @@ template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
|
||||
{}
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(UpLo==Lower || UpLo==Upper,SELFADJOINTVIEW_ACCEPTS_UPPER_AND_LOWER_MODE_ONLY);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
@ -189,7 +191,7 @@ template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
|
||||
TriangularView<typename MatrixType::AdjointReturnType,TriMode> >::type(tmp2);
|
||||
}
|
||||
|
||||
typedef SelfAdjointView<const MatrixConjugateReturnType,Mode> ConjugateReturnType;
|
||||
typedef SelfAdjointView<const MatrixConjugateReturnType,UpLo> ConjugateReturnType;
|
||||
/** \sa MatrixBase::conjugate() const */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline const ConjugateReturnType conjugate() const
|
||||
|
@ -15,33 +15,29 @@ namespace Eigen {
|
||||
// TODO generalize the scalar type of 'other'
|
||||
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator*=(const Scalar& other)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator*=(const Scalar& other)
|
||||
{
|
||||
typedef typename Derived::PlainObject PlainObject;
|
||||
internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::mul_assign_op<Scalar,Scalar>());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& ArrayBase<Derived>::operator+=(const Scalar& other)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& ArrayBase<Derived>::operator+=(const Scalar& other)
|
||||
{
|
||||
typedef typename Derived::PlainObject PlainObject;
|
||||
internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::add_assign_op<Scalar,Scalar>());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& ArrayBase<Derived>::operator-=(const Scalar& other)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& ArrayBase<Derived>::operator-=(const Scalar& other)
|
||||
{
|
||||
typedef typename Derived::PlainObject PlainObject;
|
||||
internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::sub_assign_op<Scalar,Scalar>());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator/=(const Scalar& other)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator/=(const Scalar& other)
|
||||
{
|
||||
typedef typename Derived::PlainObject PlainObject;
|
||||
internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::div_assign_op<Scalar,Scalar>());
|
||||
return derived();
|
||||
}
|
||||
|
@ -34,12 +34,12 @@ template<typename Decomposition, typename RhsType,typename StorageKind> struct s
|
||||
template<typename Decomposition, typename RhsType>
|
||||
struct solve_traits<Decomposition,RhsType,Dense>
|
||||
{
|
||||
typedef Matrix<typename RhsType::Scalar,
|
||||
typedef typename make_proper_matrix_type<typename RhsType::Scalar,
|
||||
Decomposition::ColsAtCompileTime,
|
||||
RhsType::ColsAtCompileTime,
|
||||
RhsType::PlainObject::Options,
|
||||
Decomposition::MaxColsAtCompileTime,
|
||||
RhsType::MaxColsAtCompileTime> PlainObject;
|
||||
RhsType::MaxColsAtCompileTime>::type PlainObject;
|
||||
};
|
||||
|
||||
template<typename Decomposition, typename RhsType>
|
||||
|
@ -165,12 +165,13 @@ MatrixBase<Derived>::stableNorm() const
|
||||
|
||||
typedef typename internal::nested_eval<Derived,2>::type DerivedCopy;
|
||||
typedef typename internal::remove_all<DerivedCopy>::type DerivedCopyClean;
|
||||
DerivedCopy copy(derived());
|
||||
const DerivedCopy copy(derived());
|
||||
|
||||
enum {
|
||||
CanAlign = ( (int(DerivedCopyClean::Flags)&DirectAccessBit)
|
||||
|| (int(internal::evaluator<DerivedCopyClean>::Alignment)>0) // FIXME Alignment)>0 might not be enough
|
||||
) && (blockSize*sizeof(Scalar)*2<EIGEN_STACK_ALLOCATION_LIMIT) // ifwe cannot allocate on the stack, then let's not bother about this optimization
|
||||
) && (blockSize*sizeof(Scalar)*2<EIGEN_STACK_ALLOCATION_LIMIT)
|
||||
&& (EIGEN_MAX_STATIC_ALIGN_BYTES>0) // if we cannot allocate on the stack, then let's not bother about this optimization
|
||||
};
|
||||
typedef typename internal::conditional<CanAlign, Ref<const Matrix<Scalar,Dynamic,1,0,blockSize,1>, internal::evaluator<DerivedCopyClean>::Alignment>,
|
||||
typename DerivedCopyClean::ConstSegmentReturnType>::type SegmentWrapper;
|
||||
|
@ -384,7 +384,7 @@ class Transpose<TranspositionsBase<TranspositionsDerived> >
|
||||
const Product<OtherDerived, Transpose, AliasFreeProduct>
|
||||
operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trt)
|
||||
{
|
||||
return Product<OtherDerived, Transpose, AliasFreeProduct>(matrix.derived(), trt.derived());
|
||||
return Product<OtherDerived, Transpose, AliasFreeProduct>(matrix.derived(), trt);
|
||||
}
|
||||
|
||||
/** \returns the \a matrix with the inverse transpositions applied to the rows.
|
||||
|
@ -204,23 +204,7 @@ template<> struct conj_helper<Packet4cf, Packet4cf, true,true>
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet8f, Packet4cf, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet4cf pmadd(const Packet8f& x, const Packet4cf& y, const Packet4cf& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet4cf pmul(const Packet8f& x, const Packet4cf& y) const
|
||||
{ return Packet4cf(Eigen::internal::pmul(x, y.v)); }
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet4cf, Packet8f, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet4cf pmadd(const Packet4cf& x, const Packet8f& y, const Packet4cf& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet4cf pmul(const Packet4cf& x, const Packet8f& y) const
|
||||
{ return Packet4cf(Eigen::internal::pmul(x.v, y)); }
|
||||
};
|
||||
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet4cf,Packet8f)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4cf pdiv<Packet4cf>(const Packet4cf& a, const Packet4cf& b)
|
||||
{
|
||||
@ -400,23 +384,7 @@ template<> struct conj_helper<Packet2cd, Packet2cd, true,true>
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet4d, Packet2cd, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cd pmadd(const Packet4d& x, const Packet2cd& y, const Packet2cd& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cd pmul(const Packet4d& x, const Packet2cd& y) const
|
||||
{ return Packet2cd(Eigen::internal::pmul(x, y.v)); }
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2cd, Packet4d, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cd pmadd(const Packet2cd& x, const Packet4d& y, const Packet2cd& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cd pmul(const Packet2cd& x, const Packet4d& y) const
|
||||
{ return Packet2cd(Eigen::internal::pmul(x.v, y)); }
|
||||
};
|
||||
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cd,Packet4d)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cd pdiv<Packet2cd>(const Packet2cd& a, const Packet2cd& b)
|
||||
{
|
||||
|
@ -308,9 +308,9 @@ template<> EIGEN_STRONG_INLINE void pstore1<Packet8i>(int* to, const int& a)
|
||||
}
|
||||
|
||||
#ifndef EIGEN_VECTORIZE_AVX512
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
|
||||
#endif
|
||||
|
||||
template<> EIGEN_STRONG_INLINE float pfirst<Packet8f>(const Packet8f& a) {
|
||||
@ -333,9 +333,12 @@ template<> EIGEN_STRONG_INLINE Packet4d preverse(const Packet4d& a)
|
||||
{
|
||||
__m256d tmp = _mm256_shuffle_pd(a,a,5);
|
||||
return _mm256_permute2f128_pd(tmp, tmp, 1);
|
||||
|
||||
#if 0
|
||||
// This version is unlikely to be faster as _mm256_shuffle_ps and _mm256_permute_pd
|
||||
// exhibit the same latency/throughput, but it is here for future reference/benchmarking...
|
||||
__m256d swap_halves = _mm256_permute2f128_pd(a,a,1);
|
||||
return _mm256_permute_pd(swap_halves,5);
|
||||
#endif
|
||||
}
|
||||
|
||||
// pabs should be ok
|
||||
|
@ -88,9 +88,9 @@ plog<Packet16f>(const Packet16f& _x) {
|
||||
// x = x + x - 1.0;
|
||||
// } else { x = x - 1.0; }
|
||||
__mmask16 mask = _mm512_cmp_ps_mask(x, p16f_cephes_SQRTHF, _CMP_LT_OQ);
|
||||
Packet16f tmp = _mm512_mask_blend_ps(mask, x, _mm512_setzero_ps());
|
||||
Packet16f tmp = _mm512_mask_blend_ps(mask, _mm512_setzero_ps(), x);
|
||||
x = psub(x, p16f_1);
|
||||
e = psub(e, _mm512_mask_blend_ps(mask, p16f_1, _mm512_setzero_ps()));
|
||||
e = psub(e, _mm512_mask_blend_ps(mask, _mm512_setzero_ps(), p16f_1));
|
||||
x = padd(x, tmp);
|
||||
|
||||
Packet16f x2 = pmul(x, x);
|
||||
@ -119,8 +119,9 @@ plog<Packet16f>(const Packet16f& _x) {
|
||||
x = padd(x, y2);
|
||||
|
||||
// Filter out invalid inputs, i.e. negative arg will be NAN, 0 will be -INF.
|
||||
return _mm512_mask_blend_ps(iszero_mask, p16f_minus_inf,
|
||||
_mm512_mask_blend_ps(invalid_mask, p16f_nan, x));
|
||||
return _mm512_mask_blend_ps(iszero_mask,
|
||||
_mm512_mask_blend_ps(invalid_mask, x, p16f_nan),
|
||||
p16f_minus_inf);
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -266,8 +267,7 @@ psqrt<Packet16f>(const Packet16f& _x) {
|
||||
// select only the inverse sqrt of positive normal inputs (denormals are
|
||||
// flushed to zero and cause infs as well).
|
||||
__mmask16 non_zero_mask = _mm512_cmp_ps_mask(_x, p16f_flt_min, _CMP_GE_OQ);
|
||||
Packet16f x = _mm512_mask_blend_ps(non_zero_mask, _mm512_rsqrt14_ps(_x),
|
||||
_mm512_setzero_ps());
|
||||
Packet16f x = _mm512_mask_blend_ps(non_zero_mask, _mm512_setzero_ps(), _mm512_rsqrt14_ps(_x));
|
||||
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), p16f_one_point_five));
|
||||
@ -289,8 +289,7 @@ psqrt<Packet8d>(const Packet8d& _x) {
|
||||
// select only the inverse sqrt of positive normal inputs (denormals are
|
||||
// flushed to zero and cause infs as well).
|
||||
__mmask8 non_zero_mask = _mm512_cmp_pd_mask(_x, p8d_dbl_min, _CMP_GE_OQ);
|
||||
Packet8d x = _mm512_mask_blend_pd(non_zero_mask, _mm512_rsqrt14_pd(_x),
|
||||
_mm512_setzero_pd());
|
||||
Packet8d x = _mm512_mask_blend_pd(non_zero_mask, _mm512_setzero_pd(), _mm512_rsqrt14_pd(_x));
|
||||
|
||||
// Do a first step of Newton's iteration.
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), p8d_one_point_five));
|
||||
@ -333,20 +332,18 @@ prsqrt<Packet16f>(const Packet16f& _x) {
|
||||
// select only the inverse sqrt of positive normal inputs (denormals are
|
||||
// flushed to zero and cause infs as well).
|
||||
__mmask16 le_zero_mask = _mm512_cmp_ps_mask(_x, p16f_flt_min, _CMP_LT_OQ);
|
||||
Packet16f x = _mm512_mask_blend_ps(le_zero_mask, _mm512_setzero_ps(),
|
||||
_mm512_rsqrt14_ps(_x));
|
||||
Packet16f x = _mm512_mask_blend_ps(le_zero_mask, _mm512_rsqrt14_ps(_x), _mm512_setzero_ps());
|
||||
|
||||
// Fill in NaNs and Infs for the negative/zero entries.
|
||||
__mmask16 neg_mask = _mm512_cmp_ps_mask(_x, _mm512_setzero_ps(), _CMP_LT_OQ);
|
||||
Packet16f infs_and_nans = _mm512_mask_blend_ps(
|
||||
neg_mask, p16f_nan,
|
||||
_mm512_mask_blend_ps(le_zero_mask, p16f_inf, _mm512_setzero_ps()));
|
||||
neg_mask, _mm512_mask_blend_ps(le_zero_mask, _mm512_setzero_ps(), p16f_inf), p16f_nan);
|
||||
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), p16f_one_point_five));
|
||||
|
||||
// Insert NaNs and Infs in all the right places.
|
||||
return _mm512_mask_blend_ps(le_zero_mask, infs_and_nans, x);
|
||||
return _mm512_mask_blend_ps(le_zero_mask, x, infs_and_nans);
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -363,14 +360,12 @@ prsqrt<Packet8d>(const Packet8d& _x) {
|
||||
// select only the inverse sqrt of positive normal inputs (denormals are
|
||||
// flushed to zero and cause infs as well).
|
||||
__mmask8 le_zero_mask = _mm512_cmp_pd_mask(_x, p8d_dbl_min, _CMP_LT_OQ);
|
||||
Packet8d x = _mm512_mask_blend_pd(le_zero_mask, _mm512_setzero_pd(),
|
||||
_mm512_rsqrt14_pd(_x));
|
||||
Packet8d x = _mm512_mask_blend_pd(le_zero_mask, _mm512_rsqrt14_pd(_x), _mm512_setzero_pd());
|
||||
|
||||
// Fill in NaNs and Infs for the negative/zero entries.
|
||||
__mmask8 neg_mask = _mm512_cmp_pd_mask(_x, _mm512_setzero_pd(), _CMP_LT_OQ);
|
||||
Packet8d infs_and_nans = _mm512_mask_blend_pd(
|
||||
neg_mask, p8d_nan,
|
||||
_mm512_mask_blend_pd(le_zero_mask, p8d_inf, _mm512_setzero_pd()));
|
||||
neg_mask, _mm512_mask_blend_pd(le_zero_mask, _mm512_setzero_pd(), p8d_inf), p8d_nan);
|
||||
|
||||
// Do a first step of Newton's iteration.
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), p8d_one_point_five));
|
||||
@ -379,9 +374,9 @@ prsqrt<Packet8d>(const Packet8d& _x) {
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), p8d_one_point_five));
|
||||
|
||||
// Insert NaNs and Infs in all the right places.
|
||||
return _mm512_mask_blend_pd(le_zero_mask, infs_and_nans, x);
|
||||
return _mm512_mask_blend_pd(le_zero_mask, x, infs_and_nans);
|
||||
}
|
||||
#else
|
||||
#elif defined(EIGEN_VECTORIZE_AVX512ER)
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet16f prsqrt<Packet16f>(const Packet16f& x) {
|
||||
return _mm512_rsqrt28_ps(x);
|
||||
|
@ -618,9 +618,9 @@ EIGEN_STRONG_INLINE void pstore1<Packet16i>(int* to, const int& a) {
|
||||
pstore(to, pa);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
|
||||
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE float pfirst<Packet16f>(const Packet16f& a) {
|
||||
|
@ -224,23 +224,7 @@ template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet4f, Packet2cf, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet4f& x, const Packet2cf& y, const Packet2cf& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet4f& x, const Packet2cf& y) const
|
||||
{ return Packet2cf(internal::pmul<Packet4f>(x, y.v)); }
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2cf, Packet4f, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet4f& y, const Packet2cf& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& x, const Packet4f& y) const
|
||||
{ return Packet2cf(internal::pmul<Packet4f>(x.v, y)); }
|
||||
};
|
||||
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
|
||||
{
|
||||
@ -416,23 +400,8 @@ template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
|
||||
return pconj(internal::pmul(a, b));
|
||||
}
|
||||
};
|
||||
template<> struct conj_helper<Packet2d, Packet1cd, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet2d& x, const Packet1cd& y, const Packet1cd& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet2d& x, const Packet1cd& y) const
|
||||
{ return Packet1cd(internal::pmul<Packet2d>(x, y.v)); }
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet1cd, Packet2d, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet2d& y, const Packet1cd& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& x, const Packet2d& y) const
|
||||
{ return Packet1cd(internal::pmul<Packet2d>(x.v, y)); }
|
||||
};
|
||||
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
|
||||
{
|
||||
|
@ -388,10 +388,28 @@ template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, co
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vec_madd(a,b,c); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return a*b + c; }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_min(a, b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b)
|
||||
{
|
||||
#ifdef __VSX__
|
||||
Packet4f ret;
|
||||
__asm__ ("xvcmpgesp %x0,%x1,%x2\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b));
|
||||
return ret;
|
||||
#else
|
||||
return vec_min(a, b);
|
||||
#endif
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_min(a, b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_max(a, b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b)
|
||||
{
|
||||
#ifdef __VSX__
|
||||
Packet4f ret;
|
||||
__asm__ ("xvcmpgtsp %x0,%x2,%x1\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b));
|
||||
return ret;
|
||||
#else
|
||||
return vec_max(a, b);
|
||||
#endif
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_max(a, b); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_and(a, b); }
|
||||
@ -910,9 +928,19 @@ template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const
|
||||
// for some weird raisons, it has to be overloaded for packet of integers
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vec_madd(a, b, c); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_min(a, b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b)
|
||||
{
|
||||
Packet2d ret;
|
||||
__asm__ ("xvcmpgedp %x0,%x1,%x2\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b));
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_max(a, b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b)
|
||||
{
|
||||
Packet2d ret;
|
||||
__asm__ ("xvcmpgtdp %x0,%x2,%x1\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b));
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_and(a, b); }
|
||||
|
||||
@ -1022,7 +1050,7 @@ ptranspose(PacketBlock<Packet2d,2>& kernel) {
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) {
|
||||
Packet2l select = { ifPacket.select[0], ifPacket.select[1] };
|
||||
Packet2bl mask = vec_cmpeq(reinterpret_cast<Packet2d>(select), reinterpret_cast<Packet2d>(p2l_ONE));
|
||||
Packet2bl mask = reinterpret_cast<Packet2bl>( vec_cmpeq(reinterpret_cast<Packet2d>(select), reinterpret_cast<Packet2d>(p2l_ONE)) );
|
||||
return vec_sel(elsePacket, thenPacket, mask);
|
||||
}
|
||||
#endif // __VSX__
|
||||
|
@ -13,7 +13,7 @@
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted.
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
@ -147,55 +147,55 @@ namespace half_impl {
|
||||
// versions to get the ALU speed increased), but you do save the
|
||||
// conversion steps back and forth.
|
||||
|
||||
__device__ half operator + (const half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ half operator + (const half& a, const half& b) {
|
||||
return __hadd(a, b);
|
||||
}
|
||||
__device__ half operator * (const half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ half operator * (const half& a, const half& b) {
|
||||
return __hmul(a, b);
|
||||
}
|
||||
__device__ half operator - (const half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ half operator - (const half& a, const half& b) {
|
||||
return __hsub(a, b);
|
||||
}
|
||||
__device__ half operator / (const half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ half operator / (const half& a, const half& b) {
|
||||
float num = __half2float(a);
|
||||
float denom = __half2float(b);
|
||||
return __float2half(num / denom);
|
||||
}
|
||||
__device__ half operator - (const half& a) {
|
||||
EIGEN_STRONG_INLINE __device__ half operator - (const half& a) {
|
||||
return __hneg(a);
|
||||
}
|
||||
__device__ half& operator += (half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ half& operator += (half& a, const half& b) {
|
||||
a = a + b;
|
||||
return a;
|
||||
}
|
||||
__device__ half& operator *= (half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ half& operator *= (half& a, const half& b) {
|
||||
a = a * b;
|
||||
return a;
|
||||
}
|
||||
__device__ half& operator -= (half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ half& operator -= (half& a, const half& b) {
|
||||
a = a - b;
|
||||
return a;
|
||||
}
|
||||
__device__ half& operator /= (half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ half& operator /= (half& a, const half& b) {
|
||||
a = a / b;
|
||||
return a;
|
||||
}
|
||||
__device__ bool operator == (const half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ bool operator == (const half& a, const half& b) {
|
||||
return __heq(a, b);
|
||||
}
|
||||
__device__ bool operator != (const half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ bool operator != (const half& a, const half& b) {
|
||||
return __hne(a, b);
|
||||
}
|
||||
__device__ bool operator < (const half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ bool operator < (const half& a, const half& b) {
|
||||
return __hlt(a, b);
|
||||
}
|
||||
__device__ bool operator <= (const half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ bool operator <= (const half& a, const half& b) {
|
||||
return __hle(a, b);
|
||||
}
|
||||
__device__ bool operator > (const half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ bool operator > (const half& a, const half& b) {
|
||||
return __hgt(a, b);
|
||||
}
|
||||
__device__ bool operator >= (const half& a, const half& b) {
|
||||
EIGEN_STRONG_INLINE __device__ bool operator >= (const half& a, const half& b) {
|
||||
return __hge(a, b);
|
||||
}
|
||||
|
||||
@ -238,10 +238,10 @@ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b)
|
||||
return a;
|
||||
}
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) {
|
||||
return float(a) == float(b);
|
||||
return numext::equal_strict(float(a),float(b));
|
||||
}
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) {
|
||||
return float(a) != float(b);
|
||||
return numext::not_equal_strict(float(a), float(b));
|
||||
}
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) {
|
||||
return float(a) < float(b);
|
||||
@ -386,11 +386,15 @@ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half abs(const half& a) {
|
||||
return result;
|
||||
}
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp(const half& a) {
|
||||
return half(::expf(float(a)));
|
||||
#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530
|
||||
return half(hexp(a));
|
||||
#else
|
||||
return half(::expf(float(a)));
|
||||
#endif
|
||||
}
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log(const half& a) {
|
||||
#if defined(EIGEN_HAS_CUDA_FP16) && defined __CUDACC_VER__ && __CUDACC_VER__ >= 80000 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
|
||||
return Eigen::half(::hlog(a));
|
||||
#if defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDACC_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530
|
||||
return half(::hlog(a));
|
||||
#else
|
||||
return half(::logf(float(a)));
|
||||
#endif
|
||||
@ -402,7 +406,11 @@ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log10(const half& a) {
|
||||
return half(::log10f(float(a)));
|
||||
}
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sqrt(const half& a) {
|
||||
return half(::sqrtf(float(a)));
|
||||
#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530
|
||||
return half(hsqrt(a));
|
||||
#else
|
||||
return half(::sqrtf(float(a)));
|
||||
#endif
|
||||
}
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half& a, const half& b) {
|
||||
return half(::powf(float(a), float(b)));
|
||||
@ -420,10 +428,18 @@ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) {
|
||||
return half(::tanhf(float(a)));
|
||||
}
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) {
|
||||
#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300
|
||||
return half(hfloor(a));
|
||||
#else
|
||||
return half(::floorf(float(a)));
|
||||
#endif
|
||||
}
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) {
|
||||
#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300
|
||||
return half(hceil(a));
|
||||
#else
|
||||
return half(::ceilf(float(a)));
|
||||
#endif
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (min)(const half& a, const half& b) {
|
||||
@ -474,9 +490,59 @@ template<> struct is_arithmetic<half> { enum { value = true }; };
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
namespace std {
|
||||
template<>
|
||||
struct numeric_limits<Eigen::half> {
|
||||
static const bool is_specialized = true;
|
||||
static const bool is_signed = true;
|
||||
static const bool is_integer = false;
|
||||
static const bool is_exact = false;
|
||||
static const bool has_infinity = true;
|
||||
static const bool has_quiet_NaN = true;
|
||||
static const bool has_signaling_NaN = true;
|
||||
static const float_denorm_style has_denorm = denorm_present;
|
||||
static const bool has_denorm_loss = false;
|
||||
static const std::float_round_style round_style = std::round_to_nearest;
|
||||
static const bool is_iec559 = false;
|
||||
static const bool is_bounded = false;
|
||||
static const bool is_modulo = false;
|
||||
static const int digits = 11;
|
||||
static const int digits10 = 3; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
|
||||
static const int max_digits10 = 5; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
|
||||
static const int radix = 2;
|
||||
static const int min_exponent = -13;
|
||||
static const int min_exponent10 = -4;
|
||||
static const int max_exponent = 16;
|
||||
static const int max_exponent10 = 4;
|
||||
static const bool traps = true;
|
||||
static const bool tinyness_before = false;
|
||||
|
||||
static Eigen::half (min)() { return Eigen::half_impl::raw_uint16_to_half(0x400); }
|
||||
static Eigen::half lowest() { return Eigen::half_impl::raw_uint16_to_half(0xfbff); }
|
||||
static Eigen::half (max)() { return Eigen::half_impl::raw_uint16_to_half(0x7bff); }
|
||||
static Eigen::half epsilon() { return Eigen::half_impl::raw_uint16_to_half(0x0800); }
|
||||
static Eigen::half round_error() { return Eigen::half(0.5); }
|
||||
static Eigen::half infinity() { return Eigen::half_impl::raw_uint16_to_half(0x7c00); }
|
||||
static Eigen::half quiet_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); }
|
||||
static Eigen::half signaling_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); }
|
||||
static Eigen::half denorm_min() { return Eigen::half_impl::raw_uint16_to_half(0x1); }
|
||||
};
|
||||
}
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<> struct NumTraits<Eigen::half>
|
||||
: GenericNumTraits<Eigen::half>
|
||||
{
|
||||
enum {
|
||||
IsSigned = true,
|
||||
IsInteger = false,
|
||||
IsComplex = false,
|
||||
RequireInitialization = false
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half epsilon() {
|
||||
return half_impl::raw_uint16_to_half(0x0800);
|
||||
}
|
||||
@ -507,7 +573,7 @@ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half exph(const Eigen::half& a) {
|
||||
return Eigen::half(::expf(float(a)));
|
||||
}
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half logh(const Eigen::half& a) {
|
||||
#if defined __CUDACC_VER__ && __CUDACC_VER__ >= 80000 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
|
||||
#if EIGEN_CUDACC_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530
|
||||
return Eigen::half(::hlog(a));
|
||||
#else
|
||||
return Eigen::half(::logf(float(a)));
|
||||
|
@ -291,7 +291,7 @@ template<> EIGEN_DEVICE_FUNC inline double2 pabs<double2>(const double2& a) {
|
||||
|
||||
EIGEN_DEVICE_FUNC inline void
|
||||
ptranspose(PacketBlock<float4,4>& kernel) {
|
||||
double tmp = kernel.packet[0].y;
|
||||
float tmp = kernel.packet[0].y;
|
||||
kernel.packet[0].y = kernel.packet[1].x;
|
||||
kernel.packet[1].x = tmp;
|
||||
|
||||
|
@ -275,7 +275,7 @@ template<> __device__ EIGEN_STRONG_INLINE half2 plog1p<half2>(const half2& a) {
|
||||
return __floats2half2_rn(r1, r2);
|
||||
}
|
||||
|
||||
#if defined __CUDACC_VER__ && __CUDACC_VER__ >= 80000 && defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 530
|
||||
#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530
|
||||
|
||||
template<> __device__ EIGEN_STRONG_INLINE
|
||||
half2 plog<half2>(const half2& a) {
|
||||
|
29
xs/src/eigen/Eigen/src/Core/arch/Default/ConjHelper.h
Normal file
29
xs/src/eigen/Eigen/src/Core/arch/Default/ConjHelper.h
Normal file
@ -0,0 +1,29 @@
|
||||
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_ARCH_CONJ_HELPER_H
|
||||
#define EIGEN_ARCH_CONJ_HELPER_H
|
||||
|
||||
#define EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(PACKET_CPLX, PACKET_REAL) \
|
||||
template<> struct conj_helper<PACKET_REAL, PACKET_CPLX, false,false> { \
|
||||
EIGEN_STRONG_INLINE PACKET_CPLX pmadd(const PACKET_REAL& x, const PACKET_CPLX& y, const PACKET_CPLX& c) const \
|
||||
{ return padd(c, pmul(x,y)); } \
|
||||
EIGEN_STRONG_INLINE PACKET_CPLX pmul(const PACKET_REAL& x, const PACKET_CPLX& y) const \
|
||||
{ return PACKET_CPLX(Eigen::internal::pmul<PACKET_REAL>(x, y.v)); } \
|
||||
}; \
|
||||
\
|
||||
template<> struct conj_helper<PACKET_CPLX, PACKET_REAL, false,false> { \
|
||||
EIGEN_STRONG_INLINE PACKET_CPLX pmadd(const PACKET_CPLX& x, const PACKET_REAL& y, const PACKET_CPLX& c) const \
|
||||
{ return padd(c, pmul(x,y)); } \
|
||||
EIGEN_STRONG_INLINE PACKET_CPLX pmul(const PACKET_CPLX& x, const PACKET_REAL& y) const \
|
||||
{ return PACKET_CPLX(Eigen::internal::pmul<PACKET_REAL>(x.v, y)); } \
|
||||
};
|
||||
|
||||
#endif // EIGEN_ARCH_CONJ_HELPER_H
|
@ -67,7 +67,7 @@ template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type;
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
|
||||
{
|
||||
float32x2_t r64;
|
||||
r64 = vld1_f32((float *)&from);
|
||||
r64 = vld1_f32((const float *)&from);
|
||||
|
||||
return Packet2cf(vcombine_f32(r64, r64));
|
||||
}
|
||||
@ -142,7 +142,7 @@ template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf
|
||||
to[stride*1] = std::complex<float>(vgetq_lane_f32(from.v, 2), vgetq_lane_f32(from.v, 3));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { EIGEN_ARM_PREFETCH((float *)addr); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { EIGEN_ARM_PREFETCH((const float *)addr); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
|
||||
{
|
||||
@ -265,6 +265,8 @@ template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
|
||||
}
|
||||
};
|
||||
|
||||
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
|
||||
{
|
||||
// TODO optimize it for NEON
|
||||
@ -275,7 +277,7 @@ template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, con
|
||||
s = vmulq_f32(b.v, b.v);
|
||||
rev_s = vrev64q_f32(s);
|
||||
|
||||
return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s)));
|
||||
return Packet2cf(pdiv<Packet4f>(res.v, vaddq_f32(s,rev_s)));
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC inline void
|
||||
@ -381,7 +383,7 @@ template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<
|
||||
template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { EIGEN_ARM_PREFETCH((double *)addr); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { EIGEN_ARM_PREFETCH((const double *)addr); }
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(const std::complex<double>* from, Index stride)
|
||||
{
|
||||
@ -456,6 +458,8 @@ template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
|
||||
}
|
||||
};
|
||||
|
||||
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
|
||||
{
|
||||
// TODO optimize it for NEON
|
||||
|
@ -36,12 +36,43 @@ namespace internal {
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if EIGEN_COMP_MSVC
|
||||
|
||||
// In MSVC's arm_neon.h header file, all NEON vector types
|
||||
// are aliases to the same underlying type __n128.
|
||||
// We thus have to wrap them to make them different C++ types.
|
||||
// (See also bug 1428)
|
||||
|
||||
template<typename T,int unique_id>
|
||||
struct eigen_packet_wrapper
|
||||
{
|
||||
operator T&() { return m_val; }
|
||||
operator const T&() const { return m_val; }
|
||||
eigen_packet_wrapper() {}
|
||||
eigen_packet_wrapper(const T &v) : m_val(v) {}
|
||||
eigen_packet_wrapper& operator=(const T &v) {
|
||||
m_val = v;
|
||||
return *this;
|
||||
}
|
||||
|
||||
T m_val;
|
||||
};
|
||||
typedef eigen_packet_wrapper<float32x2_t,0> Packet2f;
|
||||
typedef eigen_packet_wrapper<float32x4_t,1> Packet4f;
|
||||
typedef eigen_packet_wrapper<int32x4_t ,2> Packet4i;
|
||||
typedef eigen_packet_wrapper<int32x2_t ,3> Packet2i;
|
||||
typedef eigen_packet_wrapper<uint32x4_t ,4> Packet4ui;
|
||||
|
||||
#else
|
||||
|
||||
typedef float32x2_t Packet2f;
|
||||
typedef float32x4_t Packet4f;
|
||||
typedef int32x4_t Packet4i;
|
||||
typedef int32x2_t Packet2i;
|
||||
typedef uint32x4_t Packet4ui;
|
||||
|
||||
#endif // EIGEN_COMP_MSVC
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
|
||||
const Packet4f p4f_##NAME = pset1<Packet4f>(X)
|
||||
|
||||
@ -51,14 +82,17 @@ typedef uint32x4_t Packet4ui;
|
||||
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
|
||||
const Packet4i p4i_##NAME = pset1<Packet4i>(X)
|
||||
|
||||
// arm64 does have the pld instruction. If available, let's trust the __builtin_prefetch built-in function
|
||||
// which available on LLVM and GCC (at least)
|
||||
#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC
|
||||
#if EIGEN_ARCH_ARM64
|
||||
// __builtin_prefetch tends to do nothing on ARM64 compilers because the
|
||||
// prefetch instructions there are too detailed for __builtin_prefetch to map
|
||||
// meaningfully to them.
|
||||
#define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__("prfm pldl1keep, [%[addr]]\n" ::[addr] "r"(ADDR) : );
|
||||
#elif EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC
|
||||
#define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR);
|
||||
#elif defined __pld
|
||||
#define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR)
|
||||
#elif !EIGEN_ARCH_ARM64
|
||||
#define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ( " pld [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
|
||||
#elif EIGEN_ARCH_ARM32
|
||||
#define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ("pld [%[addr]]\n" :: [addr] "r" (ADDR) : );
|
||||
#else
|
||||
// by default no explicit prefetching
|
||||
#define EIGEN_ARM_PREFETCH(ADDR)
|
||||
@ -113,7 +147,7 @@ template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int32_t& from)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f plset<Packet4f>(const float& a)
|
||||
{
|
||||
const float32_t f[] = {0, 1, 2, 3};
|
||||
const float f[] = {0, 1, 2, 3};
|
||||
Packet4f countdown = vld1q_f32(f);
|
||||
return vaddq_f32(pset1<Packet4f>(a), countdown);
|
||||
}
|
||||
|
@ -128,7 +128,7 @@ template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf
|
||||
_mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 3)));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
|
||||
{
|
||||
@ -229,23 +229,7 @@ template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet4f, Packet2cf, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet4f& x, const Packet2cf& y, const Packet2cf& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet4f& x, const Packet2cf& y) const
|
||||
{ return Packet2cf(Eigen::internal::pmul<Packet4f>(x, y.v)); }
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2cf, Packet4f, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet4f& y, const Packet2cf& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& x, const Packet4f& y) const
|
||||
{ return Packet2cf(Eigen::internal::pmul<Packet4f>(x.v, y)); }
|
||||
};
|
||||
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
|
||||
{
|
||||
@ -340,7 +324,7 @@ template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<
|
||||
template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, Packet2d(from.v)); }
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, Packet2d(from.v)); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a)
|
||||
{
|
||||
@ -430,23 +414,7 @@ template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet2d, Packet1cd, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet2d& x, const Packet1cd& y, const Packet1cd& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet2d& x, const Packet1cd& y) const
|
||||
{ return Packet1cd(Eigen::internal::pmul<Packet2d>(x, y.v)); }
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet1cd, Packet2d, false,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet2d& y, const Packet1cd& c) const
|
||||
{ return padd(c, pmul(x,y)); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& x, const Packet2d& y) const
|
||||
{ return Packet1cd(Eigen::internal::pmul<Packet2d>(x.v, y)); }
|
||||
};
|
||||
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
|
||||
{
|
||||
|
@ -409,10 +409,16 @@ template<> EIGEN_STRONG_INLINE void pstore1<Packet2d>(double* to, const double&
|
||||
pstore(to, Packet2d(vec2d_swizzle1(pa,0,0)));
|
||||
}
|
||||
|
||||
#if EIGEN_COMP_PGI
|
||||
typedef const void * SsePrefetchPtrType;
|
||||
#else
|
||||
typedef const char * SsePrefetchPtrType;
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_VECTORIZE_AVX
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
|
||||
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); }
|
||||
#endif
|
||||
|
||||
#if EIGEN_COMP_MSVC_STRICT && EIGEN_OS_WIN64
|
||||
@ -876,4 +882,14 @@ template<> EIGEN_STRONG_INLINE double pmadd(const double& a, const double& b, co
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#if EIGEN_COMP_PGI
|
||||
// PGI++ does not define the following intrinsics in C++ mode.
|
||||
static inline __m128 _mm_castpd_ps (__m128d x) { return reinterpret_cast<__m128&>(x); }
|
||||
static inline __m128i _mm_castpd_si128(__m128d x) { return reinterpret_cast<__m128i&>(x); }
|
||||
static inline __m128d _mm_castps_pd (__m128 x) { return reinterpret_cast<__m128d&>(x); }
|
||||
static inline __m128i _mm_castps_si128(__m128 x) { return reinterpret_cast<__m128i&>(x); }
|
||||
static inline __m128 _mm_castsi128_ps(__m128i x) { return reinterpret_cast<__m128&>(x); }
|
||||
static inline __m128d _mm_castsi128_pd(__m128i x) { return reinterpret_cast<__m128d&>(x); }
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_PACKET_MATH_SSE_H
|
||||
|
@ -14,6 +14,7 @@ namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
#ifndef EIGEN_VECTORIZE_AVX
|
||||
template <>
|
||||
struct type_casting_traits<float, int> {
|
||||
enum {
|
||||
@ -23,11 +24,6 @@ struct type_casting_traits<float, int> {
|
||||
};
|
||||
};
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pcast<Packet4f, Packet4i>(const Packet4f& a) {
|
||||
return _mm_cvttps_epi32(a);
|
||||
}
|
||||
|
||||
|
||||
template <>
|
||||
struct type_casting_traits<int, float> {
|
||||
enum {
|
||||
@ -37,11 +33,6 @@ struct type_casting_traits<int, float> {
|
||||
};
|
||||
};
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pcast<Packet4i, Packet4f>(const Packet4i& a) {
|
||||
return _mm_cvtepi32_ps(a);
|
||||
}
|
||||
|
||||
|
||||
template <>
|
||||
struct type_casting_traits<double, float> {
|
||||
enum {
|
||||
@ -51,10 +42,6 @@ struct type_casting_traits<double, float> {
|
||||
};
|
||||
};
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pcast<Packet2d, Packet4f>(const Packet2d& a, const Packet2d& b) {
|
||||
return _mm_shuffle_ps(_mm_cvtpd_ps(a), _mm_cvtpd_ps(b), (1 << 2) | (1 << 6));
|
||||
}
|
||||
|
||||
template <>
|
||||
struct type_casting_traits<float, double> {
|
||||
enum {
|
||||
@ -63,6 +50,19 @@ struct type_casting_traits<float, double> {
|
||||
TgtCoeffRatio = 2
|
||||
};
|
||||
};
|
||||
#endif
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4i pcast<Packet4f, Packet4i>(const Packet4f& a) {
|
||||
return _mm_cvttps_epi32(a);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pcast<Packet4i, Packet4f>(const Packet4i& a) {
|
||||
return _mm_cvtepi32_ps(a);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f pcast<Packet2d, Packet4f>(const Packet2d& a, const Packet2d& b) {
|
||||
return _mm_shuffle_ps(_mm_cvtpd_ps(a), _mm_cvtpd_ps(b), (1 << 2) | (1 << 6));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2d pcast<Packet4f, Packet2d>(const Packet4f& a) {
|
||||
// Simply discard the second half of the input
|
||||
|
@ -336,6 +336,9 @@ template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
|
||||
}
|
||||
};
|
||||
|
||||
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f)
|
||||
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
|
||||
{
|
||||
// TODO optimize it for AltiVec
|
||||
|
@ -255,7 +255,7 @@ struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_NEQ> : binary_op_base<LhsScalar,Rh
|
||||
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the hypot of two scalars
|
||||
* \brief Template functor to compute the hypot of two \b positive \b and \b real scalars
|
||||
*
|
||||
* \sa MatrixBase::stableNorm(), class Redux
|
||||
*/
|
||||
@ -263,22 +263,15 @@ template<typename Scalar>
|
||||
struct scalar_hypot_op<Scalar,Scalar> : binary_op_base<Scalar,Scalar>
|
||||
{
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
|
||||
// typedef typename NumTraits<Scalar>::Real result_type;
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar &x, const Scalar &y) const
|
||||
{
|
||||
EIGEN_USING_STD_MATH(sqrt)
|
||||
Scalar p, qp;
|
||||
if(_x>_y)
|
||||
{
|
||||
p = _x;
|
||||
qp = _y / p;
|
||||
}
|
||||
else
|
||||
{
|
||||
p = _y;
|
||||
qp = _x / p;
|
||||
}
|
||||
return p * sqrt(Scalar(1) + qp*qp);
|
||||
// This functor is used by hypotNorm only for which it is faster to first apply abs
|
||||
// on all coefficients prior to reduction through hypot.
|
||||
// This way we avoid calling abs on positive and real entries, and this also permits
|
||||
// to seamlessly handle complexes. Otherwise we would have to handle both real and complexes
|
||||
// through the same functor...
|
||||
return internal::positive_real_hypot(x,y);
|
||||
}
|
||||
};
|
||||
template<typename Scalar>
|
||||
|
@ -44,16 +44,16 @@ struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/false>
|
||||
{
|
||||
linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
|
||||
m_low(low), m_high(high), m_size1(num_steps==1 ? 1 : num_steps-1), m_step(num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1)),
|
||||
m_interPacket(plset<Packet>(0)),
|
||||
m_flip(numext::abs(high)<numext::abs(low))
|
||||
{}
|
||||
|
||||
template<typename IndexType>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const {
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
if(m_flip)
|
||||
return (i==0)? m_low : (m_high - (m_size1-i)*m_step);
|
||||
return (i==0)? m_low : (m_high - RealScalar(m_size1-i)*m_step);
|
||||
else
|
||||
return (i==m_size1)? m_high : (m_low + i*m_step);
|
||||
return (i==m_size1)? m_high : (m_low + RealScalar(i)*m_step);
|
||||
}
|
||||
|
||||
template<typename IndexType>
|
||||
@ -63,7 +63,7 @@ struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/false>
|
||||
// [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
|
||||
if(m_flip)
|
||||
{
|
||||
Packet pi = padd(pset1<Packet>(Scalar(i-m_size1)),m_interPacket);
|
||||
Packet pi = plset<Packet>(Scalar(i-m_size1));
|
||||
Packet res = padd(pset1<Packet>(m_high), pmul(pset1<Packet>(m_step), pi));
|
||||
if(i==0)
|
||||
res = pinsertfirst(res, m_low);
|
||||
@ -71,7 +71,7 @@ struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/false>
|
||||
}
|
||||
else
|
||||
{
|
||||
Packet pi = padd(pset1<Packet>(Scalar(i)),m_interPacket);
|
||||
Packet pi = plset<Packet>(Scalar(i));
|
||||
Packet res = padd(pset1<Packet>(m_low), pmul(pset1<Packet>(m_step), pi));
|
||||
if(i==m_size1-unpacket_traits<Packet>::size+1)
|
||||
res = pinsertlast(res, m_high);
|
||||
@ -83,7 +83,6 @@ struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/false>
|
||||
const Scalar m_high;
|
||||
const Index m_size1;
|
||||
const Scalar m_step;
|
||||
const Packet m_interPacket;
|
||||
const bool m_flip;
|
||||
};
|
||||
|
||||
|
@ -83,13 +83,17 @@ struct functor_traits<std::binder1st<T> >
|
||||
{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
|
||||
#endif
|
||||
|
||||
#if (__cplusplus < 201703L) && (EIGEN_COMP_MSVC < 1910)
|
||||
// std::unary_negate is deprecated since c++17 and will be removed in c++20
|
||||
template<typename T>
|
||||
struct functor_traits<std::unary_negate<T> >
|
||||
{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
|
||||
|
||||
// std::binary_negate is deprecated since c++17 and will be removed in c++20
|
||||
template<typename T>
|
||||
struct functor_traits<std::binary_negate<T> >
|
||||
{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_STDEXT_SUPPORT
|
||||
|
||||
|
@ -269,10 +269,13 @@ struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false>
|
||||
enum {
|
||||
IsRowMajor = (internal::traits<MatrixType>::Flags&RowMajorBit) ? 1 : 0,
|
||||
LhsIsRowMajor = _ActualLhs::Flags&RowMajorBit ? 1 : 0,
|
||||
RhsIsRowMajor = _ActualRhs::Flags&RowMajorBit ? 1 : 0
|
||||
RhsIsRowMajor = _ActualRhs::Flags&RowMajorBit ? 1 : 0,
|
||||
SkipDiag = (UpLo&(UnitDiag|ZeroDiag))!=0
|
||||
};
|
||||
|
||||
Index size = mat.cols();
|
||||
if(SkipDiag)
|
||||
size--;
|
||||
Index depth = actualLhs.cols();
|
||||
|
||||
typedef internal::gemm_blocking_space<IsRowMajor ? RowMajor : ColMajor,typename Lhs::Scalar,typename Rhs::Scalar,
|
||||
@ -283,10 +286,11 @@ struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false>
|
||||
internal::general_matrix_matrix_triangular_product<Index,
|
||||
typename Lhs::Scalar, LhsIsRowMajor ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
|
||||
typename Rhs::Scalar, RhsIsRowMajor ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
|
||||
IsRowMajor ? RowMajor : ColMajor, UpLo>
|
||||
IsRowMajor ? RowMajor : ColMajor, UpLo&(Lower|Upper)>
|
||||
::run(size, depth,
|
||||
&actualLhs.coeffRef(0,0), actualLhs.outerStride(), &actualRhs.coeffRef(0,0), actualRhs.outerStride(),
|
||||
mat.data(), mat.outerStride(), actualAlpha, blocking);
|
||||
&actualLhs.coeffRef(SkipDiag&&(UpLo&Lower)==Lower ? 1 : 0,0), actualLhs.outerStride(),
|
||||
&actualRhs.coeffRef(0,SkipDiag&&(UpLo&Upper)==Upper ? 1 : 0), actualRhs.outerStride(),
|
||||
mat.data() + (SkipDiag ? (bool(IsRowMajor) != ((UpLo&Lower)==Lower) ? 1 : mat.outerStride() ) : 0), mat.outerStride(), actualAlpha, blocking);
|
||||
}
|
||||
};
|
||||
|
||||
@ -294,6 +298,7 @@ template<typename MatrixType, unsigned int UpLo>
|
||||
template<typename ProductType>
|
||||
TriangularView<MatrixType,UpLo>& TriangularViewImpl<MatrixType,UpLo,Dense>::_assignProduct(const ProductType& prod, const Scalar& alpha, bool beta)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((UpLo&UnitDiag)==0, WRITING_TO_TRIANGULAR_PART_WITH_UNIT_DIAGONAL_IS_NOT_SUPPORTED);
|
||||
eigen_assert(derived().nestedExpression().rows() == prod.rows() && derived().cols() == prod.cols());
|
||||
|
||||
general_product_to_triangular_selector<MatrixType, ProductType, UpLo, internal::traits<ProductType>::InnerSize==1>::run(derived().nestedExpression().const_cast_derived(), prod, alpha, beta);
|
||||
|
@ -52,7 +52,7 @@ struct general_matrix_matrix_triangular_product<Index,Scalar,LhsStorageOrder,Con
|
||||
static EIGEN_STRONG_INLINE void run(Index size, Index depth,const Scalar* lhs, Index lhsStride, \
|
||||
const Scalar* rhs, Index rhsStride, Scalar* res, Index resStride, Scalar alpha, level3_blocking<Scalar, Scalar>& blocking) \
|
||||
{ \
|
||||
if (lhs==rhs) { \
|
||||
if ( lhs==rhs && ((UpLo&(Lower|Upper)==UpLo)) ) { \
|
||||
general_matrix_matrix_rankupdate<Index,Scalar,LhsStorageOrder,ConjugateLhs,ColMajor,UpLo> \
|
||||
::run(size,depth,lhs,lhsStride,rhs,rhsStride,res,resStride,alpha,blocking); \
|
||||
} else { \
|
||||
@ -88,7 +88,7 @@ struct general_matrix_matrix_rankupdate<Index,EIGTYPE,AStorageOrder,ConjugateA,C
|
||||
BlasIndex lda=convert_index<BlasIndex>(lhsStride), ldc=convert_index<BlasIndex>(resStride), n=convert_index<BlasIndex>(size), k=convert_index<BlasIndex>(depth); \
|
||||
char uplo=((IsLower) ? 'L' : 'U'), trans=((AStorageOrder==RowMajor) ? 'T':'N'); \
|
||||
EIGTYPE beta(1); \
|
||||
BLASFUNC(&uplo, &trans, &n, &k, &numext::real_ref(alpha), lhs, &lda, &numext::real_ref(beta), res, &ldc); \
|
||||
BLASFUNC(&uplo, &trans, &n, &k, (const BLASTYPE*)&numext::real_ref(alpha), lhs, &lda, (const BLASTYPE*)&numext::real_ref(beta), res, &ldc); \
|
||||
} \
|
||||
};
|
||||
|
||||
@ -125,9 +125,13 @@ struct general_matrix_matrix_rankupdate<Index,EIGTYPE,AStorageOrder,ConjugateA,C
|
||||
} \
|
||||
};
|
||||
|
||||
|
||||
#ifdef EIGEN_USE_MKL
|
||||
EIGEN_BLAS_RANKUPDATE_R(double, double, dsyrk)
|
||||
EIGEN_BLAS_RANKUPDATE_R(float, float, ssyrk)
|
||||
#else
|
||||
EIGEN_BLAS_RANKUPDATE_R(double, double, dsyrk_)
|
||||
EIGEN_BLAS_RANKUPDATE_R(float, float, ssyrk_)
|
||||
#endif
|
||||
|
||||
// TODO hanlde complex cases
|
||||
// EIGEN_BLAS_RANKUPDATE_C(dcomplex, double, double, zherk_)
|
||||
|
@ -46,7 +46,7 @@ namespace internal {
|
||||
|
||||
// gemm specialization
|
||||
|
||||
#define GEMM_SPECIALIZATION(EIGTYPE, EIGPREFIX, BLASTYPE, BLASPREFIX) \
|
||||
#define GEMM_SPECIALIZATION(EIGTYPE, EIGPREFIX, BLASTYPE, BLASFUNC) \
|
||||
template< \
|
||||
typename Index, \
|
||||
int LhsStorageOrder, bool ConjugateLhs, \
|
||||
@ -100,13 +100,20 @@ static void run(Index rows, Index cols, Index depth, \
|
||||
ldb = convert_index<BlasIndex>(b_tmp.outerStride()); \
|
||||
} else b = _rhs; \
|
||||
\
|
||||
BLASPREFIX##gemm_(&transa, &transb, &m, &n, &k, &numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, &numext::real_ref(beta), (BLASTYPE*)res, &ldc); \
|
||||
BLASFUNC(&transa, &transb, &m, &n, &k, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \
|
||||
}};
|
||||
|
||||
GEMM_SPECIALIZATION(double, d, double, d)
|
||||
GEMM_SPECIALIZATION(float, f, float, s)
|
||||
GEMM_SPECIALIZATION(dcomplex, cd, double, z)
|
||||
GEMM_SPECIALIZATION(scomplex, cf, float, c)
|
||||
#ifdef EIGEN_USE_MKL
|
||||
GEMM_SPECIALIZATION(double, d, double, dgemm)
|
||||
GEMM_SPECIALIZATION(float, f, float, sgemm)
|
||||
GEMM_SPECIALIZATION(dcomplex, cd, MKL_Complex16, zgemm)
|
||||
GEMM_SPECIALIZATION(scomplex, cf, MKL_Complex8, cgemm)
|
||||
#else
|
||||
GEMM_SPECIALIZATION(double, d, double, dgemm_)
|
||||
GEMM_SPECIALIZATION(float, f, float, sgemm_)
|
||||
GEMM_SPECIALIZATION(dcomplex, cd, double, zgemm_)
|
||||
GEMM_SPECIALIZATION(scomplex, cf, float, cgemm_)
|
||||
#endif
|
||||
|
||||
} // end namespase internal
|
||||
|
||||
|
@ -183,8 +183,8 @@ EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,LhsMapper,C
|
||||
alignmentPattern = AllAligned;
|
||||
}
|
||||
|
||||
const Index offset1 = (FirstAligned && alignmentStep==1)?3:1;
|
||||
const Index offset3 = (FirstAligned && alignmentStep==1)?1:3;
|
||||
const Index offset1 = (alignmentPattern==FirstAligned && alignmentStep==1)?3:1;
|
||||
const Index offset3 = (alignmentPattern==FirstAligned && alignmentStep==1)?1:3;
|
||||
|
||||
Index columnBound = ((cols-skipColumns)/columnsAtOnce)*columnsAtOnce + skipColumns;
|
||||
for (Index i=skipColumns; i<columnBound; i+=columnsAtOnce)
|
||||
@ -457,8 +457,8 @@ EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,LhsMapper,R
|
||||
alignmentPattern = AllAligned;
|
||||
}
|
||||
|
||||
const Index offset1 = (FirstAligned && alignmentStep==1)?3:1;
|
||||
const Index offset3 = (FirstAligned && alignmentStep==1)?1:3;
|
||||
const Index offset1 = (alignmentPattern==FirstAligned && alignmentStep==1)?3:1;
|
||||
const Index offset3 = (alignmentPattern==FirstAligned && alignmentStep==1)?1:3;
|
||||
|
||||
Index rowBound = ((rows-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows;
|
||||
for (Index i=skipRows; i<rowBound; i+=rowsAtOnce)
|
||||
|
@ -85,7 +85,7 @@ EIGEN_BLAS_GEMV_SPECIALIZE(float)
|
||||
EIGEN_BLAS_GEMV_SPECIALIZE(dcomplex)
|
||||
EIGEN_BLAS_GEMV_SPECIALIZE(scomplex)
|
||||
|
||||
#define EIGEN_BLAS_GEMV_SPECIALIZATION(EIGTYPE,BLASTYPE,BLASPREFIX) \
|
||||
#define EIGEN_BLAS_GEMV_SPECIALIZATION(EIGTYPE,BLASTYPE,BLASFUNC) \
|
||||
template<typename Index, int LhsStorageOrder, bool ConjugateLhs, bool ConjugateRhs> \
|
||||
struct general_matrix_vector_product_gemv<Index,EIGTYPE,LhsStorageOrder,ConjugateLhs,EIGTYPE,ConjugateRhs> \
|
||||
{ \
|
||||
@ -113,14 +113,21 @@ static void run( \
|
||||
x_ptr=x_tmp.data(); \
|
||||
incx=1; \
|
||||
} else x_ptr=rhs; \
|
||||
BLASPREFIX##gemv_(&trans, &m, &n, &numext::real_ref(alpha), (const BLASTYPE*)lhs, &lda, (const BLASTYPE*)x_ptr, &incx, &numext::real_ref(beta), (BLASTYPE*)res, &incy); \
|
||||
BLASFUNC(&trans, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)lhs, &lda, (const BLASTYPE*)x_ptr, &incx, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &incy); \
|
||||
}\
|
||||
};
|
||||
|
||||
EIGEN_BLAS_GEMV_SPECIALIZATION(double, double, d)
|
||||
EIGEN_BLAS_GEMV_SPECIALIZATION(float, float, s)
|
||||
EIGEN_BLAS_GEMV_SPECIALIZATION(dcomplex, double, z)
|
||||
EIGEN_BLAS_GEMV_SPECIALIZATION(scomplex, float, c)
|
||||
#ifdef EIGEN_USE_MKL
|
||||
EIGEN_BLAS_GEMV_SPECIALIZATION(double, double, dgemv)
|
||||
EIGEN_BLAS_GEMV_SPECIALIZATION(float, float, sgemv)
|
||||
EIGEN_BLAS_GEMV_SPECIALIZATION(dcomplex, MKL_Complex16, zgemv)
|
||||
EIGEN_BLAS_GEMV_SPECIALIZATION(scomplex, MKL_Complex8 , cgemv)
|
||||
#else
|
||||
EIGEN_BLAS_GEMV_SPECIALIZATION(double, double, dgemv_)
|
||||
EIGEN_BLAS_GEMV_SPECIALIZATION(float, float, sgemv_)
|
||||
EIGEN_BLAS_GEMV_SPECIALIZATION(dcomplex, double, zgemv_)
|
||||
EIGEN_BLAS_GEMV_SPECIALIZATION(scomplex, float, cgemv_)
|
||||
#endif
|
||||
|
||||
} // end namespase internal
|
||||
|
||||
|
@ -40,7 +40,7 @@ namespace internal {
|
||||
|
||||
/* Optimized selfadjoint matrix * matrix (?SYMM/?HEMM) product */
|
||||
|
||||
#define EIGEN_BLAS_SYMM_L(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX) \
|
||||
#define EIGEN_BLAS_SYMM_L(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \
|
||||
template <typename Index, \
|
||||
int LhsStorageOrder, bool ConjugateLhs, \
|
||||
int RhsStorageOrder, bool ConjugateRhs> \
|
||||
@ -81,13 +81,13 @@ struct product_selfadjoint_matrix<EIGTYPE,Index,LhsStorageOrder,true,ConjugateLh
|
||||
ldb = convert_index<BlasIndex>(b_tmp.outerStride()); \
|
||||
} else b = _rhs; \
|
||||
\
|
||||
BLASPREFIX##symm_(&side, &uplo, &m, &n, &numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, &numext::real_ref(beta), (BLASTYPE*)res, &ldc); \
|
||||
BLASFUNC(&side, &uplo, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \
|
||||
\
|
||||
} \
|
||||
};
|
||||
|
||||
|
||||
#define EIGEN_BLAS_HEMM_L(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX) \
|
||||
#define EIGEN_BLAS_HEMM_L(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \
|
||||
template <typename Index, \
|
||||
int LhsStorageOrder, bool ConjugateLhs, \
|
||||
int RhsStorageOrder, bool ConjugateRhs> \
|
||||
@ -144,20 +144,26 @@ struct product_selfadjoint_matrix<EIGTYPE,Index,LhsStorageOrder,true,ConjugateLh
|
||||
ldb = convert_index<BlasIndex>(b_tmp.outerStride()); \
|
||||
} \
|
||||
\
|
||||
BLASPREFIX##hemm_(&side, &uplo, &m, &n, &numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, &numext::real_ref(beta), (BLASTYPE*)res, &ldc); \
|
||||
BLASFUNC(&side, &uplo, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \
|
||||
\
|
||||
} \
|
||||
};
|
||||
|
||||
EIGEN_BLAS_SYMM_L(double, double, d, d)
|
||||
EIGEN_BLAS_SYMM_L(float, float, f, s)
|
||||
EIGEN_BLAS_HEMM_L(dcomplex, double, cd, z)
|
||||
EIGEN_BLAS_HEMM_L(scomplex, float, cf, c)
|
||||
|
||||
#ifdef EIGEN_USE_MKL
|
||||
EIGEN_BLAS_SYMM_L(double, double, d, dsymm)
|
||||
EIGEN_BLAS_SYMM_L(float, float, f, ssymm)
|
||||
EIGEN_BLAS_HEMM_L(dcomplex, MKL_Complex16, cd, zhemm)
|
||||
EIGEN_BLAS_HEMM_L(scomplex, MKL_Complex8, cf, chemm)
|
||||
#else
|
||||
EIGEN_BLAS_SYMM_L(double, double, d, dsymm_)
|
||||
EIGEN_BLAS_SYMM_L(float, float, f, ssymm_)
|
||||
EIGEN_BLAS_HEMM_L(dcomplex, double, cd, zhemm_)
|
||||
EIGEN_BLAS_HEMM_L(scomplex, float, cf, chemm_)
|
||||
#endif
|
||||
|
||||
/* Optimized matrix * selfadjoint matrix (?SYMM/?HEMM) product */
|
||||
|
||||
#define EIGEN_BLAS_SYMM_R(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX) \
|
||||
#define EIGEN_BLAS_SYMM_R(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \
|
||||
template <typename Index, \
|
||||
int LhsStorageOrder, bool ConjugateLhs, \
|
||||
int RhsStorageOrder, bool ConjugateRhs> \
|
||||
@ -197,13 +203,13 @@ struct product_selfadjoint_matrix<EIGTYPE,Index,LhsStorageOrder,false,ConjugateL
|
||||
ldb = convert_index<BlasIndex>(b_tmp.outerStride()); \
|
||||
} else b = _lhs; \
|
||||
\
|
||||
BLASPREFIX##symm_(&side, &uplo, &m, &n, &numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, &numext::real_ref(beta), (BLASTYPE*)res, &ldc); \
|
||||
BLASFUNC(&side, &uplo, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \
|
||||
\
|
||||
} \
|
||||
};
|
||||
|
||||
|
||||
#define EIGEN_BLAS_HEMM_R(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX) \
|
||||
#define EIGEN_BLAS_HEMM_R(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \
|
||||
template <typename Index, \
|
||||
int LhsStorageOrder, bool ConjugateLhs, \
|
||||
int RhsStorageOrder, bool ConjugateRhs> \
|
||||
@ -259,15 +265,21 @@ struct product_selfadjoint_matrix<EIGTYPE,Index,LhsStorageOrder,false,ConjugateL
|
||||
ldb = convert_index<BlasIndex>(b_tmp.outerStride()); \
|
||||
} \
|
||||
\
|
||||
BLASPREFIX##hemm_(&side, &uplo, &m, &n, &numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, &numext::real_ref(beta), (BLASTYPE*)res, &ldc); \
|
||||
BLASFUNC(&side, &uplo, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \
|
||||
} \
|
||||
};
|
||||
|
||||
EIGEN_BLAS_SYMM_R(double, double, d, d)
|
||||
EIGEN_BLAS_SYMM_R(float, float, f, s)
|
||||
EIGEN_BLAS_HEMM_R(dcomplex, double, cd, z)
|
||||
EIGEN_BLAS_HEMM_R(scomplex, float, cf, c)
|
||||
|
||||
#ifdef EIGEN_USE_MKL
|
||||
EIGEN_BLAS_SYMM_R(double, double, d, dsymm)
|
||||
EIGEN_BLAS_SYMM_R(float, float, f, ssymm)
|
||||
EIGEN_BLAS_HEMM_R(dcomplex, MKL_Complex16, cd, zhemm)
|
||||
EIGEN_BLAS_HEMM_R(scomplex, MKL_Complex8, cf, chemm)
|
||||
#else
|
||||
EIGEN_BLAS_SYMM_R(double, double, d, dsymm_)
|
||||
EIGEN_BLAS_SYMM_R(float, float, f, ssymm_)
|
||||
EIGEN_BLAS_HEMM_R(dcomplex, double, cd, zhemm_)
|
||||
EIGEN_BLAS_HEMM_R(scomplex, float, cf, chemm_)
|
||||
#endif
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
@ -95,14 +95,21 @@ const EIGTYPE* _rhs, EIGTYPE* res, EIGTYPE alpha) \
|
||||
x_tmp=map_x.conjugate(); \
|
||||
x_ptr=x_tmp.data(); \
|
||||
} else x_ptr=_rhs; \
|
||||
BLASFUNC(&uplo, &n, &numext::real_ref(alpha), (const BLASTYPE*)lhs, &lda, (const BLASTYPE*)x_ptr, &incx, &numext::real_ref(beta), (BLASTYPE*)res, &incy); \
|
||||
BLASFUNC(&uplo, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)lhs, &lda, (const BLASTYPE*)x_ptr, &incx, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &incy); \
|
||||
}\
|
||||
};
|
||||
|
||||
#ifdef EIGEN_USE_MKL
|
||||
EIGEN_BLAS_SYMV_SPECIALIZATION(double, double, dsymv)
|
||||
EIGEN_BLAS_SYMV_SPECIALIZATION(float, float, ssymv)
|
||||
EIGEN_BLAS_SYMV_SPECIALIZATION(dcomplex, MKL_Complex16, zhemv)
|
||||
EIGEN_BLAS_SYMV_SPECIALIZATION(scomplex, MKL_Complex8, chemv)
|
||||
#else
|
||||
EIGEN_BLAS_SYMV_SPECIALIZATION(double, double, dsymv_)
|
||||
EIGEN_BLAS_SYMV_SPECIALIZATION(float, float, ssymv_)
|
||||
EIGEN_BLAS_SYMV_SPECIALIZATION(dcomplex, double, zhemv_)
|
||||
EIGEN_BLAS_SYMV_SPECIALIZATION(scomplex, float, chemv_)
|
||||
#endif
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
|
@ -137,7 +137,13 @@ EIGEN_DONT_INLINE void product_triangular_matrix_matrix<Scalar,Index,Mode,true,
|
||||
ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
|
||||
ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
|
||||
|
||||
Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,LhsStorageOrder> triangularBuffer((internal::constructor_without_unaligned_array_assert()));
|
||||
// To work around an "error: member reference base type 'Matrix<...>
|
||||
// (Eigen::internal::constructor_without_unaligned_array_assert (*)())' is
|
||||
// not a structure or union" compilation error in nvcc (tested V8.0.61),
|
||||
// create a dummy internal::constructor_without_unaligned_array_assert
|
||||
// object to pass to the Matrix constructor.
|
||||
internal::constructor_without_unaligned_array_assert a;
|
||||
Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,LhsStorageOrder> triangularBuffer(a);
|
||||
triangularBuffer.setZero();
|
||||
if((Mode&ZeroDiag)==ZeroDiag)
|
||||
triangularBuffer.diagonal().setZero();
|
||||
@ -284,7 +290,8 @@ EIGEN_DONT_INLINE void product_triangular_matrix_matrix<Scalar,Index,Mode,false,
|
||||
ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
|
||||
ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
|
||||
|
||||
Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,RhsStorageOrder> triangularBuffer((internal::constructor_without_unaligned_array_assert()));
|
||||
internal::constructor_without_unaligned_array_assert a;
|
||||
Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,RhsStorageOrder> triangularBuffer(a);
|
||||
triangularBuffer.setZero();
|
||||
if((Mode&ZeroDiag)==ZeroDiag)
|
||||
triangularBuffer.diagonal().setZero();
|
||||
@ -393,7 +400,9 @@ struct triangular_product_impl<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
|
||||
{
|
||||
template<typename Dest> static void run(Dest& dst, const Lhs &a_lhs, const Rhs &a_rhs, const typename Dest::Scalar& alpha)
|
||||
{
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
typedef typename Lhs::Scalar LhsScalar;
|
||||
typedef typename Rhs::Scalar RhsScalar;
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
|
||||
typedef internal::blas_traits<Lhs> LhsBlasTraits;
|
||||
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
|
||||
@ -405,8 +414,9 @@ struct triangular_product_impl<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
|
||||
typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
|
||||
typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
|
||||
|
||||
Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
|
||||
* RhsBlasTraits::extractScalarFactor(a_rhs);
|
||||
LhsScalar lhs_alpha = LhsBlasTraits::extractScalarFactor(a_lhs);
|
||||
RhsScalar rhs_alpha = RhsBlasTraits::extractScalarFactor(a_rhs);
|
||||
Scalar actualAlpha = alpha * lhs_alpha * rhs_alpha;
|
||||
|
||||
typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar,
|
||||
Lhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxColsAtCompileTime,4> BlockingType;
|
||||
@ -431,6 +441,21 @@ struct triangular_product_impl<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
|
||||
&dst.coeffRef(0,0), dst.outerStride(), // result info
|
||||
actualAlpha, blocking
|
||||
);
|
||||
|
||||
// Apply correction if the diagonal is unit and a scalar factor was nested:
|
||||
if ((Mode&UnitDiag)==UnitDiag)
|
||||
{
|
||||
if (LhsIsTriangular && lhs_alpha!=LhsScalar(1))
|
||||
{
|
||||
Index diagSize = (std::min)(lhs.rows(),lhs.cols());
|
||||
dst.topRows(diagSize) -= ((lhs_alpha-LhsScalar(1))*a_rhs).topRows(diagSize);
|
||||
}
|
||||
else if ((!LhsIsTriangular) && rhs_alpha!=RhsScalar(1))
|
||||
{
|
||||
Index diagSize = (std::min)(rhs.rows(),rhs.cols());
|
||||
dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -75,7 +75,7 @@ EIGEN_BLAS_TRMM_SPECIALIZE(scomplex, true)
|
||||
EIGEN_BLAS_TRMM_SPECIALIZE(scomplex, false)
|
||||
|
||||
// implements col-major += alpha * op(triangular) * op(general)
|
||||
#define EIGEN_BLAS_TRMM_L(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX) \
|
||||
#define EIGEN_BLAS_TRMM_L(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \
|
||||
template <typename Index, int Mode, \
|
||||
int LhsStorageOrder, bool ConjugateLhs, \
|
||||
int RhsStorageOrder, bool ConjugateRhs> \
|
||||
@ -172,7 +172,7 @@ struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,true, \
|
||||
} \
|
||||
/*std::cout << "TRMM_L: A is square! Go to BLAS TRMM implementation! \n";*/ \
|
||||
/* call ?trmm*/ \
|
||||
BLASPREFIX##trmm_(&side, &uplo, &transa, &diag, &m, &n, &numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)b, &ldb); \
|
||||
BLASFUNC(&side, &uplo, &transa, &diag, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)b, &ldb); \
|
||||
\
|
||||
/* Add op(a_triangular)*b into res*/ \
|
||||
Map<MatrixX##EIGPREFIX, 0, OuterStride<> > res_tmp(res,rows,cols,OuterStride<>(resStride)); \
|
||||
@ -180,13 +180,20 @@ struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,true, \
|
||||
} \
|
||||
};
|
||||
|
||||
EIGEN_BLAS_TRMM_L(double, double, d, d)
|
||||
EIGEN_BLAS_TRMM_L(dcomplex, double, cd, z)
|
||||
EIGEN_BLAS_TRMM_L(float, float, f, s)
|
||||
EIGEN_BLAS_TRMM_L(scomplex, float, cf, c)
|
||||
#ifdef EIGEN_USE_MKL
|
||||
EIGEN_BLAS_TRMM_L(double, double, d, dtrmm)
|
||||
EIGEN_BLAS_TRMM_L(dcomplex, MKL_Complex16, cd, ztrmm)
|
||||
EIGEN_BLAS_TRMM_L(float, float, f, strmm)
|
||||
EIGEN_BLAS_TRMM_L(scomplex, MKL_Complex8, cf, ctrmm)
|
||||
#else
|
||||
EIGEN_BLAS_TRMM_L(double, double, d, dtrmm_)
|
||||
EIGEN_BLAS_TRMM_L(dcomplex, double, cd, ztrmm_)
|
||||
EIGEN_BLAS_TRMM_L(float, float, f, strmm_)
|
||||
EIGEN_BLAS_TRMM_L(scomplex, float, cf, ctrmm_)
|
||||
#endif
|
||||
|
||||
// implements col-major += alpha * op(general) * op(triangular)
|
||||
#define EIGEN_BLAS_TRMM_R(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX) \
|
||||
#define EIGEN_BLAS_TRMM_R(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \
|
||||
template <typename Index, int Mode, \
|
||||
int LhsStorageOrder, bool ConjugateLhs, \
|
||||
int RhsStorageOrder, bool ConjugateRhs> \
|
||||
@ -282,7 +289,7 @@ struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,false, \
|
||||
} \
|
||||
/*std::cout << "TRMM_R: A is square! Go to BLAS TRMM implementation! \n";*/ \
|
||||
/* call ?trmm*/ \
|
||||
BLASPREFIX##trmm_(&side, &uplo, &transa, &diag, &m, &n, &numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)b, &ldb); \
|
||||
BLASFUNC(&side, &uplo, &transa, &diag, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)b, &ldb); \
|
||||
\
|
||||
/* Add op(a_triangular)*b into res*/ \
|
||||
Map<MatrixX##EIGPREFIX, 0, OuterStride<> > res_tmp(res,rows,cols,OuterStride<>(resStride)); \
|
||||
@ -290,11 +297,17 @@ struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,false, \
|
||||
} \
|
||||
};
|
||||
|
||||
EIGEN_BLAS_TRMM_R(double, double, d, d)
|
||||
EIGEN_BLAS_TRMM_R(dcomplex, double, cd, z)
|
||||
EIGEN_BLAS_TRMM_R(float, float, f, s)
|
||||
EIGEN_BLAS_TRMM_R(scomplex, float, cf, c)
|
||||
|
||||
#ifdef EIGEN_USE_MKL
|
||||
EIGEN_BLAS_TRMM_R(double, double, d, dtrmm)
|
||||
EIGEN_BLAS_TRMM_R(dcomplex, MKL_Complex16, cd, ztrmm)
|
||||
EIGEN_BLAS_TRMM_R(float, float, f, strmm)
|
||||
EIGEN_BLAS_TRMM_R(scomplex, MKL_Complex8, cf, ctrmm)
|
||||
#else
|
||||
EIGEN_BLAS_TRMM_R(double, double, d, dtrmm_)
|
||||
EIGEN_BLAS_TRMM_R(dcomplex, double, cd, ztrmm_)
|
||||
EIGEN_BLAS_TRMM_R(float, float, f, strmm_)
|
||||
EIGEN_BLAS_TRMM_R(scomplex, float, cf, ctrmm_)
|
||||
#endif
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
@ -221,8 +221,9 @@ template<int Mode> struct trmv_selector<Mode,ColMajor>
|
||||
typename internal::add_const_on_value_type<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
|
||||
typename internal::add_const_on_value_type<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
|
||||
|
||||
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
|
||||
* RhsBlasTraits::extractScalarFactor(rhs);
|
||||
LhsScalar lhs_alpha = LhsBlasTraits::extractScalarFactor(lhs);
|
||||
RhsScalar rhs_alpha = RhsBlasTraits::extractScalarFactor(rhs);
|
||||
ResScalar actualAlpha = alpha * lhs_alpha * rhs_alpha;
|
||||
|
||||
enum {
|
||||
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
|
||||
@ -274,6 +275,12 @@ template<int Mode> struct trmv_selector<Mode,ColMajor>
|
||||
else
|
||||
dest = MappedDest(actualDestPtr, dest.size());
|
||||
}
|
||||
|
||||
if ( ((Mode&UnitDiag)==UnitDiag) && (lhs_alpha!=LhsScalar(1)) )
|
||||
{
|
||||
Index diagSize = (std::min)(lhs.rows(),lhs.cols());
|
||||
dest.head(diagSize) -= (lhs_alpha-LhsScalar(1))*rhs.head(diagSize);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@ -295,8 +302,9 @@ template<int Mode> struct trmv_selector<Mode,RowMajor>
|
||||
typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
|
||||
typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
|
||||
|
||||
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
|
||||
* RhsBlasTraits::extractScalarFactor(rhs);
|
||||
LhsScalar lhs_alpha = LhsBlasTraits::extractScalarFactor(lhs);
|
||||
RhsScalar rhs_alpha = RhsBlasTraits::extractScalarFactor(rhs);
|
||||
ResScalar actualAlpha = alpha * lhs_alpha * rhs_alpha;
|
||||
|
||||
enum {
|
||||
DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1
|
||||
@ -326,6 +334,12 @@ template<int Mode> struct trmv_selector<Mode,RowMajor>
|
||||
actualRhsPtr,1,
|
||||
dest.data(),dest.innerStride(),
|
||||
actualAlpha);
|
||||
|
||||
if ( ((Mode&UnitDiag)==UnitDiag) && (lhs_alpha!=LhsScalar(1)) )
|
||||
{
|
||||
Index diagSize = (std::min)(lhs.rows(),lhs.cols());
|
||||
dest.head(diagSize) -= (lhs_alpha-LhsScalar(1))*rhs.head(diagSize);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -71,7 +71,7 @@ EIGEN_BLAS_TRMV_SPECIALIZE(dcomplex)
|
||||
EIGEN_BLAS_TRMV_SPECIALIZE(scomplex)
|
||||
|
||||
// implements col-major: res += alpha * op(triangular) * vector
|
||||
#define EIGEN_BLAS_TRMV_CM(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX) \
|
||||
#define EIGEN_BLAS_TRMV_CM(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX, BLASPOSTFIX) \
|
||||
template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
|
||||
struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,ColMajor> { \
|
||||
enum { \
|
||||
@ -121,10 +121,10 @@ struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,
|
||||
diag = IsUnitDiag ? 'U' : 'N'; \
|
||||
\
|
||||
/* call ?TRMV*/ \
|
||||
BLASPREFIX##trmv_(&uplo, &trans, &diag, &n, (const BLASTYPE*)_lhs, &lda, (BLASTYPE*)x, &incx); \
|
||||
BLASPREFIX##trmv##BLASPOSTFIX(&uplo, &trans, &diag, &n, (const BLASTYPE*)_lhs, &lda, (BLASTYPE*)x, &incx); \
|
||||
\
|
||||
/* Add op(a_tr)rhs into res*/ \
|
||||
BLASPREFIX##axpy_(&n, &numext::real_ref(alpha),(const BLASTYPE*)x, &incx, (BLASTYPE*)_res, &incy); \
|
||||
BLASPREFIX##axpy##BLASPOSTFIX(&n, (const BLASTYPE*)&numext::real_ref(alpha),(const BLASTYPE*)x, &incx, (BLASTYPE*)_res, &incy); \
|
||||
/* Non-square case - doesn't fit to BLAS ?TRMV. Fall to default triangular product*/ \
|
||||
if (size<(std::max)(rows,cols)) { \
|
||||
if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
|
||||
@ -142,18 +142,25 @@ struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,
|
||||
m = convert_index<BlasIndex>(size); \
|
||||
n = convert_index<BlasIndex>(cols-size); \
|
||||
} \
|
||||
BLASPREFIX##gemv_(&trans, &m, &n, &numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)x, &incx, &numext::real_ref(beta), (BLASTYPE*)y, &incy); \
|
||||
BLASPREFIX##gemv##BLASPOSTFIX(&trans, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)x, &incx, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)y, &incy); \
|
||||
} \
|
||||
} \
|
||||
};
|
||||
|
||||
EIGEN_BLAS_TRMV_CM(double, double, d, d)
|
||||
EIGEN_BLAS_TRMV_CM(dcomplex, double, cd, z)
|
||||
EIGEN_BLAS_TRMV_CM(float, float, f, s)
|
||||
EIGEN_BLAS_TRMV_CM(scomplex, float, cf, c)
|
||||
#ifdef EIGEN_USE_MKL
|
||||
EIGEN_BLAS_TRMV_CM(double, double, d, d,)
|
||||
EIGEN_BLAS_TRMV_CM(dcomplex, MKL_Complex16, cd, z,)
|
||||
EIGEN_BLAS_TRMV_CM(float, float, f, s,)
|
||||
EIGEN_BLAS_TRMV_CM(scomplex, MKL_Complex8, cf, c,)
|
||||
#else
|
||||
EIGEN_BLAS_TRMV_CM(double, double, d, d, _)
|
||||
EIGEN_BLAS_TRMV_CM(dcomplex, double, cd, z, _)
|
||||
EIGEN_BLAS_TRMV_CM(float, float, f, s, _)
|
||||
EIGEN_BLAS_TRMV_CM(scomplex, float, cf, c, _)
|
||||
#endif
|
||||
|
||||
// implements row-major: res += alpha * op(triangular) * vector
|
||||
#define EIGEN_BLAS_TRMV_RM(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX) \
|
||||
#define EIGEN_BLAS_TRMV_RM(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX, BLASPOSTFIX) \
|
||||
template<typename Index, int Mode, bool ConjLhs, bool ConjRhs> \
|
||||
struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,ConjRhs,RowMajor> { \
|
||||
enum { \
|
||||
@ -203,10 +210,10 @@ struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,
|
||||
diag = IsUnitDiag ? 'U' : 'N'; \
|
||||
\
|
||||
/* call ?TRMV*/ \
|
||||
BLASPREFIX##trmv_(&uplo, &trans, &diag, &n, (const BLASTYPE*)_lhs, &lda, (BLASTYPE*)x, &incx); \
|
||||
BLASPREFIX##trmv##BLASPOSTFIX(&uplo, &trans, &diag, &n, (const BLASTYPE*)_lhs, &lda, (BLASTYPE*)x, &incx); \
|
||||
\
|
||||
/* Add op(a_tr)rhs into res*/ \
|
||||
BLASPREFIX##axpy_(&n, &numext::real_ref(alpha),(const BLASTYPE*)x, &incx, (BLASTYPE*)_res, &incy); \
|
||||
BLASPREFIX##axpy##BLASPOSTFIX(&n, (const BLASTYPE*)&numext::real_ref(alpha),(const BLASTYPE*)x, &incx, (BLASTYPE*)_res, &incy); \
|
||||
/* Non-square case - doesn't fit to BLAS ?TRMV. Fall to default triangular product*/ \
|
||||
if (size<(std::max)(rows,cols)) { \
|
||||
if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
|
||||
@ -224,15 +231,22 @@ struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,
|
||||
m = convert_index<BlasIndex>(size); \
|
||||
n = convert_index<BlasIndex>(cols-size); \
|
||||
} \
|
||||
BLASPREFIX##gemv_(&trans, &n, &m, &numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)x, &incx, &numext::real_ref(beta), (BLASTYPE*)y, &incy); \
|
||||
BLASPREFIX##gemv##BLASPOSTFIX(&trans, &n, &m, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)x, &incx, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)y, &incy); \
|
||||
} \
|
||||
} \
|
||||
};
|
||||
|
||||
EIGEN_BLAS_TRMV_RM(double, double, d, d)
|
||||
EIGEN_BLAS_TRMV_RM(dcomplex, double, cd, z)
|
||||
EIGEN_BLAS_TRMV_RM(float, float, f, s)
|
||||
EIGEN_BLAS_TRMV_RM(scomplex, float, cf, c)
|
||||
#ifdef EIGEN_USE_MKL
|
||||
EIGEN_BLAS_TRMV_RM(double, double, d, d,)
|
||||
EIGEN_BLAS_TRMV_RM(dcomplex, MKL_Complex16, cd, z,)
|
||||
EIGEN_BLAS_TRMV_RM(float, float, f, s,)
|
||||
EIGEN_BLAS_TRMV_RM(scomplex, MKL_Complex8, cf, c,)
|
||||
#else
|
||||
EIGEN_BLAS_TRMV_RM(double, double, d, d,_)
|
||||
EIGEN_BLAS_TRMV_RM(dcomplex, double, cd, z,_)
|
||||
EIGEN_BLAS_TRMV_RM(float, float, f, s,_)
|
||||
EIGEN_BLAS_TRMV_RM(scomplex, float, cf, c,_)
|
||||
#endif
|
||||
|
||||
} // end namespase internal
|
||||
|
||||
|
@ -38,7 +38,7 @@ namespace Eigen {
|
||||
namespace internal {
|
||||
|
||||
// implements LeftSide op(triangular)^-1 * general
|
||||
#define EIGEN_BLAS_TRSM_L(EIGTYPE, BLASTYPE, BLASPREFIX) \
|
||||
#define EIGEN_BLAS_TRSM_L(EIGTYPE, BLASTYPE, BLASFUNC) \
|
||||
template <typename Index, int Mode, bool Conjugate, int TriStorageOrder> \
|
||||
struct triangular_solve_matrix<EIGTYPE,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor> \
|
||||
{ \
|
||||
@ -80,18 +80,24 @@ struct triangular_solve_matrix<EIGTYPE,Index,OnTheLeft,Mode,Conjugate,TriStorage
|
||||
} \
|
||||
if (IsUnitDiag) diag='U'; \
|
||||
/* call ?trsm*/ \
|
||||
BLASPREFIX##trsm_(&side, &uplo, &transa, &diag, &m, &n, &numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)_other, &ldb); \
|
||||
BLASFUNC(&side, &uplo, &transa, &diag, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)_other, &ldb); \
|
||||
} \
|
||||
};
|
||||
|
||||
EIGEN_BLAS_TRSM_L(double, double, d)
|
||||
EIGEN_BLAS_TRSM_L(dcomplex, double, z)
|
||||
EIGEN_BLAS_TRSM_L(float, float, s)
|
||||
EIGEN_BLAS_TRSM_L(scomplex, float, c)
|
||||
|
||||
#ifdef EIGEN_USE_MKL
|
||||
EIGEN_BLAS_TRSM_L(double, double, dtrsm)
|
||||
EIGEN_BLAS_TRSM_L(dcomplex, MKL_Complex16, ztrsm)
|
||||
EIGEN_BLAS_TRSM_L(float, float, strsm)
|
||||
EIGEN_BLAS_TRSM_L(scomplex, MKL_Complex8, ctrsm)
|
||||
#else
|
||||
EIGEN_BLAS_TRSM_L(double, double, dtrsm_)
|
||||
EIGEN_BLAS_TRSM_L(dcomplex, double, ztrsm_)
|
||||
EIGEN_BLAS_TRSM_L(float, float, strsm_)
|
||||
EIGEN_BLAS_TRSM_L(scomplex, float, ctrsm_)
|
||||
#endif
|
||||
|
||||
// implements RightSide general * op(triangular)^-1
|
||||
#define EIGEN_BLAS_TRSM_R(EIGTYPE, BLASTYPE, BLASPREFIX) \
|
||||
#define EIGEN_BLAS_TRSM_R(EIGTYPE, BLASTYPE, BLASFUNC) \
|
||||
template <typename Index, int Mode, bool Conjugate, int TriStorageOrder> \
|
||||
struct triangular_solve_matrix<EIGTYPE,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor> \
|
||||
{ \
|
||||
@ -133,16 +139,22 @@ struct triangular_solve_matrix<EIGTYPE,Index,OnTheRight,Mode,Conjugate,TriStorag
|
||||
} \
|
||||
if (IsUnitDiag) diag='U'; \
|
||||
/* call ?trsm*/ \
|
||||
BLASPREFIX##trsm_(&side, &uplo, &transa, &diag, &m, &n, &numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)_other, &ldb); \
|
||||
BLASFUNC(&side, &uplo, &transa, &diag, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)_other, &ldb); \
|
||||
/*std::cout << "TRMS_L specialization!\n";*/ \
|
||||
} \
|
||||
};
|
||||
|
||||
EIGEN_BLAS_TRSM_R(double, double, d)
|
||||
EIGEN_BLAS_TRSM_R(dcomplex, double, z)
|
||||
EIGEN_BLAS_TRSM_R(float, float, s)
|
||||
EIGEN_BLAS_TRSM_R(scomplex, float, c)
|
||||
|
||||
#ifdef EIGEN_USE_MKL
|
||||
EIGEN_BLAS_TRSM_R(double, double, dtrsm)
|
||||
EIGEN_BLAS_TRSM_R(dcomplex, MKL_Complex16, ztrsm)
|
||||
EIGEN_BLAS_TRSM_R(float, float, strsm)
|
||||
EIGEN_BLAS_TRSM_R(scomplex, MKL_Complex8, ctrsm)
|
||||
#else
|
||||
EIGEN_BLAS_TRSM_R(double, double, dtrsm_)
|
||||
EIGEN_BLAS_TRSM_R(dcomplex, double, ztrsm_)
|
||||
EIGEN_BLAS_TRSM_R(float, float, strsm_)
|
||||
EIGEN_BLAS_TRSM_R(scomplex, float, ctrsm_)
|
||||
#endif
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
|
@ -49,10 +49,11 @@
|
||||
#define EIGEN_USE_LAPACKE
|
||||
#endif
|
||||
|
||||
#if defined(EIGEN_USE_MKL_VML)
|
||||
#if defined(EIGEN_USE_MKL_VML) && !defined(EIGEN_USE_MKL)
|
||||
#define EIGEN_USE_MKL
|
||||
#endif
|
||||
|
||||
|
||||
#if defined EIGEN_USE_MKL
|
||||
# include <mkl.h>
|
||||
/*Check IMKL version for compatibility: < 10.3 is not usable with Eigen*/
|
||||
@ -108,6 +109,10 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(EIGEN_USE_BLAS) && !defined(EIGEN_USE_MKL)
|
||||
#include "../../misc/blas.h"
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
typedef std::complex<double> dcomplex;
|
||||
@ -121,8 +126,5 @@ typedef int BlasIndex;
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#if defined(EIGEN_USE_BLAS)
|
||||
#include "../../misc/blas.h"
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_MKL_SUPPORT_H
|
||||
|
@ -13,7 +13,7 @@
|
||||
|
||||
#define EIGEN_WORLD_VERSION 3
|
||||
#define EIGEN_MAJOR_VERSION 3
|
||||
#define EIGEN_MINOR_VERSION 3
|
||||
#define EIGEN_MINOR_VERSION 5
|
||||
|
||||
#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
|
||||
(EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \
|
||||
@ -399,7 +399,7 @@
|
||||
// Does the compiler support variadic templates?
|
||||
#ifndef EIGEN_HAS_VARIADIC_TEMPLATES
|
||||
#if EIGEN_MAX_CPP_VER>=11 && (__cplusplus > 199711L || EIGEN_COMP_MSVC >= 1900) \
|
||||
&& ( !defined(__NVCC__) || !EIGEN_ARCH_ARM_OR_ARM64 || (defined __CUDACC_VER__ && __CUDACC_VER__ >= 80000) )
|
||||
&& (!defined(__NVCC__) || !EIGEN_ARCH_ARM_OR_ARM64 || (EIGEN_CUDACC_VER >= 80000) )
|
||||
// ^^ Disable the use of variadic templates when compiling with versions of nvcc older than 8.0 on ARM devices:
|
||||
// this prevents nvcc from crashing when compiling Eigen on Tegra X1
|
||||
#define EIGEN_HAS_VARIADIC_TEMPLATES 1
|
||||
@ -413,7 +413,7 @@
|
||||
|
||||
#ifdef __CUDACC__
|
||||
// Const expressions are supported provided that c++11 is enabled and we're using either clang or nvcc 7.5 or above
|
||||
#if EIGEN_MAX_CPP_VER>=14 && (__cplusplus > 199711L && defined(__CUDACC_VER__) && (EIGEN_COMP_CLANG || __CUDACC_VER__ >= 70500))
|
||||
#if EIGEN_MAX_CPP_VER>=14 && (__cplusplus > 199711L && (EIGEN_COMP_CLANG || EIGEN_CUDACC_VER >= 70500))
|
||||
#define EIGEN_HAS_CONSTEXPR 1
|
||||
#endif
|
||||
#elif EIGEN_MAX_CPP_VER>=14 && (__has_feature(cxx_relaxed_constexpr) || (defined(__cplusplus) && __cplusplus >= 201402L) || \
|
||||
@ -487,11 +487,13 @@
|
||||
// EIGEN_STRONG_INLINE is a stronger version of the inline, using __forceinline on MSVC,
|
||||
// but it still doesn't use GCC's always_inline. This is useful in (common) situations where MSVC needs forceinline
|
||||
// but GCC is still doing fine with just inline.
|
||||
#ifndef EIGEN_STRONG_INLINE
|
||||
#if EIGEN_COMP_MSVC || EIGEN_COMP_ICC
|
||||
#define EIGEN_STRONG_INLINE __forceinline
|
||||
#else
|
||||
#define EIGEN_STRONG_INLINE inline
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// EIGEN_ALWAYS_INLINE is the stronget, it has the effect of making the function inline and adding every possible
|
||||
// attribute to maximize inlining. This should only be used when really necessary: in particular,
|
||||
@ -812,7 +814,8 @@ namespace Eigen {
|
||||
// just an empty macro !
|
||||
#define EIGEN_EMPTY
|
||||
|
||||
#if EIGEN_COMP_MSVC_STRICT && (EIGEN_COMP_MSVC < 1900 || defined(__CUDACC_VER__)) // for older MSVC versions, as well as 1900 && CUDA 8, using the base operator is sufficient (cf Bugs 1000, 1324)
|
||||
#if EIGEN_COMP_MSVC_STRICT && (EIGEN_COMP_MSVC < 1900 || EIGEN_CUDACC_VER>0)
|
||||
// for older MSVC versions, as well as 1900 && CUDA 8, using the base operator is sufficient (cf Bugs 1000, 1324)
|
||||
#define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
|
||||
using Base::operator =;
|
||||
#elif EIGEN_COMP_CLANG // workaround clang bug (see http://forum.kde.org/viewtopic.php?f=74&t=102653)
|
||||
@ -986,7 +989,13 @@ namespace Eigen {
|
||||
# define EIGEN_NOEXCEPT
|
||||
# define EIGEN_NOEXCEPT_IF(x)
|
||||
# define EIGEN_NO_THROW throw()
|
||||
# define EIGEN_EXCEPTION_SPEC(X) throw(X)
|
||||
# if EIGEN_COMP_MSVC
|
||||
// MSVC does not support exception specifications (warning C4290),
|
||||
// and they are deprecated in c++11 anyway.
|
||||
# define EIGEN_EXCEPTION_SPEC(X) throw()
|
||||
# else
|
||||
# define EIGEN_EXCEPTION_SPEC(X) throw(X)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_MACROS_H
|
||||
|
@ -70,7 +70,7 @@ inline void throw_std_bad_alloc()
|
||||
throw std::bad_alloc();
|
||||
#else
|
||||
std::size_t huge = static_cast<std::size_t>(-1);
|
||||
new int[huge];
|
||||
::operator new(huge);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -493,7 +493,7 @@ template<typename T> struct smart_copy_helper<T,true> {
|
||||
IntPtr size = IntPtr(end)-IntPtr(start);
|
||||
if(size==0) return;
|
||||
eigen_internal_assert(start!=0 && end!=0 && target!=0);
|
||||
memcpy(target, start, size);
|
||||
std::memcpy(target, start, size);
|
||||
}
|
||||
};
|
||||
|
||||
@ -696,7 +696,15 @@ template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b)
|
||||
/** \class aligned_allocator
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief STL compatible allocator to use with with 16 byte aligned types
|
||||
* \brief STL compatible allocator to use with types requiring a non standrad alignment.
|
||||
*
|
||||
* The memory is aligned as for dynamically aligned matrix/array types such as MatrixXd.
|
||||
* By default, it will thus provide at least 16 bytes alignment and more in following cases:
|
||||
* - 32 bytes alignment if AVX is enabled.
|
||||
* - 64 bytes alignment if AVX512 is enabled.
|
||||
*
|
||||
* This can be controled using the \c EIGEN_MAX_ALIGN_BYTES macro as documented
|
||||
* \link TopicPreprocessorDirectivesPerformance there \endlink.
|
||||
*
|
||||
* Example:
|
||||
* \code
|
||||
|
@ -485,6 +485,26 @@ T div_ceil(const T &a, const T &b)
|
||||
return (a+b-1) / b;
|
||||
}
|
||||
|
||||
// The aim of the following functions is to bypass -Wfloat-equal warnings
|
||||
// when we really want a strict equality comparison on floating points.
|
||||
template<typename X, typename Y> EIGEN_STRONG_INLINE
|
||||
bool equal_strict(const X& x,const Y& y) { return x == y; }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE
|
||||
bool equal_strict(const float& x,const float& y) { return std::equal_to<float>()(x,y); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE
|
||||
bool equal_strict(const double& x,const double& y) { return std::equal_to<double>()(x,y); }
|
||||
|
||||
template<typename X, typename Y> EIGEN_STRONG_INLINE
|
||||
bool not_equal_strict(const X& x,const Y& y) { return x != y; }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE
|
||||
bool not_equal_strict(const float& x,const float& y) { return std::not_equal_to<float>()(x,y); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE
|
||||
bool not_equal_strict(const double& x,const double& y) { return std::not_equal_to<double>()(x,y); }
|
||||
|
||||
} // end namespace numext
|
||||
|
||||
} // end namespace Eigen
|
||||
|
@ -24,6 +24,7 @@
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef EIGEN_STATIC_ASSERT
|
||||
#ifndef EIGEN_NO_STATIC_ASSERT
|
||||
|
||||
#if EIGEN_MAX_CPP_VER>=11 && (__has_feature(cxx_static_assert) || (defined(__cplusplus) && __cplusplus >= 201103L) || (EIGEN_COMP_MSVC >= 1600))
|
||||
@ -44,64 +45,65 @@
|
||||
struct static_assertion<true>
|
||||
{
|
||||
enum {
|
||||
YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX,
|
||||
YOU_MIXED_VECTORS_OF_DIFFERENT_SIZES,
|
||||
YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES,
|
||||
THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE,
|
||||
THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE,
|
||||
THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE,
|
||||
OUT_OF_RANGE_ACCESS,
|
||||
YOU_MADE_A_PROGRAMMING_MISTAKE,
|
||||
EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT,
|
||||
EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE,
|
||||
YOU_CALLED_A_FIXED_SIZE_METHOD_ON_A_DYNAMIC_SIZE_MATRIX_OR_VECTOR,
|
||||
YOU_CALLED_A_DYNAMIC_SIZE_METHOD_ON_A_FIXED_SIZE_MATRIX_OR_VECTOR,
|
||||
UNALIGNED_LOAD_AND_STORE_OPERATIONS_UNIMPLEMENTED_ON_ALTIVEC,
|
||||
THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES,
|
||||
FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED,
|
||||
NUMERIC_TYPE_MUST_BE_REAL,
|
||||
COEFFICIENT_WRITE_ACCESS_TO_SELFADJOINT_NOT_SUPPORTED,
|
||||
WRITING_TO_TRIANGULAR_PART_WITH_UNIT_DIAGONAL_IS_NOT_SUPPORTED,
|
||||
THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE,
|
||||
INVALID_MATRIX_PRODUCT,
|
||||
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS,
|
||||
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION,
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY,
|
||||
THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES,
|
||||
THIS_METHOD_IS_ONLY_FOR_ROW_MAJOR_MATRICES,
|
||||
INVALID_MATRIX_TEMPLATE_PARAMETERS,
|
||||
INVALID_MATRIXBASE_TEMPLATE_PARAMETERS,
|
||||
BOTH_MATRICES_MUST_HAVE_THE_SAME_STORAGE_ORDER,
|
||||
THIS_METHOD_IS_ONLY_FOR_DIAGONAL_MATRIX,
|
||||
THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE,
|
||||
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES,
|
||||
YOU_ALREADY_SPECIFIED_THIS_STRIDE,
|
||||
INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION,
|
||||
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD,
|
||||
PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1,
|
||||
THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS,
|
||||
YOU_CANNOT_MIX_ARRAYS_AND_MATRICES,
|
||||
YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION,
|
||||
THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY,
|
||||
YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT,
|
||||
THIS_METHOD_IS_ONLY_FOR_1x1_EXPRESSIONS,
|
||||
THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS,
|
||||
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL,
|
||||
THIS_METHOD_IS_ONLY_FOR_ARRAYS_NOT_MATRICES,
|
||||
YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED,
|
||||
YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED,
|
||||
THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE,
|
||||
THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH,
|
||||
OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG,
|
||||
IMPLICIT_CONVERSION_TO_SCALAR_IS_FOR_INNER_PRODUCT_ONLY,
|
||||
STORAGE_LAYOUT_DOES_NOT_MATCH,
|
||||
EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT__INVALID_COST_VALUE,
|
||||
THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS,
|
||||
MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY,
|
||||
THIS_TYPE_IS_NOT_SUPPORTED,
|
||||
STORAGE_KIND_MUST_MATCH,
|
||||
STORAGE_INDEX_MUST_MATCH,
|
||||
CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY
|
||||
YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX=1,
|
||||
YOU_MIXED_VECTORS_OF_DIFFERENT_SIZES=1,
|
||||
YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES=1,
|
||||
THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE=1,
|
||||
THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE=1,
|
||||
THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE=1,
|
||||
OUT_OF_RANGE_ACCESS=1,
|
||||
YOU_MADE_A_PROGRAMMING_MISTAKE=1,
|
||||
EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT=1,
|
||||
EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE=1,
|
||||
YOU_CALLED_A_FIXED_SIZE_METHOD_ON_A_DYNAMIC_SIZE_MATRIX_OR_VECTOR=1,
|
||||
YOU_CALLED_A_DYNAMIC_SIZE_METHOD_ON_A_FIXED_SIZE_MATRIX_OR_VECTOR=1,
|
||||
UNALIGNED_LOAD_AND_STORE_OPERATIONS_UNIMPLEMENTED_ON_ALTIVEC=1,
|
||||
THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES=1,
|
||||
FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED=1,
|
||||
NUMERIC_TYPE_MUST_BE_REAL=1,
|
||||
COEFFICIENT_WRITE_ACCESS_TO_SELFADJOINT_NOT_SUPPORTED=1,
|
||||
WRITING_TO_TRIANGULAR_PART_WITH_UNIT_DIAGONAL_IS_NOT_SUPPORTED=1,
|
||||
THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE=1,
|
||||
INVALID_MATRIX_PRODUCT=1,
|
||||
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS=1,
|
||||
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION=1,
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY=1,
|
||||
THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES=1,
|
||||
THIS_METHOD_IS_ONLY_FOR_ROW_MAJOR_MATRICES=1,
|
||||
INVALID_MATRIX_TEMPLATE_PARAMETERS=1,
|
||||
INVALID_MATRIXBASE_TEMPLATE_PARAMETERS=1,
|
||||
BOTH_MATRICES_MUST_HAVE_THE_SAME_STORAGE_ORDER=1,
|
||||
THIS_METHOD_IS_ONLY_FOR_DIAGONAL_MATRIX=1,
|
||||
THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE=1,
|
||||
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES=1,
|
||||
YOU_ALREADY_SPECIFIED_THIS_STRIDE=1,
|
||||
INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION=1,
|
||||
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD=1,
|
||||
PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1=1,
|
||||
THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS=1,
|
||||
YOU_CANNOT_MIX_ARRAYS_AND_MATRICES=1,
|
||||
YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION=1,
|
||||
THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY=1,
|
||||
YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT=1,
|
||||
THIS_METHOD_IS_ONLY_FOR_1x1_EXPRESSIONS=1,
|
||||
THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS=1,
|
||||
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL=1,
|
||||
THIS_METHOD_IS_ONLY_FOR_ARRAYS_NOT_MATRICES=1,
|
||||
YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED=1,
|
||||
YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED=1,
|
||||
THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE=1,
|
||||
THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH=1,
|
||||
OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG=1,
|
||||
IMPLICIT_CONVERSION_TO_SCALAR_IS_FOR_INNER_PRODUCT_ONLY=1,
|
||||
STORAGE_LAYOUT_DOES_NOT_MATCH=1,
|
||||
EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT__INVALID_COST_VALUE=1,
|
||||
THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS=1,
|
||||
MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY=1,
|
||||
THIS_TYPE_IS_NOT_SUPPORTED=1,
|
||||
STORAGE_KIND_MUST_MATCH=1,
|
||||
STORAGE_INDEX_MUST_MATCH=1,
|
||||
CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY=1,
|
||||
SELFADJOINTVIEW_ACCEPTS_UPPER_AND_LOWER_MODE_ONLY=1
|
||||
};
|
||||
};
|
||||
|
||||
@ -131,7 +133,7 @@
|
||||
#define EIGEN_STATIC_ASSERT(CONDITION,MSG) eigen_assert((CONDITION) && #MSG);
|
||||
|
||||
#endif // EIGEN_NO_STATIC_ASSERT
|
||||
|
||||
#endif // EIGEN_STATIC_ASSERT
|
||||
|
||||
// static assertion failing if the type \a TYPE is not a vector type
|
||||
#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE) \
|
||||
|
@ -311,7 +311,6 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
|
||||
// Aliases:
|
||||
Map<VectorType> v(reinterpret_cast<Scalar*>(m_tmp.data()), size);
|
||||
ComplexVectorType &cv = m_tmp;
|
||||
const MatrixType &mZ = m_realQZ.matrixZ();
|
||||
const MatrixType &mS = m_realQZ.matrixS();
|
||||
const MatrixType &mT = m_realQZ.matrixT();
|
||||
|
||||
@ -351,7 +350,7 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
|
||||
}
|
||||
}
|
||||
}
|
||||
m_eivec.col(i).real().noalias() = mZ.transpose() * v;
|
||||
m_eivec.col(i).real().noalias() = m_realQZ.matrixZ().transpose() * v;
|
||||
m_eivec.col(i).real().normalize();
|
||||
m_eivec.col(i).imag().setConstant(0);
|
||||
}
|
||||
@ -400,7 +399,7 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
|
||||
/ (alpha*mT.coeffRef(j,j) - static_cast<Scalar>(beta*mS.coeffRef(j,j)));
|
||||
}
|
||||
}
|
||||
m_eivec.col(i+1).noalias() = (mZ.transpose() * cv);
|
||||
m_eivec.col(i+1).noalias() = (m_realQZ.matrixZ().transpose() * cv);
|
||||
m_eivec.col(i+1).normalize();
|
||||
m_eivec.col(i) = m_eivec.col(i+1).conjugate();
|
||||
}
|
||||
|
@ -303,7 +303,7 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMa
|
||||
Scalar exshift(0); // sum of exceptional shifts
|
||||
Scalar norm = computeNormOfT();
|
||||
|
||||
if(norm!=0)
|
||||
if(norm!=Scalar(0))
|
||||
{
|
||||
while (iu >= 0)
|
||||
{
|
||||
@ -327,7 +327,7 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMa
|
||||
else // No convergence yet
|
||||
{
|
||||
// The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
|
||||
Vector3s firstHouseholderVector(0,0,0), shiftInfo;
|
||||
Vector3s firstHouseholderVector = Vector3s::Zero(), shiftInfo;
|
||||
computeShift(iu, iter, exshift, shiftInfo);
|
||||
iter = iter + 1;
|
||||
totalIter = totalIter + 1;
|
||||
|
@ -37,7 +37,7 @@ namespace Eigen {
|
||||
|
||||
/** \internal Specialization for the data types supported by LAPACKe */
|
||||
|
||||
#define EIGEN_LAPACKE_EIG_SELFADJ(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, EIGCOLROW, LAPACKE_COLROW ) \
|
||||
#define EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, EIGCOLROW ) \
|
||||
template<> template<typename InputType> inline \
|
||||
SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
|
||||
SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, int options) \
|
||||
@ -47,7 +47,7 @@ SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(c
|
||||
&& (options&EigVecMask)!=EigVecMask \
|
||||
&& "invalid option parameter"); \
|
||||
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \
|
||||
lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), lda, matrix_order, info; \
|
||||
lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), lda, info; \
|
||||
m_eivalues.resize(n,1); \
|
||||
m_subdiag.resize(n-1); \
|
||||
m_eivec = matrix; \
|
||||
@ -63,27 +63,24 @@ SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(c
|
||||
} \
|
||||
\
|
||||
lda = internal::convert_index<lapack_int>(m_eivec.outerStride()); \
|
||||
matrix_order=LAPACKE_COLROW; \
|
||||
char jobz, uplo='L'/*, range='A'*/; \
|
||||
jobz = computeEigenvectors ? 'V' : 'N'; \
|
||||
\
|
||||
info = LAPACKE_##LAPACKE_NAME( matrix_order, jobz, uplo, n, (LAPACKE_TYPE*)m_eivec.data(), lda, (LAPACKE_RTYPE*)m_eivalues.data() ); \
|
||||
info = LAPACKE_##LAPACKE_NAME( LAPACK_COL_MAJOR, jobz, uplo, n, (LAPACKE_TYPE*)m_eivec.data(), lda, (LAPACKE_RTYPE*)m_eivalues.data() ); \
|
||||
m_info = (info==0) ? Success : NoConvergence; \
|
||||
m_isInitialized = true; \
|
||||
m_eigenvectorsOk = computeEigenvectors; \
|
||||
return *this; \
|
||||
}
|
||||
|
||||
#define EIGEN_LAPACKE_EIG_SELFADJ(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME ) \
|
||||
EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, ColMajor ) \
|
||||
EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, RowMajor )
|
||||
|
||||
EIGEN_LAPACKE_EIG_SELFADJ(double, double, double, dsyev, ColMajor, LAPACK_COL_MAJOR)
|
||||
EIGEN_LAPACKE_EIG_SELFADJ(float, float, float, ssyev, ColMajor, LAPACK_COL_MAJOR)
|
||||
EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev, ColMajor, LAPACK_COL_MAJOR)
|
||||
EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float, float, cheev, ColMajor, LAPACK_COL_MAJOR)
|
||||
|
||||
EIGEN_LAPACKE_EIG_SELFADJ(double, double, double, dsyev, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACKE_EIG_SELFADJ(float, float, float, ssyev, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float, float, cheev, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACKE_EIG_SELFADJ(double, double, double, dsyev)
|
||||
EIGEN_LAPACKE_EIG_SELFADJ(float, float, float, ssyev)
|
||||
EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev)
|
||||
EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float, float, cheev)
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
|
@ -178,7 +178,7 @@ EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const Quaterni
|
||||
if (n != Scalar(0))
|
||||
{
|
||||
m_angle = Scalar(2)*atan2(n, abs(q.w()));
|
||||
if(q.w() < 0)
|
||||
if(q.w() < Scalar(0))
|
||||
n = -n;
|
||||
m_axis = q.vec() / n;
|
||||
}
|
||||
|
@ -43,6 +43,11 @@ class QuaternionBase : public RotationBase<Derived, 3>
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename internal::traits<Derived>::Coefficients Coefficients;
|
||||
typedef typename Coefficients::CoeffReturnType CoeffReturnType;
|
||||
typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
|
||||
Scalar&, CoeffReturnType>::type NonConstCoeffReturnType;
|
||||
|
||||
|
||||
enum {
|
||||
Flags = Eigen::internal::traits<Derived>::Flags
|
||||
};
|
||||
@ -58,22 +63,22 @@ class QuaternionBase : public RotationBase<Derived, 3>
|
||||
|
||||
|
||||
/** \returns the \c x coefficient */
|
||||
EIGEN_DEVICE_FUNC inline Scalar x() const { return this->derived().coeffs().coeff(0); }
|
||||
EIGEN_DEVICE_FUNC inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); }
|
||||
/** \returns the \c y coefficient */
|
||||
EIGEN_DEVICE_FUNC inline Scalar y() const { return this->derived().coeffs().coeff(1); }
|
||||
EIGEN_DEVICE_FUNC inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); }
|
||||
/** \returns the \c z coefficient */
|
||||
EIGEN_DEVICE_FUNC inline Scalar z() const { return this->derived().coeffs().coeff(2); }
|
||||
EIGEN_DEVICE_FUNC inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); }
|
||||
/** \returns the \c w coefficient */
|
||||
EIGEN_DEVICE_FUNC inline Scalar w() const { return this->derived().coeffs().coeff(3); }
|
||||
EIGEN_DEVICE_FUNC inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); }
|
||||
|
||||
/** \returns a reference to the \c x coefficient */
|
||||
EIGEN_DEVICE_FUNC inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
|
||||
/** \returns a reference to the \c y coefficient */
|
||||
EIGEN_DEVICE_FUNC inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
|
||||
/** \returns a reference to the \c z coefficient */
|
||||
EIGEN_DEVICE_FUNC inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
|
||||
/** \returns a reference to the \c w coefficient */
|
||||
EIGEN_DEVICE_FUNC inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
|
||||
/** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */
|
||||
EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); }
|
||||
/** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */
|
||||
EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); }
|
||||
/** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */
|
||||
EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); }
|
||||
/** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */
|
||||
EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); }
|
||||
|
||||
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
|
||||
EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
|
||||
@ -423,7 +428,7 @@ typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
|
||||
// Generic Quaternion * Quaternion product
|
||||
// This product can be specialized for a given architecture via the Arch template argument.
|
||||
namespace internal {
|
||||
template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
|
||||
template<int Arch, class Derived1, class Derived2, typename Scalar> struct quat_product
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
|
||||
return Quaternion<Scalar>
|
||||
@ -446,8 +451,7 @@ QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) c
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
return internal::quat_product<Architecture::Target, Derived, OtherDerived,
|
||||
typename internal::traits<Derived>::Scalar,
|
||||
EIGEN_PLAIN_ENUM_MIN(internal::traits<Derived>::Alignment, internal::traits<OtherDerived>::Alignment)>::run(*this, other);
|
||||
typename internal::traits<Derived>::Scalar>::run(*this, other);
|
||||
}
|
||||
|
||||
/** \sa operator*(Quaternion) */
|
||||
@ -672,7 +676,7 @@ EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar>
|
||||
|
||||
// Generic conjugate of a Quaternion
|
||||
namespace internal {
|
||||
template<int Arch, class Derived, typename Scalar, int _Options> struct quat_conj
|
||||
template<int Arch, class Derived, typename Scalar> struct quat_conj
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){
|
||||
return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z());
|
||||
@ -691,8 +695,7 @@ EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar>
|
||||
QuaternionBase<Derived>::conjugate() const
|
||||
{
|
||||
return internal::quat_conj<Architecture::Target, Derived,
|
||||
typename internal::traits<Derived>::Scalar,
|
||||
internal::traits<Derived>::Alignment>::run(*this);
|
||||
typename internal::traits<Derived>::Scalar>::run(*this);
|
||||
|
||||
}
|
||||
|
||||
|
@ -16,17 +16,23 @@ namespace Eigen {
|
||||
namespace internal {
|
||||
|
||||
template<class Derived, class OtherDerived>
|
||||
struct quat_product<Architecture::SSE, Derived, OtherDerived, float, Aligned16>
|
||||
struct quat_product<Architecture::SSE, Derived, OtherDerived, float>
|
||||
{
|
||||
enum {
|
||||
AAlignment = traits<Derived>::Alignment,
|
||||
BAlignment = traits<OtherDerived>::Alignment,
|
||||
ResAlignment = traits<Quaternion<float> >::Alignment
|
||||
};
|
||||
static inline Quaternion<float> run(const QuaternionBase<Derived>& _a, const QuaternionBase<OtherDerived>& _b)
|
||||
{
|
||||
Quaternion<float> res;
|
||||
const __m128 mask = _mm_setr_ps(0.f,0.f,0.f,-0.f);
|
||||
__m128 a = _a.coeffs().template packet<Aligned16>(0);
|
||||
__m128 b = _b.coeffs().template packet<Aligned16>(0);
|
||||
__m128 a = _a.coeffs().template packet<AAlignment>(0);
|
||||
__m128 b = _b.coeffs().template packet<BAlignment>(0);
|
||||
__m128 s1 = _mm_mul_ps(vec4f_swizzle1(a,1,2,0,2),vec4f_swizzle1(b,2,0,1,2));
|
||||
__m128 s2 = _mm_mul_ps(vec4f_swizzle1(a,3,3,3,1),vec4f_swizzle1(b,0,1,2,1));
|
||||
pstore(&res.x(),
|
||||
pstoret<float,Packet4f,ResAlignment>(
|
||||
&res.x(),
|
||||
_mm_add_ps(_mm_sub_ps(_mm_mul_ps(a,vec4f_swizzle1(b,3,3,3,3)),
|
||||
_mm_mul_ps(vec4f_swizzle1(a,2,0,1,0),
|
||||
vec4f_swizzle1(b,1,2,0,0))),
|
||||
@ -36,14 +42,17 @@ struct quat_product<Architecture::SSE, Derived, OtherDerived, float, Aligned16>
|
||||
}
|
||||
};
|
||||
|
||||
template<class Derived, int Alignment>
|
||||
struct quat_conj<Architecture::SSE, Derived, float, Alignment>
|
||||
template<class Derived>
|
||||
struct quat_conj<Architecture::SSE, Derived, float>
|
||||
{
|
||||
enum {
|
||||
ResAlignment = traits<Quaternion<float> >::Alignment
|
||||
};
|
||||
static inline Quaternion<float> run(const QuaternionBase<Derived>& q)
|
||||
{
|
||||
Quaternion<float> res;
|
||||
const __m128 mask = _mm_setr_ps(-0.f,-0.f,-0.f,0.f);
|
||||
pstore(&res.x(), _mm_xor_ps(mask, q.coeffs().template packet<Alignment>(0)));
|
||||
pstoret<float,Packet4f,ResAlignment>(&res.x(), _mm_xor_ps(mask, q.coeffs().template packet<traits<Derived>::Alignment>(0)));
|
||||
return res;
|
||||
}
|
||||
};
|
||||
@ -52,6 +61,9 @@ struct quat_conj<Architecture::SSE, Derived, float, Alignment>
|
||||
template<typename VectorLhs,typename VectorRhs>
|
||||
struct cross3_impl<Architecture::SSE,VectorLhs,VectorRhs,float,true>
|
||||
{
|
||||
enum {
|
||||
ResAlignment = traits<typename plain_matrix_type<VectorLhs>::type>::Alignment
|
||||
};
|
||||
static inline typename plain_matrix_type<VectorLhs>::type
|
||||
run(const VectorLhs& lhs, const VectorRhs& rhs)
|
||||
{
|
||||
@ -60,7 +72,7 @@ struct cross3_impl<Architecture::SSE,VectorLhs,VectorRhs,float,true>
|
||||
__m128 mul1=_mm_mul_ps(vec4f_swizzle1(a,1,2,0,3),vec4f_swizzle1(b,2,0,1,3));
|
||||
__m128 mul2=_mm_mul_ps(vec4f_swizzle1(a,2,0,1,3),vec4f_swizzle1(b,1,2,0,3));
|
||||
typename plain_matrix_type<VectorLhs>::type res;
|
||||
pstore(&res.x(),_mm_sub_ps(mul1,mul2));
|
||||
pstoret<float,Packet4f,ResAlignment>(&res.x(),_mm_sub_ps(mul1,mul2));
|
||||
return res;
|
||||
}
|
||||
};
|
||||
@ -68,9 +80,14 @@ struct cross3_impl<Architecture::SSE,VectorLhs,VectorRhs,float,true>
|
||||
|
||||
|
||||
|
||||
template<class Derived, class OtherDerived, int Alignment>
|
||||
struct quat_product<Architecture::SSE, Derived, OtherDerived, double, Alignment>
|
||||
template<class Derived, class OtherDerived>
|
||||
struct quat_product<Architecture::SSE, Derived, OtherDerived, double>
|
||||
{
|
||||
enum {
|
||||
BAlignment = traits<OtherDerived>::Alignment,
|
||||
ResAlignment = traits<Quaternion<double> >::Alignment
|
||||
};
|
||||
|
||||
static inline Quaternion<double> run(const QuaternionBase<Derived>& _a, const QuaternionBase<OtherDerived>& _b)
|
||||
{
|
||||
const Packet2d mask = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0));
|
||||
@ -78,8 +95,8 @@ struct quat_product<Architecture::SSE, Derived, OtherDerived, double, Alignment>
|
||||
Quaternion<double> res;
|
||||
|
||||
const double* a = _a.coeffs().data();
|
||||
Packet2d b_xy = _b.coeffs().template packet<Alignment>(0);
|
||||
Packet2d b_zw = _b.coeffs().template packet<Alignment>(2);
|
||||
Packet2d b_xy = _b.coeffs().template packet<BAlignment>(0);
|
||||
Packet2d b_zw = _b.coeffs().template packet<BAlignment>(2);
|
||||
Packet2d a_xx = pset1<Packet2d>(a[0]);
|
||||
Packet2d a_yy = pset1<Packet2d>(a[1]);
|
||||
Packet2d a_zz = pset1<Packet2d>(a[2]);
|
||||
@ -97,9 +114,9 @@ struct quat_product<Architecture::SSE, Derived, OtherDerived, double, Alignment>
|
||||
t2 = psub(pmul(a_zz, b_xy), pmul(a_xx, b_zw));
|
||||
#ifdef EIGEN_VECTORIZE_SSE3
|
||||
EIGEN_UNUSED_VARIABLE(mask)
|
||||
pstore(&res.x(), _mm_addsub_pd(t1, preverse(t2)));
|
||||
pstoret<double,Packet2d,ResAlignment>(&res.x(), _mm_addsub_pd(t1, preverse(t2)));
|
||||
#else
|
||||
pstore(&res.x(), padd(t1, pxor(mask,preverse(t2))));
|
||||
pstoret<double,Packet2d,ResAlignment>(&res.x(), padd(t1, pxor(mask,preverse(t2))));
|
||||
#endif
|
||||
|
||||
/*
|
||||
@ -111,25 +128,28 @@ struct quat_product<Architecture::SSE, Derived, OtherDerived, double, Alignment>
|
||||
t2 = padd(pmul(a_zz, b_zw), pmul(a_xx, b_xy));
|
||||
#ifdef EIGEN_VECTORIZE_SSE3
|
||||
EIGEN_UNUSED_VARIABLE(mask)
|
||||
pstore(&res.z(), preverse(_mm_addsub_pd(preverse(t1), t2)));
|
||||
pstoret<double,Packet2d,ResAlignment>(&res.z(), preverse(_mm_addsub_pd(preverse(t1), t2)));
|
||||
#else
|
||||
pstore(&res.z(), psub(t1, pxor(mask,preverse(t2))));
|
||||
pstoret<double,Packet2d,ResAlignment>(&res.z(), psub(t1, pxor(mask,preverse(t2))));
|
||||
#endif
|
||||
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Derived, int Alignment>
|
||||
struct quat_conj<Architecture::SSE, Derived, double, Alignment>
|
||||
template<class Derived>
|
||||
struct quat_conj<Architecture::SSE, Derived, double>
|
||||
{
|
||||
enum {
|
||||
ResAlignment = traits<Quaternion<double> >::Alignment
|
||||
};
|
||||
static inline Quaternion<double> run(const QuaternionBase<Derived>& q)
|
||||
{
|
||||
Quaternion<double> res;
|
||||
const __m128d mask0 = _mm_setr_pd(-0.,-0.);
|
||||
const __m128d mask2 = _mm_setr_pd(-0.,0.);
|
||||
pstore(&res.x(), _mm_xor_pd(mask0, q.coeffs().template packet<Alignment>(0)));
|
||||
pstore(&res.z(), _mm_xor_pd(mask2, q.coeffs().template packet<Alignment>(2)));
|
||||
pstoret<double,Packet2d,ResAlignment>(&res.x(), _mm_xor_pd(mask0, q.coeffs().template packet<traits<Derived>::Alignment>(0)));
|
||||
pstoret<double,Packet2d,ResAlignment>(&res.z(), _mm_xor_pd(mask2, q.coeffs().template packet<traits<Derived>::Alignment>(2)));
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
@ -152,13 +152,28 @@ class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar>
|
||||
{
|
||||
// Compute the inverse squared-norm of each column of mat
|
||||
m_invdiag.resize(mat.cols());
|
||||
for(Index j=0; j<mat.outerSize(); ++j)
|
||||
if(MatType::IsRowMajor)
|
||||
{
|
||||
RealScalar sum = mat.innerVector(j).squaredNorm();
|
||||
if(sum>0)
|
||||
m_invdiag(j) = RealScalar(1)/sum;
|
||||
else
|
||||
m_invdiag(j) = RealScalar(1);
|
||||
m_invdiag.setZero();
|
||||
for(Index j=0; j<mat.outerSize(); ++j)
|
||||
{
|
||||
for(typename MatType::InnerIterator it(mat,j); it; ++it)
|
||||
m_invdiag(it.index()) += numext::abs2(it.value());
|
||||
}
|
||||
for(Index j=0; j<mat.cols(); ++j)
|
||||
if(numext::real(m_invdiag(j))>RealScalar(0))
|
||||
m_invdiag(j) = RealScalar(1)/numext::real(m_invdiag(j));
|
||||
}
|
||||
else
|
||||
{
|
||||
for(Index j=0; j<mat.outerSize(); ++j)
|
||||
{
|
||||
RealScalar sum = mat.col(j).squaredNorm();
|
||||
if(sum>RealScalar(0))
|
||||
m_invdiag(j) = RealScalar(1)/sum;
|
||||
else
|
||||
m_invdiag(j) = RealScalar(1);
|
||||
}
|
||||
}
|
||||
Base::m_isInitialized = true;
|
||||
return *this;
|
||||
|
@ -298,12 +298,144 @@ inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiR
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Scalar, typename OtherScalar,
|
||||
int SizeAtCompileTime, int MinAlignment, bool Vectorizable>
|
||||
struct apply_rotation_in_the_plane_selector
|
||||
{
|
||||
static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s)
|
||||
{
|
||||
for(Index i=0; i<size; ++i)
|
||||
{
|
||||
Scalar xi = *x;
|
||||
Scalar yi = *y;
|
||||
*x = c * xi + numext::conj(s) * yi;
|
||||
*y = -s * xi + numext::conj(c) * yi;
|
||||
x += incrx;
|
||||
y += incry;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar, typename OtherScalar,
|
||||
int SizeAtCompileTime, int MinAlignment>
|
||||
struct apply_rotation_in_the_plane_selector<Scalar,OtherScalar,SizeAtCompileTime,MinAlignment,true /* vectorizable */>
|
||||
{
|
||||
static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s)
|
||||
{
|
||||
enum {
|
||||
PacketSize = packet_traits<Scalar>::size,
|
||||
OtherPacketSize = packet_traits<OtherScalar>::size
|
||||
};
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
typedef typename packet_traits<OtherScalar>::type OtherPacket;
|
||||
|
||||
/*** dynamic-size vectorized paths ***/
|
||||
if(SizeAtCompileTime == Dynamic && ((incrx==1 && incry==1) || PacketSize == 1))
|
||||
{
|
||||
// both vectors are sequentially stored in memory => vectorization
|
||||
enum { Peeling = 2 };
|
||||
|
||||
Index alignedStart = internal::first_default_aligned(y, size);
|
||||
Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
|
||||
|
||||
const OtherPacket pc = pset1<OtherPacket>(c);
|
||||
const OtherPacket ps = pset1<OtherPacket>(s);
|
||||
conj_helper<OtherPacket,Packet,NumTraits<OtherScalar>::IsComplex,false> pcj;
|
||||
conj_helper<OtherPacket,Packet,false,false> pm;
|
||||
|
||||
for(Index i=0; i<alignedStart; ++i)
|
||||
{
|
||||
Scalar xi = x[i];
|
||||
Scalar yi = y[i];
|
||||
x[i] = c * xi + numext::conj(s) * yi;
|
||||
y[i] = -s * xi + numext::conj(c) * yi;
|
||||
}
|
||||
|
||||
Scalar* EIGEN_RESTRICT px = x + alignedStart;
|
||||
Scalar* EIGEN_RESTRICT py = y + alignedStart;
|
||||
|
||||
if(internal::first_default_aligned(x, size)==alignedStart)
|
||||
{
|
||||
for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
|
||||
{
|
||||
Packet xi = pload<Packet>(px);
|
||||
Packet yi = pload<Packet>(py);
|
||||
pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
|
||||
pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
|
||||
px += PacketSize;
|
||||
py += PacketSize;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
|
||||
for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
|
||||
{
|
||||
Packet xi = ploadu<Packet>(px);
|
||||
Packet xi1 = ploadu<Packet>(px+PacketSize);
|
||||
Packet yi = pload <Packet>(py);
|
||||
Packet yi1 = pload <Packet>(py+PacketSize);
|
||||
pstoreu(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
|
||||
pstoreu(px+PacketSize, padd(pm.pmul(pc,xi1),pcj.pmul(ps,yi1)));
|
||||
pstore (py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
|
||||
pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pm.pmul(ps,xi1)));
|
||||
px += Peeling*PacketSize;
|
||||
py += Peeling*PacketSize;
|
||||
}
|
||||
if(alignedEnd!=peelingEnd)
|
||||
{
|
||||
Packet xi = ploadu<Packet>(x+peelingEnd);
|
||||
Packet yi = pload <Packet>(y+peelingEnd);
|
||||
pstoreu(x+peelingEnd, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
|
||||
pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
|
||||
}
|
||||
}
|
||||
|
||||
for(Index i=alignedEnd; i<size; ++i)
|
||||
{
|
||||
Scalar xi = x[i];
|
||||
Scalar yi = y[i];
|
||||
x[i] = c * xi + numext::conj(s) * yi;
|
||||
y[i] = -s * xi + numext::conj(c) * yi;
|
||||
}
|
||||
}
|
||||
|
||||
/*** fixed-size vectorized path ***/
|
||||
else if(SizeAtCompileTime != Dynamic && MinAlignment>0) // FIXME should be compared to the required alignment
|
||||
{
|
||||
const OtherPacket pc = pset1<OtherPacket>(c);
|
||||
const OtherPacket ps = pset1<OtherPacket>(s);
|
||||
conj_helper<OtherPacket,Packet,NumTraits<OtherPacket>::IsComplex,false> pcj;
|
||||
conj_helper<OtherPacket,Packet,false,false> pm;
|
||||
Scalar* EIGEN_RESTRICT px = x;
|
||||
Scalar* EIGEN_RESTRICT py = y;
|
||||
for(Index i=0; i<size; i+=PacketSize)
|
||||
{
|
||||
Packet xi = pload<Packet>(px);
|
||||
Packet yi = pload<Packet>(py);
|
||||
pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
|
||||
pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
|
||||
px += PacketSize;
|
||||
py += PacketSize;
|
||||
}
|
||||
}
|
||||
|
||||
/*** non-vectorized path ***/
|
||||
else
|
||||
{
|
||||
apply_rotation_in_the_plane_selector<Scalar,OtherScalar,SizeAtCompileTime,MinAlignment,false>::run(x,incrx,y,incry,size,c,s);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename VectorX, typename VectorY, typename OtherScalar>
|
||||
void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j)
|
||||
{
|
||||
typedef typename VectorX::Scalar Scalar;
|
||||
enum { PacketSize = packet_traits<Scalar>::size };
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
const bool Vectorizable = (VectorX::Flags & VectorY::Flags & PacketAccessBit)
|
||||
&& (int(packet_traits<Scalar>::size) == int(packet_traits<OtherScalar>::size));
|
||||
|
||||
eigen_assert(xpr_x.size() == xpr_y.size());
|
||||
Index size = xpr_x.size();
|
||||
Index incrx = xpr_x.derived().innerStride();
|
||||
@ -317,113 +449,11 @@ void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x
|
||||
if (c==OtherScalar(1) && s==OtherScalar(0))
|
||||
return;
|
||||
|
||||
/*** dynamic-size vectorized paths ***/
|
||||
|
||||
if(VectorX::SizeAtCompileTime == Dynamic &&
|
||||
(VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
|
||||
((incrx==1 && incry==1) || PacketSize == 1))
|
||||
{
|
||||
// both vectors are sequentially stored in memory => vectorization
|
||||
enum { Peeling = 2 };
|
||||
|
||||
Index alignedStart = internal::first_default_aligned(y, size);
|
||||
Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
|
||||
|
||||
const Packet pc = pset1<Packet>(c);
|
||||
const Packet ps = pset1<Packet>(s);
|
||||
conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;
|
||||
|
||||
for(Index i=0; i<alignedStart; ++i)
|
||||
{
|
||||
Scalar xi = x[i];
|
||||
Scalar yi = y[i];
|
||||
x[i] = c * xi + numext::conj(s) * yi;
|
||||
y[i] = -s * xi + numext::conj(c) * yi;
|
||||
}
|
||||
|
||||
Scalar* EIGEN_RESTRICT px = x + alignedStart;
|
||||
Scalar* EIGEN_RESTRICT py = y + alignedStart;
|
||||
|
||||
if(internal::first_default_aligned(x, size)==alignedStart)
|
||||
{
|
||||
for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
|
||||
{
|
||||
Packet xi = pload<Packet>(px);
|
||||
Packet yi = pload<Packet>(py);
|
||||
pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
|
||||
pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
|
||||
px += PacketSize;
|
||||
py += PacketSize;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
|
||||
for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
|
||||
{
|
||||
Packet xi = ploadu<Packet>(px);
|
||||
Packet xi1 = ploadu<Packet>(px+PacketSize);
|
||||
Packet yi = pload <Packet>(py);
|
||||
Packet yi1 = pload <Packet>(py+PacketSize);
|
||||
pstoreu(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
|
||||
pstoreu(px+PacketSize, padd(pmul(pc,xi1),pcj.pmul(ps,yi1)));
|
||||
pstore (py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
|
||||
pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pmul(ps,xi1)));
|
||||
px += Peeling*PacketSize;
|
||||
py += Peeling*PacketSize;
|
||||
}
|
||||
if(alignedEnd!=peelingEnd)
|
||||
{
|
||||
Packet xi = ploadu<Packet>(x+peelingEnd);
|
||||
Packet yi = pload <Packet>(y+peelingEnd);
|
||||
pstoreu(x+peelingEnd, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
|
||||
pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
|
||||
}
|
||||
}
|
||||
|
||||
for(Index i=alignedEnd; i<size; ++i)
|
||||
{
|
||||
Scalar xi = x[i];
|
||||
Scalar yi = y[i];
|
||||
x[i] = c * xi + numext::conj(s) * yi;
|
||||
y[i] = -s * xi + numext::conj(c) * yi;
|
||||
}
|
||||
}
|
||||
|
||||
/*** fixed-size vectorized path ***/
|
||||
else if(VectorX::SizeAtCompileTime != Dynamic &&
|
||||
(VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
|
||||
(EIGEN_PLAIN_ENUM_MIN(evaluator<VectorX>::Alignment, evaluator<VectorY>::Alignment)>0)) // FIXME should be compared to the required alignment
|
||||
{
|
||||
const Packet pc = pset1<Packet>(c);
|
||||
const Packet ps = pset1<Packet>(s);
|
||||
conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;
|
||||
Scalar* EIGEN_RESTRICT px = x;
|
||||
Scalar* EIGEN_RESTRICT py = y;
|
||||
for(Index i=0; i<size; i+=PacketSize)
|
||||
{
|
||||
Packet xi = pload<Packet>(px);
|
||||
Packet yi = pload<Packet>(py);
|
||||
pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
|
||||
pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
|
||||
px += PacketSize;
|
||||
py += PacketSize;
|
||||
}
|
||||
}
|
||||
|
||||
/*** non-vectorized path ***/
|
||||
else
|
||||
{
|
||||
for(Index i=0; i<size; ++i)
|
||||
{
|
||||
Scalar xi = *x;
|
||||
Scalar yi = *y;
|
||||
*x = c * xi + numext::conj(s) * yi;
|
||||
*y = -s * xi + numext::conj(c) * yi;
|
||||
x += incrx;
|
||||
y += incry;
|
||||
}
|
||||
}
|
||||
apply_rotation_in_the_plane_selector<
|
||||
Scalar,OtherScalar,
|
||||
VectorX::SizeAtCompileTime,
|
||||
EIGEN_PLAIN_ENUM_MIN(evaluator<VectorX>::Alignment, evaluator<VectorY>::Alignment),
|
||||
Vectorizable>::run(x,incrx,y,incry,size,c,s);
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
@ -404,7 +404,7 @@ inline void MatrixBase<Derived>::computeInverseWithCheck(
|
||||
const RealScalar& absDeterminantThreshold
|
||||
) const
|
||||
{
|
||||
RealScalar determinant;
|
||||
Scalar determinant;
|
||||
// i'd love to put some static assertions there, but SFINAE means that they have no effect...
|
||||
eigen_assert(rows() == cols());
|
||||
computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
|
||||
|
@ -1004,7 +1004,7 @@ static IndexType find_ordering /* return the number of garbage collections */
|
||||
COLAMD_ASSERT (head [min_score] >= COLAMD_EMPTY) ;
|
||||
|
||||
/* get pivot column from head of minimum degree list */
|
||||
while (head [min_score] == COLAMD_EMPTY && min_score < n_col)
|
||||
while (min_score < n_col && head [min_score] == COLAMD_EMPTY)
|
||||
{
|
||||
min_score++ ;
|
||||
}
|
||||
|
@ -64,28 +64,28 @@ namespace internal
|
||||
typedef typename _MatrixType::StorageIndex StorageIndex;
|
||||
};
|
||||
|
||||
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm)
|
||||
inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm)
|
||||
{
|
||||
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
||||
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
||||
s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
|
||||
}
|
||||
|
||||
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm)
|
||||
inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm)
|
||||
{
|
||||
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
||||
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
||||
d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
|
||||
}
|
||||
|
||||
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm)
|
||||
inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm)
|
||||
{
|
||||
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
||||
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
||||
c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_COMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_COMPLEX*>(x), nbrhs, iparm, dparm);
|
||||
}
|
||||
|
||||
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm)
|
||||
inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm)
|
||||
{
|
||||
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
||||
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
||||
|
@ -506,8 +506,8 @@ void ColPivHouseholderQR<MatrixType>::computeInPlace()
|
||||
m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k);
|
||||
}
|
||||
|
||||
RealScalar threshold_helper = numext::abs2<Scalar>(m_colNormsUpdated.maxCoeff() * NumTraits<Scalar>::epsilon()) / RealScalar(rows);
|
||||
RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<Scalar>::epsilon());
|
||||
RealScalar threshold_helper = numext::abs2<RealScalar>(m_colNormsUpdated.maxCoeff() * NumTraits<RealScalar>::epsilon()) / RealScalar(rows);
|
||||
RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<RealScalar>::epsilon());
|
||||
|
||||
m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
|
||||
m_maxpivot = RealScalar(0);
|
||||
@ -553,12 +553,12 @@ void ColPivHouseholderQR<MatrixType>::computeInPlace()
|
||||
// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
|
||||
// and used in LAPACK routines xGEQPF and xGEQP3.
|
||||
// See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html
|
||||
if (m_colNormsUpdated.coeffRef(j) != 0) {
|
||||
if (m_colNormsUpdated.coeffRef(j) != RealScalar(0)) {
|
||||
RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j);
|
||||
temp = (RealScalar(1) + temp) * (RealScalar(1) - temp);
|
||||
temp = temp < 0 ? 0 : temp;
|
||||
RealScalar temp2 = temp * numext::abs2<Scalar>(m_colNormsUpdated.coeffRef(j) /
|
||||
m_colNormsDirect.coeffRef(j));
|
||||
temp = temp < RealScalar(0) ? RealScalar(0) : temp;
|
||||
RealScalar temp2 = temp * numext::abs2<RealScalar>(m_colNormsUpdated.coeffRef(j) /
|
||||
m_colNormsDirect.coeffRef(j));
|
||||
if (temp2 <= norm_downdate_threshold) {
|
||||
// The updated norm has become too inaccurate so re-compute the column
|
||||
// norm directly.
|
||||
|
@ -11,7 +11,7 @@
|
||||
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
|
||||
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
|
||||
// Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||
// Copyright (C) 2014-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2014-2017 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
@ -77,6 +77,7 @@ public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef typename NumTraits<RealScalar>::Literal Literal;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
@ -259,7 +260,7 @@ BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsign
|
||||
|
||||
//**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows
|
||||
RealScalar scale = matrix.cwiseAbs().maxCoeff();
|
||||
if(scale==RealScalar(0)) scale = RealScalar(1);
|
||||
if(scale==Literal(0)) scale = Literal(1);
|
||||
MatrixX copy;
|
||||
if (m_isTranspose) copy = matrix.adjoint()/scale;
|
||||
else copy = matrix/scale;
|
||||
@ -351,13 +352,13 @@ void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, co
|
||||
Index k1=0, k2=0;
|
||||
for(Index j=0; j<n; ++j)
|
||||
{
|
||||
if( (A.col(j).head(n1).array()!=0).any() )
|
||||
if( (A.col(j).head(n1).array()!=Literal(0)).any() )
|
||||
{
|
||||
A1.col(k1) = A.col(j).head(n1);
|
||||
B1.row(k1) = B.row(j);
|
||||
++k1;
|
||||
}
|
||||
if( (A.col(j).tail(n2).array()!=0).any() )
|
||||
if( (A.col(j).tail(n2).array()!=Literal(0)).any() )
|
||||
{
|
||||
A2.col(k2) = A.col(j).tail(n2);
|
||||
B2.row(k2) = B.row(j);
|
||||
@ -449,11 +450,11 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
|
||||
l = m_naiveU.row(1).segment(firstCol, k);
|
||||
f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
|
||||
}
|
||||
if (m_compV) m_naiveV(firstRowW+k, firstColW) = 1;
|
||||
if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1);
|
||||
if (r0<considerZero)
|
||||
{
|
||||
c0 = 1;
|
||||
s0 = 0;
|
||||
c0 = Literal(1);
|
||||
s0 = Literal(0);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -574,7 +575,7 @@ void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, Vec
|
||||
ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n);
|
||||
m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal();
|
||||
ArrayRef diag = m_workspace.head(n);
|
||||
diag(0) = 0;
|
||||
diag(0) = Literal(0);
|
||||
|
||||
// Allocate space for singular values and vectors
|
||||
singVals.resize(n);
|
||||
@ -590,7 +591,7 @@ void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, Vec
|
||||
// but others are interleaved and we must ignore them at this stage.
|
||||
// To this end, let's compute a permutation skipping them:
|
||||
Index actual_n = n;
|
||||
while(actual_n>1 && diag(actual_n-1)==0) --actual_n;
|
||||
while(actual_n>1 && diag(actual_n-1)==Literal(0)) --actual_n;
|
||||
Index m = 0; // size of the deflated problem
|
||||
for(Index k=0;k<actual_n;++k)
|
||||
if(abs(col0(k))>considerZero)
|
||||
@ -691,11 +692,13 @@ template <typename MatrixType>
|
||||
typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
|
||||
{
|
||||
Index m = perm.size();
|
||||
RealScalar res = 1;
|
||||
RealScalar res = Literal(1);
|
||||
for(Index i=0; i<m; ++i)
|
||||
{
|
||||
Index j = perm(i);
|
||||
res += numext::abs2(col0(j)) / ((diagShifted(j) - mu) * (diag(j) + shift + mu));
|
||||
// The following expression could be rewritten to involve only a single division,
|
||||
// but this would make the expression more sensitive to overflow.
|
||||
res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu));
|
||||
}
|
||||
return res;
|
||||
|
||||
@ -707,19 +710,22 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
{
|
||||
using std::abs;
|
||||
using std::swap;
|
||||
using std::sqrt;
|
||||
|
||||
Index n = col0.size();
|
||||
Index actual_n = n;
|
||||
while(actual_n>1 && col0(actual_n-1)==0) --actual_n;
|
||||
// Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above
|
||||
// because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value.
|
||||
while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n;
|
||||
|
||||
for (Index k = 0; k < n; ++k)
|
||||
{
|
||||
if (col0(k) == 0 || actual_n==1)
|
||||
if (col0(k) == Literal(0) || actual_n==1)
|
||||
{
|
||||
// if col0(k) == 0, then entry is deflated, so singular value is on diagonal
|
||||
// if actual_n==1, then the deflated problem is already diagonalized
|
||||
singVals(k) = k==0 ? col0(0) : diag(k);
|
||||
mus(k) = 0;
|
||||
mus(k) = Literal(0);
|
||||
shifts(k) = k==0 ? col0(0) : diag(k);
|
||||
continue;
|
||||
}
|
||||
@ -731,15 +737,17 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
right = (diag(actual_n-1) + col0.matrix().norm());
|
||||
else
|
||||
{
|
||||
// Skip deflated singular values
|
||||
// Skip deflated singular values,
|
||||
// recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside.
|
||||
// This should be equivalent to using perm[]
|
||||
Index l = k+1;
|
||||
while(col0(l)==0) { ++l; eigen_internal_assert(l<actual_n); }
|
||||
while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); }
|
||||
right = diag(l);
|
||||
}
|
||||
|
||||
// first decide whether it's closer to the left end or the right end
|
||||
RealScalar mid = left + (right-left) / 2;
|
||||
RealScalar fMid = secularEq(mid, col0, diag, perm, diag, 0);
|
||||
RealScalar mid = left + (right-left) / Literal(2);
|
||||
RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0));
|
||||
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
||||
std::cout << right-left << "\n";
|
||||
std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, diag-left, left) << " " << secularEq(mid-right, col0, diag, perm, diag-right, right) << "\n";
|
||||
@ -755,7 +763,7 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
<< " " << secularEq(0.8*(left+right), col0, diag, perm, diag, 0)
|
||||
<< " " << secularEq(0.9*(left+right), col0, diag, perm, diag, 0) << "\n";
|
||||
#endif
|
||||
RealScalar shift = (k == actual_n-1 || fMid > 0) ? left : right;
|
||||
RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right;
|
||||
|
||||
// measure everything relative to shift
|
||||
Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n);
|
||||
@ -785,13 +793,13 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
|
||||
// rational interpolation: fit a function of the form a / mu + b through the two previous
|
||||
// iterates and use its zero to compute the next iterate
|
||||
bool useBisection = fPrev*fCur>0;
|
||||
while (fCur!=0 && abs(muCur - muPrev) > 8 * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
|
||||
bool useBisection = fPrev*fCur>Literal(0);
|
||||
while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
|
||||
{
|
||||
++m_numIters;
|
||||
|
||||
// Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples.
|
||||
RealScalar a = (fCur - fPrev) / (1/muCur - 1/muPrev);
|
||||
RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev);
|
||||
RealScalar b = fCur - a / muCur;
|
||||
// And find mu such that f(mu)==0:
|
||||
RealScalar muZero = -a/b;
|
||||
@ -803,8 +811,8 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
fCur = fZero;
|
||||
|
||||
|
||||
if (shift == left && (muCur < 0 || muCur > right - left)) useBisection = true;
|
||||
if (shift == right && (muCur < -(right - left) || muCur > 0)) useBisection = true;
|
||||
if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true;
|
||||
if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true;
|
||||
if (abs(fCur)>abs(fPrev)) useBisection = true;
|
||||
}
|
||||
|
||||
@ -817,15 +825,23 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
RealScalar leftShifted, rightShifted;
|
||||
if (shift == left)
|
||||
{
|
||||
leftShifted = (std::numeric_limits<RealScalar>::min)();
|
||||
// to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)),
|
||||
// the factor 2 is to be more conservative
|
||||
leftShifted = numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
|
||||
|
||||
// check that we did it right:
|
||||
eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) );
|
||||
// I don't understand why the case k==0 would be special there:
|
||||
// if (k == 0) rightShifted = right - left; else
|
||||
rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.6)); // theoretically we can take 0.5, but let's be safe
|
||||
rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe
|
||||
}
|
||||
else
|
||||
{
|
||||
leftShifted = -(right - left) * RealScalar(0.6);
|
||||
rightShifted = -(std::numeric_limits<RealScalar>::min)();
|
||||
leftShifted = -(right - left) * RealScalar(0.51);
|
||||
if(k+1<n)
|
||||
rightShifted = -numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
|
||||
else
|
||||
rightShifted = -(std::numeric_limits<RealScalar>::min)();
|
||||
}
|
||||
|
||||
RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);
|
||||
@ -841,13 +857,13 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
std::cout << k << " : " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; " << left << " - " << right << " -> " << leftShifted << " " << rightShifted << " shift=" << shift << "\n";
|
||||
}
|
||||
#endif
|
||||
eigen_internal_assert(fLeft * fRight < 0);
|
||||
eigen_internal_assert(fLeft * fRight < Literal(0));
|
||||
|
||||
while (rightShifted - leftShifted > 2 * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
|
||||
while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
|
||||
{
|
||||
RealScalar midShifted = (leftShifted + rightShifted) / 2;
|
||||
RealScalar midShifted = (leftShifted + rightShifted) / Literal(2);
|
||||
fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
|
||||
if (fLeft * fMid < 0)
|
||||
if (fLeft * fMid < Literal(0))
|
||||
{
|
||||
rightShifted = midShifted;
|
||||
}
|
||||
@ -858,7 +874,7 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
}
|
||||
}
|
||||
|
||||
muCur = (leftShifted + rightShifted) / 2;
|
||||
muCur = (leftShifted + rightShifted) / Literal(2);
|
||||
}
|
||||
|
||||
singVals[k] = shift + muCur;
|
||||
@ -892,8 +908,8 @@ void BDCSVD<MatrixType>::perturbCol0
|
||||
// The offset permits to skip deflated entries while computing zhat
|
||||
for (Index k = 0; k < n; ++k)
|
||||
{
|
||||
if (col0(k) == 0) // deflated
|
||||
zhat(k) = 0;
|
||||
if (col0(k) == Literal(0)) // deflated
|
||||
zhat(k) = Literal(0);
|
||||
else
|
||||
{
|
||||
// see equation (3.6)
|
||||
@ -918,7 +934,7 @@ void BDCSVD<MatrixType>::perturbCol0
|
||||
std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(last) + dk) << " * " << mus(last) + shifts(last) << " - " << dk << "\n";
|
||||
#endif
|
||||
RealScalar tmp = sqrt(prod);
|
||||
zhat(k) = col0(k) > 0 ? tmp : -tmp;
|
||||
zhat(k) = col0(k) > Literal(0) ? tmp : -tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -934,7 +950,7 @@ void BDCSVD<MatrixType>::computeSingVecs
|
||||
|
||||
for (Index k = 0; k < n; ++k)
|
||||
{
|
||||
if (zhat(k) == 0)
|
||||
if (zhat(k) == Literal(0))
|
||||
{
|
||||
U.col(k) = VectorType::Unit(n+1, k);
|
||||
if (m_compV) V.col(k) = VectorType::Unit(n, k);
|
||||
@ -947,7 +963,7 @@ void BDCSVD<MatrixType>::computeSingVecs
|
||||
Index i = perm(l);
|
||||
U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
|
||||
}
|
||||
U(n,k) = 0;
|
||||
U(n,k) = Literal(0);
|
||||
U.col(k).normalize();
|
||||
|
||||
if (m_compV)
|
||||
@ -958,7 +974,7 @@ void BDCSVD<MatrixType>::computeSingVecs
|
||||
Index i = perm(l);
|
||||
V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
|
||||
}
|
||||
V(0,k) = -1;
|
||||
V(0,k) = Literal(-1);
|
||||
V.col(k).normalize();
|
||||
}
|
||||
}
|
||||
@ -979,15 +995,15 @@ void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index
|
||||
Index start = firstCol + shift;
|
||||
RealScalar c = m_computed(start, start);
|
||||
RealScalar s = m_computed(start+i, start);
|
||||
RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
|
||||
if (r == 0)
|
||||
RealScalar r = numext::hypot(c,s);
|
||||
if (r == Literal(0))
|
||||
{
|
||||
m_computed(start+i, start+i) = 0;
|
||||
m_computed(start+i, start+i) = Literal(0);
|
||||
return;
|
||||
}
|
||||
m_computed(start,start) = r;
|
||||
m_computed(start+i, start) = 0;
|
||||
m_computed(start+i, start+i) = 0;
|
||||
m_computed(start+i, start) = Literal(0);
|
||||
m_computed(start+i, start+i) = Literal(0);
|
||||
|
||||
JacobiRotation<RealScalar> J(c/r,-s/r);
|
||||
if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J);
|
||||
@ -1020,7 +1036,7 @@ void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index fi
|
||||
<< m_computed(firstColm + i+1, firstColm+i+1) << " "
|
||||
<< m_computed(firstColm + i+2, firstColm+i+2) << "\n";
|
||||
#endif
|
||||
if (r==0)
|
||||
if (r==Literal(0))
|
||||
{
|
||||
m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
|
||||
return;
|
||||
@ -1029,7 +1045,7 @@ void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index fi
|
||||
s/=r;
|
||||
m_computed(firstColm + i, firstColm) = r;
|
||||
m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
|
||||
m_computed(firstColm + j, firstColm) = 0;
|
||||
m_computed(firstColm + j, firstColm) = Literal(0);
|
||||
|
||||
JacobiRotation<RealScalar> J(c,-s);
|
||||
if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
|
||||
@ -1053,7 +1069,7 @@ void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index
|
||||
const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
|
||||
RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
|
||||
RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag);
|
||||
RealScalar epsilon_coarse = 8 * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
|
||||
RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
|
||||
|
||||
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
|
||||
assert(m_naiveU.allFinite());
|
||||
@ -1081,7 +1097,7 @@ void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index
|
||||
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
||||
std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n";
|
||||
#endif
|
||||
col0(i) = 0;
|
||||
col0(i) = Literal(0);
|
||||
}
|
||||
|
||||
//condition 4.3
|
||||
|
@ -61,9 +61,10 @@ JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPiv
|
||||
u = (LAPACKE_TYPE*)m_matrixU.data(); \
|
||||
} else { ldu=1; u=&dummy; }\
|
||||
MatrixType localV; \
|
||||
ldvt = (m_computeFullV) ? internal::convert_index<lapack_int>(m_cols) : (m_computeThinV) ? internal::convert_index<lapack_int>(m_diagSize) : 1; \
|
||||
lapack_int vt_rows = (m_computeFullV) ? internal::convert_index<lapack_int>(m_cols) : (m_computeThinV) ? internal::convert_index<lapack_int>(m_diagSize) : 1; \
|
||||
if (computeV()) { \
|
||||
localV.resize(ldvt, m_cols); \
|
||||
localV.resize(vt_rows, m_cols); \
|
||||
ldvt = internal::convert_index<lapack_int>(localV.outerStride()); \
|
||||
vt = (LAPACKE_TYPE*)localV.data(); \
|
||||
} else { ldvt=1; vt=&dummy; }\
|
||||
Matrix<LAPACKE_RTYPE, Dynamic, Dynamic> superb; superb.resize(m_diagSize, 1); \
|
||||
|
@ -159,6 +159,8 @@ void upperbidiagonalization_blocked_helper(MatrixType& A,
|
||||
traits<MatrixType>::Flags & RowMajorBit> > Y)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename NumTraits<RealScalar>::Literal Literal;
|
||||
enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
|
||||
typedef InnerStride<int(StorageOrder) == int(ColMajor) ? 1 : Dynamic> ColInnerStride;
|
||||
typedef InnerStride<int(StorageOrder) == int(ColMajor) ? Dynamic : 1> RowInnerStride;
|
||||
@ -263,7 +265,7 @@ void upperbidiagonalization_blocked_helper(MatrixType& A,
|
||||
SubMatType A10( A.block(bs,0, brows-bs,bs) );
|
||||
SubMatType A01( A.block(0,bs, bs,bcols-bs) );
|
||||
Scalar tmp = A01(bs-1,0);
|
||||
A01(bs-1,0) = 1;
|
||||
A01(bs-1,0) = Literal(1);
|
||||
A11.noalias() -= A10 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint();
|
||||
A11.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A01;
|
||||
A01(bs-1,0) = tmp;
|
||||
|
@ -94,7 +94,7 @@ class AmbiVector
|
||||
Index allocSize = m_allocatedElements * sizeof(ListEl);
|
||||
allocSize = (allocSize + sizeof(Scalar) - 1)/sizeof(Scalar);
|
||||
Scalar* newBuffer = new Scalar[allocSize];
|
||||
memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl));
|
||||
std::memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl));
|
||||
delete[] m_buffer;
|
||||
m_buffer = newBuffer;
|
||||
}
|
||||
|
@ -17,7 +17,9 @@ namespace internal {
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, bool sortedInsertion = false)
|
||||
{
|
||||
typedef typename remove_all<Lhs>::type::Scalar Scalar;
|
||||
typedef typename remove_all<Lhs>::type::Scalar LhsScalar;
|
||||
typedef typename remove_all<Rhs>::type::Scalar RhsScalar;
|
||||
typedef typename remove_all<ResultType>::type::Scalar ResScalar;
|
||||
|
||||
// make sure to call innerSize/outerSize since we fake the storage order.
|
||||
Index rows = lhs.innerSize();
|
||||
@ -25,7 +27,7 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
|
||||
eigen_assert(lhs.outerSize() == rhs.innerSize());
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(bool, mask, rows, 0);
|
||||
ei_declare_aligned_stack_constructed_variable(Scalar, values, rows, 0);
|
||||
ei_declare_aligned_stack_constructed_variable(ResScalar, values, rows, 0);
|
||||
ei_declare_aligned_stack_constructed_variable(Index, indices, rows, 0);
|
||||
|
||||
std::memset(mask,0,sizeof(bool)*rows);
|
||||
@ -51,12 +53,12 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
|
||||
Index nnz = 0;
|
||||
for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt)
|
||||
{
|
||||
Scalar y = rhsIt.value();
|
||||
RhsScalar y = rhsIt.value();
|
||||
Index k = rhsIt.index();
|
||||
for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt)
|
||||
{
|
||||
Index i = lhsIt.index();
|
||||
Scalar x = lhsIt.value();
|
||||
LhsScalar x = lhsIt.value();
|
||||
if(!mask[i])
|
||||
{
|
||||
mask[i] = true;
|
||||
@ -166,11 +168,12 @@ struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,C
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix;
|
||||
RowMajorMatrix rhsRow = rhs;
|
||||
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
|
||||
res = resRow;
|
||||
typedef SparseMatrix<typename Rhs::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRhs;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRes;
|
||||
RowMajorRhs rhsRow = rhs;
|
||||
RowMajorRes resRow(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<RowMajorRhs,Lhs,RowMajorRes>(rhsRow, lhs, resRow);
|
||||
res = resRow;
|
||||
}
|
||||
};
|
||||
|
||||
@ -179,10 +182,11 @@ struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,R
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix;
|
||||
RowMajorMatrix lhsRow = lhs;
|
||||
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
|
||||
typedef SparseMatrix<typename Lhs::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorLhs;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRes;
|
||||
RowMajorLhs lhsRow = lhs;
|
||||
RowMajorRes resRow(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorLhs,RowMajorRes>(rhs, lhsRow, resRow);
|
||||
res = resRow;
|
||||
}
|
||||
};
|
||||
@ -219,10 +223,11 @@ struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,C
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix;
|
||||
ColMajorMatrix lhsCol = lhs;
|
||||
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
|
||||
typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorLhs;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRes;
|
||||
ColMajorLhs lhsCol = lhs;
|
||||
ColMajorRes resCol(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<ColMajorLhs,Rhs,ColMajorRes>(lhsCol, rhs, resCol);
|
||||
res = resCol;
|
||||
}
|
||||
};
|
||||
@ -232,10 +237,11 @@ struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,R
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix;
|
||||
ColMajorMatrix rhsCol = rhs;
|
||||
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
|
||||
typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRhs;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRes;
|
||||
ColMajorRhs rhsCol = rhs;
|
||||
ColMajorRes resCol(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorRhs,ColMajorRes>(lhs, rhsCol, resCol);
|
||||
res = resCol;
|
||||
}
|
||||
};
|
||||
@ -263,7 +269,8 @@ namespace internal {
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
static void sparse_sparse_to_dense_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef typename remove_all<Lhs>::type::Scalar Scalar;
|
||||
typedef typename remove_all<Lhs>::type::Scalar LhsScalar;
|
||||
typedef typename remove_all<Rhs>::type::Scalar RhsScalar;
|
||||
Index cols = rhs.outerSize();
|
||||
eigen_assert(lhs.outerSize() == rhs.innerSize());
|
||||
|
||||
@ -274,12 +281,12 @@ static void sparse_sparse_to_dense_product_impl(const Lhs& lhs, const Rhs& rhs,
|
||||
{
|
||||
for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt)
|
||||
{
|
||||
Scalar y = rhsIt.value();
|
||||
RhsScalar y = rhsIt.value();
|
||||
Index k = rhsIt.index();
|
||||
for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt)
|
||||
{
|
||||
Index i = lhsIt.index();
|
||||
Scalar x = lhsIt.value();
|
||||
LhsScalar x = lhsIt.value();
|
||||
res.coeffRef(i,j) += x * y;
|
||||
}
|
||||
}
|
||||
@ -310,9 +317,9 @@ struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMa
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix;
|
||||
ColMajorMatrix lhsCol(lhs);
|
||||
internal::sparse_sparse_to_dense_product_impl<ColMajorMatrix,Rhs,ResultType>(lhsCol, rhs, res);
|
||||
typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorLhs;
|
||||
ColMajorLhs lhsCol(lhs);
|
||||
internal::sparse_sparse_to_dense_product_impl<ColMajorLhs,Rhs,ResultType>(lhsCol, rhs, res);
|
||||
}
|
||||
};
|
||||
|
||||
@ -321,9 +328,9 @@ struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMa
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix;
|
||||
ColMajorMatrix rhsCol(rhs);
|
||||
internal::sparse_sparse_to_dense_product_impl<Lhs,ColMajorMatrix,ResultType>(lhs, rhsCol, res);
|
||||
typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRhs;
|
||||
ColMajorRhs rhsCol(rhs);
|
||||
internal::sparse_sparse_to_dense_product_impl<Lhs,ColMajorRhs,ResultType>(lhs, rhsCol, res);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -47,6 +47,7 @@ template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView
|
||||
|
||||
enum {
|
||||
Mode = _Mode,
|
||||
TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0),
|
||||
RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime
|
||||
};
|
||||
@ -310,7 +311,7 @@ inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, cons
|
||||
while (i && i.index()<j) ++i;
|
||||
if(i && i.index()==j)
|
||||
{
|
||||
res(j,k) += alpha * i.value() * rhs(j,k);
|
||||
res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k);
|
||||
++i;
|
||||
}
|
||||
}
|
||||
@ -323,14 +324,14 @@ inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, cons
|
||||
{
|
||||
LhsScalar lhs_ij = i.value();
|
||||
if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij);
|
||||
res_j += lhs_ij * rhs(i.index(),k);
|
||||
res_j += lhs_ij * rhs.coeff(i.index(),k);
|
||||
res(i.index(),k) += numext::conj(lhs_ij) * rhs_j;
|
||||
}
|
||||
res(j,k) += alpha * res_j;
|
||||
res.coeffRef(j,k) += alpha * res_j;
|
||||
|
||||
// handle diagonal coeff
|
||||
if (ProcessFirstHalf && i && (i.index()==j))
|
||||
res(j,k) += alpha * i.value() * rhs(j,k);
|
||||
res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -368,7 +369,7 @@ struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, Pr
|
||||
|
||||
// transpose everything
|
||||
Transpose<Dest> dstT(dst);
|
||||
internal::sparse_selfadjoint_time_dense_product<RhsView::Mode>(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
|
||||
internal::sparse_selfadjoint_time_dense_product<RhsView::TransposeMode>(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -21,7 +21,8 @@ static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& r
|
||||
{
|
||||
// return sparse_sparse_product_with_pruning_impl2(lhs,rhs,res);
|
||||
|
||||
typedef typename remove_all<Lhs>::type::Scalar Scalar;
|
||||
typedef typename remove_all<Rhs>::type::Scalar RhsScalar;
|
||||
typedef typename remove_all<ResultType>::type::Scalar ResScalar;
|
||||
typedef typename remove_all<Lhs>::type::StorageIndex StorageIndex;
|
||||
|
||||
// make sure to call innerSize/outerSize since we fake the storage order.
|
||||
@ -31,7 +32,7 @@ static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& r
|
||||
eigen_assert(lhs.outerSize() == rhs.innerSize());
|
||||
|
||||
// allocate a temporary buffer
|
||||
AmbiVector<Scalar,StorageIndex> tempVector(rows);
|
||||
AmbiVector<ResScalar,StorageIndex> tempVector(rows);
|
||||
|
||||
// mimics a resizeByInnerOuter:
|
||||
if(ResultType::IsRowMajor)
|
||||
@ -63,14 +64,14 @@ static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& r
|
||||
{
|
||||
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
|
||||
tempVector.restart();
|
||||
Scalar x = rhsIt.value();
|
||||
RhsScalar x = rhsIt.value();
|
||||
for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, rhsIt.index()); lhsIt; ++lhsIt)
|
||||
{
|
||||
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
|
||||
}
|
||||
}
|
||||
res.startVec(j);
|
||||
for (typename AmbiVector<Scalar,StorageIndex>::Iterator it(tempVector,tolerance); it; ++it)
|
||||
for (typename AmbiVector<ResScalar,StorageIndex>::Iterator it(tempVector,tolerance); it; ++it)
|
||||
res.insertBackByOuterInner(j,it.index()) = it.value();
|
||||
}
|
||||
res.finalize();
|
||||
@ -85,7 +86,6 @@ struct sparse_sparse_product_with_pruning_selector;
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
||||
{
|
||||
typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
@ -129,8 +129,8 @@ struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,R
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs;
|
||||
typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs;
|
||||
typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs;
|
||||
ColMajorMatrixLhs colLhs(lhs);
|
||||
ColMajorMatrixRhs colRhs(rhs);
|
||||
internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs,ColMajorMatrixRhs,ResultType>(colLhs, colRhs, res, tolerance);
|
||||
@ -149,7 +149,7 @@ struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,R
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixLhs;
|
||||
typedef SparseMatrix<typename Lhs::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixLhs;
|
||||
RowMajorMatrixLhs rowLhs(lhs);
|
||||
sparse_sparse_product_with_pruning_selector<RowMajorMatrixLhs,Rhs,ResultType,RowMajor,RowMajor>(rowLhs,rhs,res,tolerance);
|
||||
}
|
||||
@ -161,7 +161,7 @@ struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,C
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixRhs;
|
||||
typedef SparseMatrix<typename Rhs::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixRhs;
|
||||
RowMajorMatrixRhs rowRhs(rhs);
|
||||
sparse_sparse_product_with_pruning_selector<Lhs,RowMajorMatrixRhs,ResultType,RowMajor,RowMajor,RowMajor>(lhs,rowRhs,res,tolerance);
|
||||
}
|
||||
@ -173,7 +173,7 @@ struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,R
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs;
|
||||
typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs;
|
||||
ColMajorMatrixRhs colRhs(rhs);
|
||||
internal::sparse_sparse_product_with_pruning_impl<Lhs,ColMajorMatrixRhs,ResultType>(lhs, colRhs, res, tolerance);
|
||||
}
|
||||
@ -185,7 +185,7 @@ struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,C
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs;
|
||||
typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs;
|
||||
ColMajorMatrixLhs colLhs(lhs);
|
||||
internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs,Rhs,ResultType>(colLhs, rhs, res, tolerance);
|
||||
}
|
||||
|
@ -52,7 +52,7 @@ namespace internal {
|
||||
* rank-revealing permutations. Use colsPermutation() to get it.
|
||||
*
|
||||
* Q is the orthogonal matrix represented as products of Householder reflectors.
|
||||
* Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
|
||||
* Use matrixQ() to get an expression and matrixQ().adjoint() to get the adjoint.
|
||||
* You can then apply it to a vector.
|
||||
*
|
||||
* R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient.
|
||||
@ -65,6 +65,7 @@ namespace internal {
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
* \warning For complex matrices matrixQ().transpose() will actually return the adjoint matrix.
|
||||
*
|
||||
*/
|
||||
template<typename _MatrixType, typename _OrderingType>
|
||||
@ -196,9 +197,9 @@ class SparseQR : public SparseSolverBase<SparseQR<_MatrixType,_OrderingType> >
|
||||
|
||||
Index rank = this->rank();
|
||||
|
||||
// Compute Q^T * b;
|
||||
// Compute Q^* * b;
|
||||
typename Dest::PlainObject y, b;
|
||||
y = this->matrixQ().transpose() * B;
|
||||
y = this->matrixQ().adjoint() * B;
|
||||
b = y;
|
||||
|
||||
// Solve with the triangular matrix R
|
||||
@ -604,7 +605,7 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
|
||||
// Get the references
|
||||
SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) :
|
||||
m_qr(qr),m_other(other),m_transpose(transpose) {}
|
||||
inline Index rows() const { return m_transpose ? m_qr.rows() : m_qr.cols(); }
|
||||
inline Index rows() const { return m_qr.matrixQ().rows(); }
|
||||
inline Index cols() const { return m_other.cols(); }
|
||||
|
||||
// Assign to a vector
|
||||
@ -632,7 +633,10 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
|
||||
}
|
||||
else
|
||||
{
|
||||
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
|
||||
eigen_assert(m_qr.matrixQ().cols() == m_other.rows() && "Non conforming object sizes");
|
||||
|
||||
res.conservativeResize(rows(), cols());
|
||||
|
||||
// Compute res = Q * other column by column
|
||||
for(Index j = 0; j < res.cols(); j++)
|
||||
{
|
||||
@ -641,7 +645,7 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
|
||||
Scalar tau = Scalar(0);
|
||||
tau = m_qr.m_Q.col(k).dot(res.col(j));
|
||||
if(tau==Scalar(0)) continue;
|
||||
tau = tau * m_qr.m_hcoeffs(k);
|
||||
tau = tau * numext::conj(m_qr.m_hcoeffs(k));
|
||||
res.col(j) -= tau * m_qr.m_Q.col(k);
|
||||
}
|
||||
}
|
||||
@ -650,7 +654,7 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
|
||||
|
||||
const SparseQRType& m_qr;
|
||||
const Derived& m_other;
|
||||
bool m_transpose;
|
||||
bool m_transpose; // TODO this actually means adjoint
|
||||
};
|
||||
|
||||
template<typename SparseQRType>
|
||||
@ -668,13 +672,14 @@ struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<Sp
|
||||
{
|
||||
return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(),false);
|
||||
}
|
||||
// To use for operations with the adjoint of Q
|
||||
SparseQRMatrixQTransposeReturnType<SparseQRType> adjoint() const
|
||||
{
|
||||
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
|
||||
}
|
||||
inline Index rows() const { return m_qr.rows(); }
|
||||
inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); }
|
||||
// To use for operations with the transpose of Q
|
||||
inline Index cols() const { return m_qr.rows(); }
|
||||
// To use for operations with the transpose of Q FIXME this is the same as adjoint at the moment
|
||||
SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
|
||||
{
|
||||
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
|
||||
@ -682,6 +687,7 @@ struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<Sp
|
||||
const SparseQRType& m_qr;
|
||||
};
|
||||
|
||||
// TODO this actually represents the adjoint of Q
|
||||
template<typename SparseQRType>
|
||||
struct SparseQRMatrixQTransposeReturnType
|
||||
{
|
||||
@ -712,7 +718,7 @@ struct Assignment<DstXprType, SparseQRMatrixQReturnType<SparseQRType>, internal:
|
||||
typedef typename DstXprType::StorageIndex StorageIndex;
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &/*func*/)
|
||||
{
|
||||
typename DstXprType::PlainObject idMat(src.m_qr.rows(), src.m_qr.rows());
|
||||
typename DstXprType::PlainObject idMat(src.rows(), src.cols());
|
||||
idMat.setIdentity();
|
||||
// Sort the sparse householder reflectors if needed
|
||||
const_cast<SparseQRType *>(&src.m_qr)->_sort_matrix_Q();
|
||||
|
@ -23,6 +23,24 @@ inline void umfpack_defaults(double control[UMFPACK_CONTROL], double)
|
||||
inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>)
|
||||
{ umfpack_zi_defaults(control); }
|
||||
|
||||
inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double)
|
||||
{ umfpack_di_report_info(control, info);}
|
||||
|
||||
inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>)
|
||||
{ umfpack_zi_report_info(control, info);}
|
||||
|
||||
inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double)
|
||||
{ umfpack_di_report_status(control, status);}
|
||||
|
||||
inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>)
|
||||
{ umfpack_zi_report_status(control, status);}
|
||||
|
||||
inline void umfpack_report_control(double control[UMFPACK_CONTROL], double)
|
||||
{ umfpack_di_report_control(control);}
|
||||
|
||||
inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>)
|
||||
{ umfpack_zi_report_control(control);}
|
||||
|
||||
inline void umfpack_free_numeric(void **Numeric, double)
|
||||
{ umfpack_di_free_numeric(Numeric); *Numeric = 0; }
|
||||
|
||||
@ -156,6 +174,7 @@ class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> >
|
||||
public:
|
||||
|
||||
typedef Array<double, UMFPACK_CONTROL, 1> UmfpackControl;
|
||||
typedef Array<double, UMFPACK_INFO, 1> UmfpackInfo;
|
||||
|
||||
UmfPackLU()
|
||||
: m_dummy(0,0), mp_matrix(m_dummy)
|
||||
@ -297,6 +316,34 @@ class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> >
|
||||
factorize_impl();
|
||||
}
|
||||
|
||||
/** Prints the current UmfPack control settings.
|
||||
*
|
||||
* \sa umfpackControl()
|
||||
*/
|
||||
void umfpackReportControl()
|
||||
{
|
||||
umfpack_report_control(m_control.data(), Scalar());
|
||||
}
|
||||
|
||||
/** Prints statistics collected by UmfPack.
|
||||
*
|
||||
* \sa analyzePattern(), compute()
|
||||
*/
|
||||
void umfpackReportInfo()
|
||||
{
|
||||
eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
|
||||
umfpack_report_info(m_control.data(), m_umfpackInfo.data(), Scalar());
|
||||
}
|
||||
|
||||
/** Prints the status of the previous factorization operation performed by UmfPack (symbolic or numerical factorization).
|
||||
*
|
||||
* \sa analyzePattern(), compute()
|
||||
*/
|
||||
void umfpackReportStatus() {
|
||||
eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
|
||||
umfpack_report_status(m_control.data(), m_fact_errorCode, Scalar());
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename BDerived,typename XDerived>
|
||||
bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
|
||||
@ -314,19 +361,19 @@ class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> >
|
||||
m_numeric = 0;
|
||||
m_symbolic = 0;
|
||||
m_extractedDataAreDirty = true;
|
||||
|
||||
umfpack_defaults(m_control.data(), Scalar());
|
||||
}
|
||||
|
||||
void analyzePattern_impl()
|
||||
{
|
||||
umfpack_defaults(m_control.data(), Scalar());
|
||||
int errorCode = 0;
|
||||
errorCode = umfpack_symbolic(internal::convert_index<int>(mp_matrix.rows()),
|
||||
internal::convert_index<int>(mp_matrix.cols()),
|
||||
mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
|
||||
&m_symbolic, m_control.data(), 0);
|
||||
m_fact_errorCode = umfpack_symbolic(internal::convert_index<int>(mp_matrix.rows()),
|
||||
internal::convert_index<int>(mp_matrix.cols()),
|
||||
mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
|
||||
&m_symbolic, m_control.data(), m_umfpackInfo.data());
|
||||
|
||||
m_isInitialized = true;
|
||||
m_info = errorCode ? InvalidInput : Success;
|
||||
m_info = m_fact_errorCode ? InvalidInput : Success;
|
||||
m_analysisIsOk = true;
|
||||
m_factorizationIsOk = false;
|
||||
m_extractedDataAreDirty = true;
|
||||
@ -334,8 +381,9 @@ class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> >
|
||||
|
||||
void factorize_impl()
|
||||
{
|
||||
|
||||
m_fact_errorCode = umfpack_numeric(mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
|
||||
m_symbolic, &m_numeric, m_control.data(), 0);
|
||||
m_symbolic, &m_numeric, m_control.data(), m_umfpackInfo.data());
|
||||
|
||||
m_info = m_fact_errorCode == UMFPACK_OK ? Success : NumericalIssue;
|
||||
m_factorizationIsOk = true;
|
||||
@ -362,6 +410,7 @@ class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> >
|
||||
mutable LUMatrixType m_l;
|
||||
int m_fact_errorCode;
|
||||
UmfpackControl m_control;
|
||||
mutable UmfpackInfo m_umfpackInfo;
|
||||
|
||||
mutable LUMatrixType m_u;
|
||||
mutable IntColVectorType m_p;
|
||||
@ -442,7 +491,7 @@ bool UmfPackLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBas
|
||||
x_ptr = &x.col(j).coeffRef(0);
|
||||
errorCode = umfpack_solve(UMFPACK_A,
|
||||
mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
|
||||
x_ptr, &b.const_cast_derived().col(j).coeffRef(0), m_numeric, m_control.data(), 0);
|
||||
x_ptr, &b.const_cast_derived().col(j).coeffRef(0), m_numeric, m_control.data(), m_umfpackInfo.data());
|
||||
if(x.innerStride()!=1)
|
||||
x.col(j) = x_tmp;
|
||||
if (errorCode!=0)
|
||||
|
@ -1,5 +1,5 @@
|
||||
THIS IS NOT THE COMPLETE EIGEN DISTRIBUTION. ONLY FILES NEEDED FOR COMPILING EIGEN INTO SLIC3R WERE PUT INTO THE SLIC3R SOURCE DISTRIBUTION.
|
||||
THIS DIRECTORY CONTAINS PIECES OF THE EIGEN 3.3.3 SOURCE DISTRIBUTION.
|
||||
THIS DIRECTORY CONTAINS PIECES OF THE EIGEN 3.3.5 b3f3d4950030 SOURCE DISTRIBUTION.
|
||||
|
||||
|
||||
**Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.**
|
||||
|
Loading…
Reference in New Issue
Block a user