SLA backend refactored, except Hollowing

This commit is contained in:
tamasmeszaros 2021-05-21 14:08:05 +02:00
parent 1c35dfe591
commit 1009f78862
22 changed files with 687 additions and 404 deletions

View file

@ -149,9 +149,11 @@ struct indexed_triangle_set
}
std::vector<stl_triangle_vertex_indices> indices;
std::vector<stl_vertex> vertices;
std::vector<stl_vertex> vertices;
//FIXME add normals once we get rid of the stl_file from TriangleMesh completely.
//std::vector<stl_normal> normals
bool empty() const { return indices.empty() || vertices.empty(); }
};
extern bool stl_open(stl_file *stl, const char *file);

View file

@ -154,14 +154,14 @@ InteriorPtr generate_interior(const TriangleMesh & mesh,
return interior;
}
Contour3D DrainHole::to_mesh() const
indexed_triangle_set DrainHole::to_mesh() const
{
auto r = double(radius);
auto h = double(height);
sla::Contour3D hole = sla::cylinder(r, h, steps);
Eigen::Quaterniond q;
q.setFromTwoVectors(Vec3d{0., 0., 1.}, normal.cast<double>());
for(auto& p : hole.points) p = q * p + pos.cast<double>();
indexed_triangle_set hole = sla::cylinder(r, h, steps);
Eigen::Quaternionf q;
q.setFromTwoVectors(Vec3f{0.f, 0.f, 1.f}, normal);
for(auto& p : hole.vertices) p = q * p + pos;
return hole;
}
@ -292,7 +292,7 @@ void cut_drainholes(std::vector<ExPolygons> & obj_slices,
{
TriangleMesh mesh;
for (const sla::DrainHole &holept : holes)
mesh.merge(sla::to_triangle_mesh(holept.to_mesh()));
mesh.merge(TriangleMesh{holept.to_mesh()});
if (mesh.empty()) return;

View file

@ -58,7 +58,7 @@ struct DrainHole
bool get_intersections(const Vec3f& s, const Vec3f& dir,
std::array<std::pair<float, Vec3d>, 2>& out) const;
Contour3D to_mesh() const;
indexed_triangle_set to_mesh() const;
template<class Archive> inline void serialize(Archive &ar)
{

View file

@ -10,59 +10,75 @@
#include <libslic3r/SLA/Hollowing.hpp>
#endif
namespace Slic3r { namespace sla {
namespace Slic3r {
namespace sla {
class IndexedMesh::AABBImpl {
private:
AABBTreeIndirect::Tree3f m_tree;
public:
void init(const TriangleMesh& tm)
void init(const indexed_triangle_set &its)
{
m_tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
tm.its.vertices, tm.its.indices);
its.vertices, its.indices);
}
void intersect_ray(const TriangleMesh& tm,
const Vec3d& s, const Vec3d& dir, igl::Hit& hit)
void intersect_ray(const indexed_triangle_set &its,
const Vec3d & s,
const Vec3d & dir,
igl::Hit & hit)
{
AABBTreeIndirect::intersect_ray_first_hit(tm.its.vertices,
tm.its.indices,
m_tree,
s, dir, hit);
AABBTreeIndirect::intersect_ray_first_hit(its.vertices, its.indices,
m_tree, s, dir, hit);
}
void intersect_ray(const TriangleMesh& tm,
const Vec3d& s, const Vec3d& dir, std::vector<igl::Hit>& hits)
void intersect_ray(const indexed_triangle_set &its,
const Vec3d & s,
const Vec3d & dir,
std::vector<igl::Hit> & hits)
{
AABBTreeIndirect::intersect_ray_all_hits(tm.its.vertices,
tm.its.indices,
m_tree,
s, dir, hits);
AABBTreeIndirect::intersect_ray_all_hits(its.vertices, its.indices,
m_tree, s, dir, hits);
}
double squared_distance(const TriangleMesh& tm,
const Vec3d& point, int& i, Eigen::Matrix<double, 1, 3>& closest) {
double squared_distance(const indexed_triangle_set & its,
const Vec3d & point,
int & i,
Eigen::Matrix<double, 1, 3> &closest)
{
size_t idx_unsigned = 0;
Vec3d closest_vec3d(closest);
double dist = AABBTreeIndirect::squared_distance_to_indexed_triangle_set(
tm.its.vertices,
tm.its.indices,
m_tree, point, idx_unsigned, closest_vec3d);
i = int(idx_unsigned);
Vec3d closest_vec3d(closest);
double dist =
AABBTreeIndirect::squared_distance_to_indexed_triangle_set(
its.vertices, its.indices, m_tree, point, idx_unsigned,
closest_vec3d);
i = int(idx_unsigned);
closest = closest_vec3d;
return dist;
}
};
IndexedMesh::IndexedMesh(const TriangleMesh& tmesh)
: m_aabb(new AABBImpl()), m_tm(&tmesh)
template<class M> void IndexedMesh::init(const M &mesh)
{
auto&& bb = tmesh.bounding_box();
BoundingBoxf3 bb = bounding_box(mesh);
m_ground_level += bb.min(Z);
// Build the AABB accelaration tree
m_aabb->init(tmesh);
m_aabb->init(*m_tm);
}
IndexedMesh::IndexedMesh(const indexed_triangle_set& tmesh)
: m_aabb(new AABBImpl()), m_tm(&tmesh)
{
init(tmesh);
}
IndexedMesh::IndexedMesh(const TriangleMesh &mesh)
: m_aabb(new AABBImpl()), m_tm(&mesh.its)
{
init(mesh);
}
IndexedMesh::~IndexedMesh() {}
@ -87,34 +103,34 @@ IndexedMesh::IndexedMesh(IndexedMesh &&other) = default;
const std::vector<Vec3f>& IndexedMesh::vertices() const
{
return m_tm->its.vertices;
return m_tm->vertices;
}
const std::vector<Vec3i>& IndexedMesh::indices() const
{
return m_tm->its.indices;
return m_tm->indices;
}
const Vec3f& IndexedMesh::vertices(size_t idx) const
{
return m_tm->its.vertices[idx];
return m_tm->vertices[idx];
}
const Vec3i& IndexedMesh::indices(size_t idx) const
{
return m_tm->its.indices[idx];
return m_tm->indices[idx];
}
Vec3d IndexedMesh::normal_by_face_id(int face_id) const {
return m_tm->stl.facet_start[face_id].normal.cast<double>();
return its_unnormalized_normal(*m_tm, face_id).cast<double>().normalized();
}

View file

@ -15,6 +15,8 @@
#include "libslic3r/SLA/Hollowing.hpp"
#endif
struct indexed_triangle_set;
namespace Slic3r {
class TriangleMesh;
@ -29,7 +31,7 @@ using PointSet = Eigen::MatrixXd;
class IndexedMesh {
class AABBImpl;
const TriangleMesh* m_tm;
const indexed_triangle_set* m_tm;
double m_ground_level = 0, m_gnd_offset = 0;
std::unique_ptr<AABBImpl> m_aabb;
@ -40,9 +42,12 @@ class IndexedMesh {
std::vector<DrainHole> m_holes;
#endif
template<class M> void init(const M &mesh);
public:
explicit IndexedMesh(const TriangleMesh&);
explicit IndexedMesh(const indexed_triangle_set&);
explicit IndexedMesh(const TriangleMesh &mesh);
IndexedMesh(const IndexedMesh& other);
IndexedMesh& operator=(const IndexedMesh&);
@ -130,7 +135,7 @@ public:
Vec3d normal_by_face_id(int face_id) const;
const TriangleMesh * get_triangle_mesh() const { return m_tm; }
const indexed_triangle_set * get_triangle_mesh() const { return m_tm; }
};
// Calculate the normals for the selected points (from 'points' set) on the

View file

@ -1,7 +1,7 @@
#include <libslic3r/SLA/Pad.hpp>
#include <libslic3r/SLA/SpatIndex.hpp>
#include <libslic3r/SLA/BoostAdapter.hpp>
#include <libslic3r/SLA/Contour3D.hpp>
//#include <libslic3r/SLA/Contour3D.hpp>
#include <libslic3r/TriangleMeshSlicer.hpp>
#include "ConcaveHull.hpp"
@ -29,25 +29,23 @@ namespace Slic3r { namespace sla {
namespace {
Contour3D walls(
indexed_triangle_set walls(
const Polygon &lower,
const Polygon &upper,
double lower_z_mm,
double upper_z_mm)
{
Wall w = triangulate_wall(lower, upper, lower_z_mm, upper_z_mm);
Contour3D ret;
ret.points = std::move(w.first);
ret.faces3 = std::move(w.second);
indexed_triangle_set w;
triangulate_wall(w.vertices, w.indices, lower, upper, lower_z_mm,
upper_z_mm);
return ret;
return w;
}
// Same as walls() but with identical higher and lower polygons.
Contour3D inline straight_walls(const Polygon &plate,
double lo_z,
double hi_z)
inline indexed_triangle_set straight_walls(const Polygon &plate,
double lo_z,
double hi_z)
{
return walls(plate, plate, lo_z, hi_z);
}
@ -357,8 +355,10 @@ ExPolygon offset_contour_only(const ExPolygon &poly, coord_t delta, Args...args)
return std::move(tmp2.front());
}
bool add_cavity(Contour3D &pad, ExPolygon &top_poly, const PadConfig3D &cfg,
ThrowOnCancel thr)
bool add_cavity(indexed_triangle_set &pad,
ExPolygon & top_poly,
const PadConfig3D & cfg,
ThrowOnCancel thr)
{
auto logerr = []{BOOST_LOG_TRIVIAL(error)<<"Could not create pad cavity";};
@ -377,18 +377,18 @@ bool add_cavity(Contour3D &pad, ExPolygon &top_poly, const PadConfig3D &cfg,
top_poly = pdiff.front();
double z_min = -cfg.wing_height, z_max = 0;
pad.merge(walls(inner_base.contour, middle_base.contour, z_min, z_max));
its_merge(pad, walls(inner_base.contour, middle_base.contour, z_min, z_max));
thr();
pad.merge(triangulate_expolygon_3d(inner_base, z_min, NORMALS_UP));
its_merge(pad, triangulate_expolygon_3d(inner_base, z_min, NORMALS_UP));
return true;
}
Contour3D create_outer_pad_geometry(const ExPolygons & skeleton,
const PadConfig3D &cfg,
ThrowOnCancel thr)
indexed_triangle_set create_outer_pad_geometry(const ExPolygons & skeleton,
const PadConfig3D &cfg,
ThrowOnCancel thr)
{
Contour3D ret;
indexed_triangle_set ret;
for (const ExPolygon &pad_part : skeleton) {
ExPolygon top_poly{pad_part};
@ -399,45 +399,45 @@ Contour3D create_outer_pad_geometry(const ExPolygons & skeleton,
thr();
double z_min = -cfg.height, z_max = 0;
ret.merge(walls(top_poly.contour, bottom_poly.contour, z_max, z_min));
its_merge(ret, walls(top_poly.contour, bottom_poly.contour, z_max, z_min));
if (cfg.wing_height > 0. && add_cavity(ret, top_poly, cfg, thr))
z_max = -cfg.wing_height;
for (auto &h : bottom_poly.holes)
ret.merge(straight_walls(h, z_max, z_min));
its_merge(ret, straight_walls(h, z_max, z_min));
ret.merge(triangulate_expolygon_3d(bottom_poly, z_min, NORMALS_DOWN));
ret.merge(triangulate_expolygon_3d(top_poly, NORMALS_UP));
its_merge(ret, triangulate_expolygon_3d(bottom_poly, z_min, NORMALS_DOWN));
its_merge(ret, triangulate_expolygon_3d(top_poly, NORMALS_UP));
}
return ret;
}
Contour3D create_inner_pad_geometry(const ExPolygons & skeleton,
const PadConfig3D &cfg,
ThrowOnCancel thr)
indexed_triangle_set create_inner_pad_geometry(const ExPolygons & skeleton,
const PadConfig3D &cfg,
ThrowOnCancel thr)
{
Contour3D ret;
indexed_triangle_set ret;
double z_max = 0., z_min = -cfg.height;
for (const ExPolygon &pad_part : skeleton) {
thr();
ret.merge(straight_walls(pad_part.contour, z_max, z_min));
its_merge(ret, straight_walls(pad_part.contour, z_max, z_min));
for (auto &h : pad_part.holes)
ret.merge(straight_walls(h, z_max, z_min));
its_merge(ret, straight_walls(h, z_max, z_min));
ret.merge(triangulate_expolygon_3d(pad_part, z_min, NORMALS_DOWN));
ret.merge(triangulate_expolygon_3d(pad_part, z_max, NORMALS_UP));
its_merge(ret, triangulate_expolygon_3d(pad_part, z_min, NORMALS_DOWN));
its_merge(ret, triangulate_expolygon_3d(pad_part, z_max, NORMALS_UP));
}
return ret;
}
Contour3D create_pad_geometry(const PadSkeleton &skelet,
const PadConfig & cfg,
ThrowOnCancel thr)
indexed_triangle_set create_pad_geometry(const PadSkeleton &skelet,
const PadConfig & cfg,
ThrowOnCancel thr)
{
#ifndef NDEBUG
SVG svg("pad_skeleton.svg");
@ -447,14 +447,16 @@ Contour3D create_pad_geometry(const PadSkeleton &skelet,
#endif
PadConfig3D cfg3d(cfg);
return create_outer_pad_geometry(skelet.outer, cfg3d, thr)
.merge(create_inner_pad_geometry(skelet.inner, cfg3d, thr));
auto pg = create_outer_pad_geometry(skelet.outer, cfg3d, thr);
its_merge(pg, create_inner_pad_geometry(skelet.inner, cfg3d, thr));
return pg;
}
Contour3D create_pad_geometry(const ExPolygons &supp_bp,
const ExPolygons &model_bp,
const PadConfig & cfg,
ThrowOnCancel thr)
indexed_triangle_set create_pad_geometry(const ExPolygons &supp_bp,
const ExPolygons &model_bp,
const PadConfig & cfg,
ThrowOnCancel thr)
{
PadSkeleton skelet;
@ -471,15 +473,15 @@ Contour3D create_pad_geometry(const ExPolygons &supp_bp,
} // namespace
void pad_blueprint(const TriangleMesh & mesh,
ExPolygons & output,
const std::vector<float> &heights,
ThrowOnCancel thrfn)
void pad_blueprint(const indexed_triangle_set &mesh,
ExPolygons & output,
const std::vector<float> & heights,
ThrowOnCancel thrfn)
{
if (mesh.empty()) return;
assert(mesh.has_shared_vertices());
std::vector<ExPolygons> out = slice_mesh_ex(mesh.its, heights, thrfn);
std::vector<ExPolygons> out = slice_mesh_ex(mesh, heights, thrfn);
size_t count = 0;
for(auto& o : out) count += o.size();
@ -500,26 +502,26 @@ void pad_blueprint(const TriangleMesh & mesh,
}
}
void pad_blueprint(const TriangleMesh &mesh,
ExPolygons & output,
float h,
float layerh,
ThrowOnCancel thrfn)
void pad_blueprint(const indexed_triangle_set &mesh,
ExPolygons & output,
float h,
float layerh,
ThrowOnCancel thrfn)
{
float gnd = float(mesh.bounding_box().min(Z));
float gnd = float(bounding_box(mesh).min(Z));
std::vector<float> slicegrid = grid(gnd, gnd + h, layerh);
pad_blueprint(mesh, output, slicegrid, thrfn);
}
void create_pad(const ExPolygons &sup_blueprint,
const ExPolygons &model_blueprint,
TriangleMesh & out,
const PadConfig & cfg,
ThrowOnCancel thr)
void create_pad(const ExPolygons & sup_blueprint,
const ExPolygons & model_blueprint,
indexed_triangle_set &out,
const PadConfig & cfg,
ThrowOnCancel thr)
{
Contour3D t = create_pad_geometry(sup_blueprint, model_blueprint, cfg, thr);
out.merge(to_triangle_mesh(std::move(t)));
auto t = create_pad_geometry(sup_blueprint, model_blueprint, cfg, thr);
its_merge(out, t);
}
std::string PadConfig::validate() const

View file

@ -6,6 +6,8 @@
#include <cmath>
#include <string>
struct indexed_triangle_set;
namespace Slic3r {
class ExPolygon;
@ -13,25 +15,23 @@ class Polygon;
using ExPolygons = std::vector<ExPolygon>;
using Polygons = std::vector<Polygon>;
class TriangleMesh;
namespace sla {
using ThrowOnCancel = std::function<void(void)>;
/// Calculate the polygon representing the silhouette.
void pad_blueprint(
const TriangleMesh &mesh, // input mesh
const indexed_triangle_set &mesh, // input mesh
ExPolygons & output, // Output will be merged with
const std::vector<float> &, // Exact Z levels to sample
ThrowOnCancel thrfn = [] {}); // Function that throws if cancel was requested
void pad_blueprint(
const TriangleMesh &mesh,
ExPolygons & output,
float samplingheight = 0.1f, // The height range to sample
float layerheight = 0.05f, // The sampling height
ThrowOnCancel thrfn = [] {});
const indexed_triangle_set &mesh,
ExPolygons & output,
float samplingheight = 0.1f, // The height range to sample
float layerheight = 0.05f, // The sampling height
ThrowOnCancel thrfn = [] {});
struct PadConfig {
double wall_thickness_mm = 1.;
@ -82,11 +82,12 @@ struct PadConfig {
std::string validate() const;
};
void create_pad(const ExPolygons &support_contours,
const ExPolygons &model_contours,
TriangleMesh & output_mesh,
const PadConfig & = PadConfig(),
ThrowOnCancel throw_on_cancel = []{});
void create_pad(
const ExPolygons & support_contours,
const ExPolygons & model_contours,
indexed_triangle_set &output_mesh,
const PadConfig & = PadConfig(),
ThrowOnCancel throw_on_cancel = [] {});
} // namespace sla
} // namespace Slic3r

View file

@ -29,16 +29,16 @@
namespace Slic3r {
namespace sla {
void SupportTree::retrieve_full_mesh(TriangleMesh &outmesh) const {
outmesh.merge(retrieve_mesh(MeshType::Support));
outmesh.merge(retrieve_mesh(MeshType::Pad));
void SupportTree::retrieve_full_mesh(indexed_triangle_set &outmesh) const {
its_merge(outmesh, retrieve_mesh(MeshType::Support));
its_merge(outmesh, retrieve_mesh(MeshType::Pad));
}
std::vector<ExPolygons> SupportTree::slice(
const std::vector<float> &grid, float cr) const
std::vector<ExPolygons> SupportTree::slice(const std::vector<float> &grid,
float cr) const
{
const TriangleMesh &sup_mesh = retrieve_mesh(MeshType::Support);
const TriangleMesh &pad_mesh = retrieve_mesh(MeshType::Pad);
const indexed_triangle_set &sup_mesh = retrieve_mesh(MeshType::Support);
const indexed_triangle_set &pad_mesh = retrieve_mesh(MeshType::Pad);
using Slices = std::vector<ExPolygons>;
auto slices = reserve_vector<Slices>(2);
@ -46,13 +46,13 @@ std::vector<ExPolygons> SupportTree::slice(
if (!sup_mesh.empty()) {
slices.emplace_back();
assert(sup_mesh.has_shared_vertices());
slices.back() = slice_mesh_ex(sup_mesh.its, grid, cr, ctl().cancelfn);
slices.back() = slice_mesh_ex(sup_mesh, grid, cr, ctl().cancelfn);
}
if (!pad_mesh.empty()) {
slices.emplace_back();
auto bb = pad_mesh.bounding_box();
auto bb = bounding_box(pad_mesh);
auto maxzit = std::upper_bound(grid.begin(), grid.end(), bb.max.z());
auto cap = grid.end() - maxzit;
@ -60,7 +60,7 @@ std::vector<ExPolygons> SupportTree::slice(
std::copy(grid.begin(), maxzit, std::back_inserter(padgrid));
assert(pad_mesh.has_shared_vertices());
slices.back() = slice_mesh_ex(pad_mesh.its, padgrid, cr, ctl().cancelfn);
slices.back() = slice_mesh_ex(pad_mesh, padgrid, cr, ctl().cancelfn);
}
size_t len = grid.size();

View file

@ -122,9 +122,9 @@ struct SupportableMesh
IndexedMesh emesh;
SupportPoints pts;
SupportTreeConfig cfg;
PadConfig pad_cfg;
// PadConfig pad_cfg;
explicit SupportableMesh(const TriangleMesh & trmsh,
explicit SupportableMesh(const indexed_triangle_set & trmsh,
const SupportPoints &sp,
const SupportTreeConfig &c)
: emesh{trmsh}, pts{sp}, cfg{c}
@ -149,22 +149,22 @@ public:
virtual ~SupportTree() = default;
virtual const TriangleMesh &retrieve_mesh(MeshType meshtype) const = 0;
virtual const indexed_triangle_set &retrieve_mesh(MeshType meshtype) const = 0;
/// Adding the "pad" under the supports.
/// modelbase will be used according to the embed_object flag in PoolConfig.
/// If set, the plate will be interpreted as the model's intrinsic pad.
/// Otherwise, the modelbase will be unified with the base plate calculated
/// from the supports.
virtual const TriangleMesh &add_pad(const ExPolygons &modelbase,
const PadConfig & pcfg) = 0;
virtual const indexed_triangle_set &add_pad(const ExPolygons &modelbase,
const PadConfig & pcfg) = 0;
virtual void remove_pad() = 0;
std::vector<ExPolygons> slice(const std::vector<float> &,
float closing_radius) const;
void retrieve_full_mesh(TriangleMesh &outmesh) const;
void retrieve_full_mesh(indexed_triangle_set &outmesh) const;
const JobController &ctl() const { return m_ctl; }
};

View file

@ -3,7 +3,7 @@
#include <libslic3r/SLA/SupportTreeBuilder.hpp>
#include <libslic3r/SLA/SupportTreeBuildsteps.hpp>
#include <libslic3r/SLA/SupportTreeMesher.hpp>
#include <libslic3r/SLA/Contour3D.hpp>
//#include <libslic3r/SLA/Contour3D.hpp>
namespace Slic3r {
namespace sla {
@ -23,11 +23,11 @@ Head::Head(double r_big_mm,
{
}
Pad::Pad(const TriangleMesh &support_mesh,
const ExPolygons & model_contours,
double ground_level,
const PadConfig & pcfg,
ThrowOnCancel thr)
Pad::Pad(const indexed_triangle_set &support_mesh,
const ExPolygons & model_contours,
double ground_level,
const PadConfig & pcfg,
ThrowOnCancel thr)
: cfg(pcfg)
, zlevel(ground_level + pcfg.full_height() - pcfg.required_elevation())
{
@ -41,12 +41,14 @@ Pad::Pad(const TriangleMesh &support_mesh,
pad_blueprint(support_mesh, sup_contours, grid(zstart, zend, 0.1f), thr);
create_pad(sup_contours, model_contours, tmesh, pcfg);
tmesh.translate(0, 0, float(zlevel));
if (!tmesh.empty()) tmesh.require_shared_vertices();
Vec3f offs{.0f, .0f, float(zlevel)};
for (auto &p : tmesh.vertices) p += offs;
its_merge_vertices(tmesh);
}
const TriangleMesh &SupportTreeBuilder::add_pad(const ExPolygons &modelbase,
const PadConfig & cfg)
const indexed_triangle_set &SupportTreeBuilder::add_pad(
const ExPolygons &modelbase, const PadConfig &cfg)
{
m_pad = Pad{merged_mesh(), modelbase, ground_level, cfg, ctl().cancelfn};
return m_pad.tmesh;
@ -120,74 +122,74 @@ void SupportTreeBuilder::add_pillar_base(long pid, double baseheight, double rad
m_meshcache_valid = false;
}
const TriangleMesh &SupportTreeBuilder::merged_mesh(size_t steps) const
const indexed_triangle_set &SupportTreeBuilder::merged_mesh(size_t steps) const
{
if (m_meshcache_valid) return m_meshcache;
Contour3D merged;
indexed_triangle_set merged;
for (auto &head : m_heads) {
if (ctl().stopcondition()) break;
if (head.is_valid()) merged.merge(get_mesh(head, steps));
if (head.is_valid()) its_merge(merged, get_mesh(head, steps));
}
for (auto &pill : m_pillars) {
if (ctl().stopcondition()) break;
merged.merge(get_mesh(pill, steps));
its_merge(merged, get_mesh(pill, steps));
}
for (auto &pedest : m_pedestals) {
if (ctl().stopcondition()) break;
merged.merge(get_mesh(pedest, steps));
its_merge(merged, get_mesh(pedest, steps));
}
for (auto &j : m_junctions) {
if (ctl().stopcondition()) break;
merged.merge(get_mesh(j, steps));
its_merge(merged, get_mesh(j, steps));
}
for (auto &bs : m_bridges) {
if (ctl().stopcondition()) break;
merged.merge(get_mesh(bs, steps));
its_merge(merged, get_mesh(bs, steps));
}
for (auto &bs : m_crossbridges) {
if (ctl().stopcondition()) break;
merged.merge(get_mesh(bs, steps));
its_merge(merged, get_mesh(bs, steps));
}
for (auto &bs : m_diffbridges) {
if (ctl().stopcondition()) break;
merged.merge(get_mesh(bs, steps));
its_merge(merged, get_mesh(bs, steps));
}
for (auto &anch : m_anchors) {
if (ctl().stopcondition()) break;
merged.merge(get_mesh(anch, steps));
its_merge(merged, get_mesh(anch, steps));
}
if (ctl().stopcondition()) {
// In case of failure we have to return an empty mesh
m_meshcache = TriangleMesh();
m_meshcache = {};
return m_meshcache;
}
m_meshcache = to_triangle_mesh(merged);
m_meshcache = merged;
// The mesh will be passed by const-pointer to TriangleMeshSlicer,
// which will need this.
if (!m_meshcache.empty()) m_meshcache.require_shared_vertices();
BoundingBoxf3 &&bb = m_meshcache.bounding_box();
m_model_height = bb.max(Z) - bb.min(Z);
its_merge_vertices(m_meshcache);
BoundingBoxf3 bb = bounding_box(m_meshcache);
m_model_height = bb.max(Z) - bb.min(Z);
m_meshcache_valid = true;
return m_meshcache;
}
double SupportTreeBuilder::full_height() const
{
if (merged_mesh().empty() && !pad().empty())
if (merged_mesh().indices.empty() && !pad().empty())
return pad().cfg.full_height();
double h = mesh_height();
@ -195,7 +197,7 @@ double SupportTreeBuilder::full_height() const
return h;
}
const TriangleMesh &SupportTreeBuilder::merge_and_cleanup()
const indexed_triangle_set &SupportTreeBuilder::merge_and_cleanup()
{
// in case the mesh is not generated, it should be...
auto &ret = merged_mesh();
@ -210,7 +212,7 @@ const TriangleMesh &SupportTreeBuilder::merge_and_cleanup()
return ret;
}
const TriangleMesh &SupportTreeBuilder::retrieve_mesh(MeshType meshtype) const
const indexed_triangle_set &SupportTreeBuilder::retrieve_mesh(MeshType meshtype) const
{
switch(meshtype) {
case MeshType::Support: return merged_mesh();

View file

@ -3,7 +3,8 @@
#include <libslic3r/SLA/Concurrency.hpp>
#include <libslic3r/SLA/SupportTree.hpp>
#include <libslic3r/SLA/Contour3D.hpp>
//#include <libslic3r/SLA/Contour3D.hpp>
#include <libslic3r/TriangleMesh.hpp>
#include <libslic3r/SLA/Pad.hpp>
#include <libslic3r/MTUtils.hpp>
@ -187,19 +188,19 @@ struct DiffBridge: public Bridge {
// A wrapper struct around the pad
struct Pad {
TriangleMesh tmesh;
indexed_triangle_set tmesh;
PadConfig cfg;
double zlevel = 0;
Pad() = default;
Pad(const TriangleMesh &support_mesh,
const ExPolygons & model_contours,
double ground_level,
const PadConfig & pcfg,
ThrowOnCancel thr);
bool empty() const { return tmesh.facets_count() == 0; }
Pad(const indexed_triangle_set &support_mesh,
const ExPolygons & model_contours,
double ground_level,
const PadConfig & pcfg,
ThrowOnCancel thr);
bool empty() const { return tmesh.indices.size() == 0; }
};
// This class will hold the support tree meshes with some additional
@ -232,7 +233,7 @@ class SupportTreeBuilder: public SupportTree {
using Mutex = ccr::SpinningMutex;
mutable TriangleMesh m_meshcache;
mutable indexed_triangle_set m_meshcache;
mutable Mutex m_mutex;
mutable bool m_meshcache_valid = false;
mutable double m_model_height = 0; // the full height of the model
@ -418,7 +419,7 @@ public:
const Pad& pad() const { return m_pad; }
// WITHOUT THE PAD!!!
const TriangleMesh &merged_mesh(size_t steps = 45) const;
const indexed_triangle_set &merged_mesh(size_t steps = 45) const;
// WITH THE PAD
double full_height() const;
@ -431,16 +432,16 @@ public:
}
// Intended to be called after the generation is fully complete
const TriangleMesh & merge_and_cleanup();
const indexed_triangle_set & merge_and_cleanup();
// Implement SupportTree interface:
const TriangleMesh &add_pad(const ExPolygons &modelbase,
const PadConfig & pcfg) override;
const indexed_triangle_set &add_pad(const ExPolygons &modelbase,
const PadConfig & pcfg) override;
void remove_pad() override { m_pad = Pad(); }
virtual const TriangleMesh &retrieve_mesh(
virtual const indexed_triangle_set &retrieve_mesh(
MeshType meshtype = MeshType::Support) const override;
};

View file

@ -2,22 +2,22 @@
namespace Slic3r { namespace sla {
Contour3D sphere(double rho, Portion portion, double fa) {
indexed_triangle_set sphere(double rho, Portion portion, double fa) {
Contour3D ret;
indexed_triangle_set ret;
// prohibit close to zero radius
if(rho <= 1e-6 && rho >= -1e-6) return ret;
auto& vertices = ret.points;
auto& facets = ret.faces3;
auto& vertices = ret.vertices;
auto& facets = ret.indices;
// Algorithm:
// Add points one-by-one to the sphere grid and form facets using relative
// coordinates. Sphere is composed effectively of a mesh of stacked circles.
// adjust via rounding to get an even multiple for any provided angle.
double angle = (2*PI / floor(2*PI / fa));
double angle = (2 * PI / floor(2*PI / fa) );
// Ring to be scaled to generate the steps of the sphere
std::vector<double> ring;
@ -32,8 +32,9 @@ Contour3D sphere(double rho, Portion portion, double fa) {
// special case: first ring connects to 0,0,0
// insert and form facets.
if(sbegin == 0)
vertices.emplace_back(Vec3d(0.0, 0.0, -rho + increment*sbegin*2.0*rho));
if (sbegin == 0)
vertices.emplace_back(
Vec3f(0.f, 0.f, float(-rho + increment * sbegin * 2. * rho)));
auto id = coord_t(vertices.size());
for (size_t i = 0; i < ring.size(); i++) {
@ -42,7 +43,7 @@ Contour3D sphere(double rho, Portion portion, double fa) {
// radius of the circle for this step.
const double r = std::sqrt(std::abs(rho*rho - z*z));
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
vertices.emplace_back(Vec3d(b(0), b(1), z));
vertices.emplace_back(Vec3d(b(0), b(1), z).cast<float>());
if (sbegin == 0)
(i == 0) ? facets.emplace_back(coord_t(ring.size()), 0, 1) :
@ -53,12 +54,12 @@ Contour3D sphere(double rho, Portion portion, double fa) {
// General case: insert and form facets for each step,
// joining it to the ring below it.
for (size_t s = sbegin + 2; s < send - 1; s++) {
const double z = -rho + increment*double(s*2.0*rho);
const double z = -rho + increment * double(s * 2. * rho);
const double r = std::sqrt(std::abs(rho*rho - z*z));
for (size_t i = 0; i < ring.size(); i++) {
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
vertices.emplace_back(Vec3d(b(0), b(1), z));
vertices.emplace_back(Vec3d(b(0), b(1), z).cast<float>());
auto id_ringsize = coord_t(id - int(ring.size()));
if (i == 0) {
// wrap around
@ -75,7 +76,7 @@ Contour3D sphere(double rho, Portion portion, double fa) {
// special case: last ring connects to 0,0,rho*2.0
// only form facets.
if(send >= size_t(2*PI / angle)) {
vertices.emplace_back(Vec3d(0.0, 0.0, -rho + increment*send*2.0*rho));
vertices.emplace_back(0.f, 0.f, float(-rho + increment*send*2.0*rho));
for (size_t i = 0; i < ring.size(); i++) {
auto id_ringsize = coord_t(id - int(ring.size()));
if (i == 0) {
@ -92,15 +93,15 @@ Contour3D sphere(double rho, Portion portion, double fa) {
return ret;
}
Contour3D cylinder(double r, double h, size_t ssteps, const Vec3d &sp)
indexed_triangle_set cylinder(double r, double h, size_t ssteps, const Vec3d &sp)
{
assert(ssteps > 0);
Contour3D ret;
indexed_triangle_set ret;
auto steps = int(ssteps);
auto& points = ret.points;
auto& indices = ret.faces3;
auto& points = ret.vertices;
auto& indices = ret.indices;
points.reserve(2*ssteps);
double a = 2*PI/steps;
@ -110,17 +111,17 @@ Contour3D cylinder(double r, double h, size_t ssteps, const Vec3d &sp)
// Upper circle points
for(int i = 0; i < steps; ++i) {
double phi = i*a;
double ex = endp(X) + r*std::cos(phi);
double ey = endp(Y) + r*std::sin(phi);
points.emplace_back(ex, ey, endp(Z));
auto ex = float(endp(X) + r*std::cos(phi));
auto ey = float(endp(Y) + r*std::sin(phi));
points.emplace_back(ex, ey, float(endp(Z)));
}
// Lower circle points
for(int i = 0; i < steps; ++i) {
double phi = i*a;
double x = jp(X) + r*std::cos(phi);
double y = jp(Y) + r*std::sin(phi);
points.emplace_back(x, y, jp(Z));
auto x = float(jp(X) + r*std::cos(phi));
auto y = float(jp(Y) + r*std::sin(phi));
points.emplace_back(x, y, float(jp(Z)));
}
// Now create long triangles connecting upper and lower circles
@ -139,13 +140,13 @@ Contour3D cylinder(double r, double h, size_t ssteps, const Vec3d &sp)
// According to the slicing algorithms, we need to aid them with generating
// a watertight body. So we create a triangle fan for the upper and lower
// ending of the cylinder to close the geometry.
points.emplace_back(jp); int ci = int(points.size() - 1);
points.emplace_back(jp.cast<float>()); int ci = int(points.size() - 1);
for(int i = 0; i < steps - 1; ++i)
indices.emplace_back(i + offs + 1, i + offs, ci);
indices.emplace_back(offs, steps + offs - 1, ci);
points.emplace_back(endp); ci = int(points.size() - 1);
points.emplace_back(endp.cast<float>()); ci = int(points.size() - 1);
for(int i = 0; i < steps - 1; ++i)
indices.emplace_back(ci, i, i + 1);
@ -154,14 +155,17 @@ Contour3D cylinder(double r, double h, size_t ssteps, const Vec3d &sp)
return ret;
}
Contour3D pinhead(double r_pin, double r_back, double length, size_t steps)
indexed_triangle_set pinhead(double r_pin,
double r_back,
double length,
size_t steps)
{
assert(steps > 0);
assert(length >= 0.);
assert(r_back > 0.);
assert(r_pin > 0.);
Contour3D mesh;
indexed_triangle_set mesh;
// We create two spheres which will be connected with a robe that fits
// both circles perfectly.
@ -187,66 +191,66 @@ Contour3D pinhead(double r_pin, double r_back, double length, size_t steps)
auto &&s1 = sphere(r_back, make_portion(0, PI / 2 + phi), detail);
auto &&s2 = sphere(r_pin, make_portion(PI / 2 + phi, PI), detail);
for (auto &p : s2.points) p.z() += h;
for (auto &p : s2.vertices) p.z() += h;
mesh.merge(s1);
mesh.merge(s2);
its_merge(mesh, s1);
its_merge(mesh, s2);
for (size_t idx1 = s1.points.size() - steps, idx2 = s1.points.size();
idx1 < s1.points.size() - 1; idx1++, idx2++) {
for (size_t idx1 = s1.vertices.size() - steps, idx2 = s1.vertices.size();
idx1 < s1.vertices.size() - 1; idx1++, idx2++) {
coord_t i1s1 = coord_t(idx1), i1s2 = coord_t(idx2);
coord_t i2s1 = i1s1 + 1, i2s2 = i1s2 + 1;
mesh.faces3.emplace_back(i1s1, i2s1, i2s2);
mesh.faces3.emplace_back(i1s1, i2s2, i1s2);
mesh.indices.emplace_back(i1s1, i2s1, i2s2);
mesh.indices.emplace_back(i1s1, i2s2, i1s2);
}
auto i1s1 = coord_t(s1.points.size()) - coord_t(steps);
auto i2s1 = coord_t(s1.points.size()) - 1;
auto i1s2 = coord_t(s1.points.size());
auto i2s2 = coord_t(s1.points.size()) + coord_t(steps) - 1;
auto i1s1 = coord_t(s1.vertices.size()) - coord_t(steps);
auto i2s1 = coord_t(s1.vertices.size()) - 1;
auto i1s2 = coord_t(s1.vertices.size());
auto i2s2 = coord_t(s1.vertices.size()) + coord_t(steps) - 1;
mesh.faces3.emplace_back(i2s2, i2s1, i1s1);
mesh.faces3.emplace_back(i1s2, i2s2, i1s1);
mesh.indices.emplace_back(i2s2, i2s1, i1s1);
mesh.indices.emplace_back(i1s2, i2s2, i1s1);
return mesh;
}
Contour3D halfcone(double baseheight,
double r_bottom,
double r_top,
const Vec3d &pos,
size_t steps)
indexed_triangle_set halfcone(double baseheight,
double r_bottom,
double r_top,
const Vec3d &pos,
size_t steps)
{
assert(steps > 0);
if (baseheight <= 0 || steps <= 0) return {};
Contour3D base;
indexed_triangle_set base;
double a = 2 * PI / steps;
auto last = int(steps - 1);
Vec3d ep{pos.x(), pos.y(), pos.z() + baseheight};
for (size_t i = 0; i < steps; ++i) {
double phi = i * a;
double x = pos.x() + r_top * std::cos(phi);
double y = pos.y() + r_top * std::sin(phi);
base.points.emplace_back(x, y, ep.z());
auto x = float(pos.x() + r_top * std::cos(phi));
auto y = float(pos.y() + r_top * std::sin(phi));
base.vertices.emplace_back(x, y, float(ep.z()));
}
for (size_t i = 0; i < steps; ++i) {
double phi = i * a;
double x = pos.x() + r_bottom * std::cos(phi);
double y = pos.y() + r_bottom * std::sin(phi);
base.points.emplace_back(x, y, pos.z());
auto x = float(pos.x() + r_bottom * std::cos(phi));
auto y = float(pos.y() + r_bottom * std::sin(phi));
base.vertices.emplace_back(x, y, float(pos.z()));
}
base.points.emplace_back(pos);
base.points.emplace_back(ep);
base.vertices.emplace_back(pos.cast<float>());
base.vertices.emplace_back(ep.cast<float>());
auto &indices = base.faces3;
auto hcenter = int(base.points.size() - 1);
auto lcenter = int(base.points.size() - 2);
auto &indices = base.indices;
auto hcenter = int(base.vertices.size() - 1);
auto lcenter = int(base.vertices.size() - 2);
auto offs = int(steps);
for (int i = 0; i < last; ++i) {
indices.emplace_back(i, i + offs, offs + i + 1);

View file

@ -4,7 +4,8 @@
#include "libslic3r/Point.hpp"
#include "libslic3r/SLA/SupportTreeBuilder.hpp"
#include "libslic3r/SLA/Contour3D.hpp"
#include "libslic3r/TriangleMesh.hpp"
//#include "libslic3r/SLA/Contour3D.hpp"
namespace Slic3r { namespace sla {
@ -15,48 +16,53 @@ inline Portion make_portion(double a, double b)
return std::make_tuple(a, b);
}
Contour3D sphere(double rho,
Portion portion = make_portion(0., 2. * PI),
double fa = (2. * PI / 360.));
indexed_triangle_set sphere(double rho,
Portion portion = make_portion(0., 2. * PI),
double fa = (2. * PI / 360.));
// Down facing cylinder in Z direction with arguments:
// r: radius
// h: Height
// ssteps: how many edges will create the base circle
// sp: starting point
Contour3D cylinder(double r,
double h,
size_t steps = 45,
const Vec3d &sp = Vec3d::Zero());
indexed_triangle_set cylinder(double r,
double h,
size_t steps = 45,
const Vec3d &sp = Vec3d::Zero());
Contour3D pinhead(double r_pin, double r_back, double length, size_t steps = 45);
indexed_triangle_set pinhead(double r_pin,
double r_back,
double length,
size_t steps = 45);
Contour3D halfcone(double baseheight,
double r_bottom,
double r_top,
const Vec3d &pt = Vec3d::Zero(),
size_t steps = 45);
indexed_triangle_set halfcone(double baseheight,
double r_bottom,
double r_top,
const Vec3d &pt = Vec3d::Zero(),
size_t steps = 45);
inline Contour3D get_mesh(const Head &h, size_t steps)
inline indexed_triangle_set get_mesh(const Head &h, size_t steps)
{
Contour3D mesh = pinhead(h.r_pin_mm, h.r_back_mm, h.width_mm, steps);
indexed_triangle_set mesh = pinhead(h.r_pin_mm, h.r_back_mm, h.width_mm, steps);
for(auto& p : mesh.points) p.z() -= (h.fullwidth() - h.r_back_mm);
for (auto& p : mesh.vertices) p.z() -= (h.fullwidth() - h.r_back_mm);
using Quaternion = Eigen::Quaternion<double>;
using Quaternion = Eigen::Quaternion<float>;
// We rotate the head to the specified direction. The head's pointing
// side is facing upwards so this means that it would hold a support
// point with a normal pointing straight down. This is the reason of
// the -1 z coordinate
auto quatern = Quaternion::FromTwoVectors(Vec3d{0, 0, -1}, h.dir);
auto quatern = Quaternion::FromTwoVectors(Vec3f{0.f, 0.f, -1.f},
h.dir.cast<float>());
for(auto& p : mesh.points) p = quatern * p + h.pos;
Vec3f pos = h.pos.cast<float>();
for (auto& p : mesh.vertices) p = quatern * p + pos;
return mesh;
}
inline Contour3D get_mesh(const Pillar &p, size_t steps)
inline indexed_triangle_set get_mesh(const Pillar &p, size_t steps)
{
if(p.height > EPSILON) { // Endpoint is below the starting point
// We just create a bridge geometry with the pillar parameters and
@ -67,47 +73,53 @@ inline Contour3D get_mesh(const Pillar &p, size_t steps)
return {};
}
inline Contour3D get_mesh(const Pedestal &p, size_t steps)
inline indexed_triangle_set get_mesh(const Pedestal &p, size_t steps)
{
return halfcone(p.height, p.r_bottom, p.r_top, p.pos, steps);
}
inline Contour3D get_mesh(const Junction &j, size_t steps)
inline indexed_triangle_set get_mesh(const Junction &j, size_t steps)
{
Contour3D mesh = sphere(j.r, make_portion(0, PI), 2 *PI / steps);
for(auto& p : mesh.points) p += j.pos;
indexed_triangle_set mesh = sphere(j.r, make_portion(0, PI), 2 *PI / steps);
Vec3f pos = j.pos.cast<float>();
for(auto& p : mesh.vertices) p += pos;
return mesh;
}
inline Contour3D get_mesh(const Bridge &br, size_t steps)
inline indexed_triangle_set get_mesh(const Bridge &br, size_t steps)
{
using Quaternion = Eigen::Quaternion<double>;
using Quaternion = Eigen::Quaternion<float>;
Vec3d v = (br.endp - br.startp);
Vec3d dir = v.normalized();
double d = v.norm();
Contour3D mesh = cylinder(br.r, d, steps);
indexed_triangle_set mesh = cylinder(br.r, d, steps);
auto quater = Quaternion::FromTwoVectors(Vec3d{0,0,1}, dir);
for(auto& p : mesh.points) p = quater * p + br.startp;
auto quater = Quaternion::FromTwoVectors(Vec3f{0.f, 0.f, 1.f},
dir.cast<float>());
Vec3f startp = br.startp.cast<float>();
for(auto& p : mesh.vertices) p = quater * p + startp;
return mesh;
}
inline Contour3D get_mesh(const DiffBridge &br, size_t steps)
inline indexed_triangle_set get_mesh(const DiffBridge &br, size_t steps)
{
double h = br.get_length();
Contour3D mesh = halfcone(h, br.r, br.end_r, Vec3d::Zero(), steps);
indexed_triangle_set mesh = halfcone(h, br.r, br.end_r, Vec3d::Zero(), steps);
using Quaternion = Eigen::Quaternion<double>;
using Quaternion = Eigen::Quaternion<float>;
// We rotate the head to the specified direction. The head's pointing
// side is facing upwards so this means that it would hold a support
// point with a normal pointing straight down. This is the reason of
// the -1 z coordinate
auto quatern = Quaternion::FromTwoVectors(Vec3d{0, 0, 1}, br.get_dir());
auto quatern = Quaternion::FromTwoVectors(Vec3f{0.f, 0.f, 1.f},
br.get_dir().cast<float>());
for(auto& p : mesh.points) p = quatern * p + br.startp;
Vec3f startp = br.startp.cast<float>();
for(auto& p : mesh.vertices) p = quatern * p + startp;
return mesh;
}

View file

@ -109,7 +109,7 @@ sla::PadConfig make_pad_cfg(const SLAPrintObjectConfig& c)
return pcfg;
}
bool validate_pad(const TriangleMesh &pad, const sla::PadConfig &pcfg)
bool validate_pad(const indexed_triangle_set &pad, const sla::PadConfig &pcfg)
{
// An empty pad can only be created if embed_object mode is enabled
// and the pad is not forced everywhere
@ -1129,20 +1129,16 @@ TriangleMesh SLAPrintObject::get_mesh(SLAPrintObjectStep step) const
const TriangleMesh& SLAPrintObject::support_mesh() const
{
sla::SupportTree::UPtr &stree = m_supportdata->support_tree_ptr;
if(m_config.supports_enable.getBool() && m_supportdata && stree)
return stree->retrieve_mesh(sla::MeshType::Support);
if(m_config.supports_enable.getBool() && m_supportdata)
return m_supportdata->tree_mesh;
return EMPTY_MESH;
}
const TriangleMesh& SLAPrintObject::pad_mesh() const
{
sla::SupportTree::UPtr &stree = m_supportdata->support_tree_ptr;
if(m_config.pad_enable.getBool() && m_supportdata && stree)
return stree->retrieve_mesh(sla::MeshType::Pad);
if(m_config.pad_enable.getBool() && m_supportdata)
return m_supportdata->pad_mesh;
return EMPTY_MESH;
}

View file

@ -313,16 +313,27 @@ private:
public:
sla::SupportTree::UPtr support_tree_ptr; // the supports
std::vector<ExPolygons> support_slices; // sliced supports
TriangleMesh tree_mesh, pad_mesh, full_mesh;
inline SupportData(const TriangleMesh &t)
: sla::SupportableMesh{t, {}, {}}
: sla::SupportableMesh{t.its, {}, {}}
{}
sla::SupportTree::UPtr &create_support_tree(const sla::JobController &ctl)
{
support_tree_ptr = sla::SupportTree::create(*this, ctl);
tree_mesh = TriangleMesh{support_tree_ptr->retrieve_mesh(sla::MeshType::Support)};
return support_tree_ptr;
}
void create_pad(const ExPolygons &blueprint, const sla::PadConfig &pcfg)
{
if (!support_tree_ptr)
return;
support_tree_ptr->add_pad(blueprint, pcfg);
pad_mesh = TriangleMesh{support_tree_ptr->retrieve_mesh(sla::MeshType::Pad)};
}
};
std::unique_ptr<SupportData> m_supportdata;
@ -569,7 +580,7 @@ sla::PadConfig::EmbedObject builtin_pad_cfg(const SLAPrintObjectConfig& c);
sla::PadConfig make_pad_cfg(const SLAPrintObjectConfig& c);
bool validate_pad(const TriangleMesh &pad, const sla::PadConfig &pcfg);
bool validate_pad(const indexed_triangle_set &pad, const sla::PadConfig &pcfg);
} // namespace Slic3r

View file

@ -360,7 +360,7 @@ void SLAPrint::Steps::drill_holes(SLAPrintObject &po)
holept.normal += Vec3f{dist(m_rng), dist(m_rng), dist(m_rng)};
holept.normal.normalize();
holept.pos += Vec3f{dist(m_rng), dist(m_rng), dist(m_rng)};
TriangleMesh m = sla::to_triangle_mesh(holept.to_mesh());
TriangleMesh m{holept.to_mesh()};
m.require_shared_vertices();
part_to_drill.indices.clear();
@ -667,15 +667,14 @@ void SLAPrint::Steps::generate_pad(SLAPrintObject &po) {
// we sometimes call it "builtin pad" is enabled so we will
// get a sample from the bottom of the mesh and use it for pad
// creation.
sla::pad_blueprint(trmesh, bp, float(pad_h),
sla::pad_blueprint(trmesh.its, bp, float(pad_h),
float(po.m_config.layer_height.getFloat()),
[this](){ throw_if_canceled(); });
}
po.m_supportdata->support_tree_ptr->add_pad(bp, pcfg);
auto &pad_mesh = po.m_supportdata->support_tree_ptr->retrieve_mesh(sla::MeshType::Pad);
po.m_supportdata->create_pad(bp, pcfg);
if (!validate_pad(pad_mesh, pcfg))
if (!validate_pad(po.m_supportdata->support_tree_ptr->retrieve_mesh(sla::MeshType::Pad), pcfg))
throw Slic3r::SlicingError(
L("No pad can be generated for this model with the "
"current configuration"));

View file

@ -1130,4 +1130,35 @@ TriangleMesh make_sphere(double radius, double fa)
return mesh;
}
void its_merge(indexed_triangle_set &A, const indexed_triangle_set &B)
{
auto N = int(A.vertices.size());
auto N_f = A.indices.size();
A.vertices.insert(A.vertices.end(), B.vertices.begin(), B.vertices.end());
A.indices.insert(A.indices.end(), B.indices.begin(), B.indices.end());
for(size_t n = N_f; n < A.indices.size(); n++)
A.indices[n] += Vec3i{N, N, N};
}
void its_merge(indexed_triangle_set &A, const std::vector<Vec3f> &triangles)
{
const size_t offs = A.vertices.size();
A.vertices.insert(A.vertices.end(), triangles.begin(), triangles.end());
A.indices.reserve(A.indices.size() + A.vertices.size() / 3);
for(int i = int(offs); i < int(A.vertices.size()); i += 3)
A.indices.emplace_back(i, i + 1, i + 2);
}
void its_merge(indexed_triangle_set &A, const Pointf3s &triangles)
{
auto trianglesf = reserve_vector<Vec3f> (triangles.size());
for (auto &t : triangles)
trianglesf.emplace_back(t.cast<float>());
its_merge(A, trianglesf);
}
}

View file

@ -147,11 +147,48 @@ void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, c
Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Matrix3f &m, const float z);
Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Transform3f &t, const float z);
using its_triangle = std::array<stl_vertex, 3>;
inline its_triangle its_triangle_vertices(const indexed_triangle_set &its,
size_t face_id)
{
return {its.vertices[its.indices[face_id](0)],
its.vertices[its.indices[face_id](1)],
its.vertices[its.indices[face_id](2)]};
}
inline stl_normal its_unnormalized_normal(const indexed_triangle_set &its,
size_t face_id)
{
its_triangle tri = its_triangle_vertices(its, face_id);
return (tri[1] - tri[0]).cross(tri[2] - tri[0]);
}
void its_merge(indexed_triangle_set &A, const indexed_triangle_set &B);
void its_merge(indexed_triangle_set &A, const std::vector<Vec3f> &triangles);
void its_merge(indexed_triangle_set &A, const Pointf3s &triangles);
TriangleMesh make_cube(double x, double y, double z);
TriangleMesh make_cylinder(double r, double h, double fa=(2*PI/360));
TriangleMesh make_cone(double r, double h, double fa=(2*PI/360));
TriangleMesh make_sphere(double rho, double fa=(2*PI/360));
inline BoundingBoxf3 bounding_box(const TriangleMesh &m) { return m.bounding_box(); }
inline BoundingBoxf3 bounding_box(const indexed_triangle_set& its)
{
if (its.vertices.empty())
return {};
Vec3f bmin = its.vertices.front(), bmax = its.vertices.front();
for (const Vec3f &p : its.vertices) {
bmin = p.cwiseMin(bmin);
bmax = p.cwiseMax(bmax);
}
return {bmin.cast<double>(), bmax.cast<double>()};
}
}
// Serialization through the Cereal library

View file

@ -3,131 +3,157 @@
namespace Slic3r {
class Ring {
size_t idx = 0, nextidx = 1, startidx = 0, begin = 0, end = 0;
//class Ring {
// size_t idx = 0, nextidx = 1, startidx = 0, begin = 0, end = 0;
public:
explicit Ring(size_t from, size_t to) : begin(from), end(to) { init(begin); }
//public:
// explicit Ring(size_t from, size_t to) : begin(from), end(to) { init(begin); }
size_t size() const { return end - begin; }
std::pair<size_t, size_t> pos() const { return {idx, nextidx}; }
bool is_lower() const { return idx < size(); }
// size_t size() const { return end - begin; }
// std::pair<size_t, size_t> pos() const { return {idx, nextidx}; }
// bool is_lower() const { return idx < size(); }
void inc()
{
if (nextidx != startidx) nextidx++;
if (nextidx == end) nextidx = begin;
idx ++;
if (idx == end) idx = begin;
}
// void inc()
// {
// if (nextidx != startidx) nextidx++;
// if (nextidx == end) nextidx = begin;
// idx ++;
// if (idx == end) idx = begin;
// }
void init(size_t pos)
{
startidx = begin + (pos - begin) % size();
idx = startidx;
nextidx = begin + (idx + 1 - begin) % size();
}
// void init(size_t pos)
// {
// startidx = begin + (pos - begin) % size();
// idx = startidx;
// nextidx = begin + (idx + 1 - begin) % size();
// }
bool is_finished() const { return nextidx == idx; }
};
// bool is_finished() const { return nextidx == idx; }
//};
static double sq_dst(const Vec3d &v1, const Vec3d& v2)
{
Vec3d v = v1 - v2;
return v.x() * v.x() + v.y() * v.y() /*+ v.z() * v.z()*/;
}
//template<class Sc>
//static Sc sq_dst(const Vec<3, Sc> &v1, const Vec<3, Sc>& v2)
//{
// Vec<3, Sc> v = v1 - v2;
// return v.x() * v.x() + v.y() * v.y() /*+ v.z() * v.z()*/;
//}
static double score(const Ring& onring, const Ring &offring,
const std::vector<Vec3d> &pts)
{
double a = sq_dst(pts[onring.pos().first], pts[offring.pos().first]);
double b = sq_dst(pts[onring.pos().second], pts[offring.pos().first]);
return (std::abs(a) + std::abs(b)) / 2.;
}
//template<class Sc>
//static Sc trscore(const Ring & onring,
// const Ring & offring,
// const std::vector<Vec<3, Sc>> &pts)
//{
// Sc a = sq_dst(pts[onring.pos().first], pts[offring.pos().first]);
// Sc b = sq_dst(pts[onring.pos().second], pts[offring.pos().first]);
// return (std::abs(a) + std::abs(b)) / 2.;
//}
class Triangulator {
const std::vector<Vec3d> *pts;
Ring *onring, *offring;
//template<class Sc>
//class Triangulator {
// const std::vector<Vec<3, Sc>> *pts;
// Ring *onring, *offring;
double calc_score() const
{
return Slic3r::score(*onring, *offring, *pts);
}
// double calc_score() const
// {
// return trscore(*onring, *offring, *pts);
// }
void synchronize_rings()
{
Ring lring = *offring;
auto minsc = Slic3r::score(*onring, lring, *pts);
size_t imin = lring.pos().first;
// void synchronize_rings()
// {
// Ring lring = *offring;
// auto minsc = trscore(*onring, lring, *pts);
// size_t imin = lring.pos().first;
lring.inc();
// lring.inc();
while(!lring.is_finished()) {
double score = Slic3r::score(*onring, lring, *pts);
if (score < minsc) { minsc = score; imin = lring.pos().first; }
lring.inc();
}
// while(!lring.is_finished()) {
// double score = trscore(*onring, lring, *pts);
// if (score < minsc) { minsc = score; imin = lring.pos().first; }
// lring.inc();
// }
offring->init(imin);
}
// offring->init(imin);
// }
void emplace_indices(std::vector<Vec3i> &indices)
{
Vec3i tr{int(onring->pos().first), int(onring->pos().second),
int(offring->pos().first)};
if (onring->is_lower()) std::swap(tr(0), tr(1));
indices.emplace_back(tr);
}
// void emplace_indices(std::vector<Vec3i> &indices)
// {
// Vec3i tr{int(onring->pos().first), int(onring->pos().second),
// int(offring->pos().first)};
// if (onring->is_lower()) std::swap(tr(0), tr(1));
// indices.emplace_back(tr);
// }
public:
void run(std::vector<Vec3i> &indices)
{
synchronize_rings();
//public:
// void run(std::vector<Vec3i> &indices)
// {
// synchronize_rings();
double score = 0, prev_score = 0;
while (!onring->is_finished() || !offring->is_finished()) {
prev_score = score;
if (onring->is_finished() || (score = calc_score()) > prev_score) {
std::swap(onring, offring);
} else {
emplace_indices(indices);
onring->inc();
}
}
}
// double score = 0, prev_score = 0;
// while (!onring->is_finished() || !offring->is_finished()) {
// prev_score = score;
// if (onring->is_finished() || (score = calc_score()) > prev_score) {
// std::swap(onring, offring);
// } else {
// emplace_indices(indices);
// onring->inc();
// }
// }
// }
explicit Triangulator(const std::vector<Vec3d> *points,
Ring & lower,
Ring & upper)
: pts{points}, onring{&upper}, offring{&lower}
{}
};
// explicit Triangulator(const std::vector<Vec<3, Sc>> *points,
// Ring & lower,
// Ring & upper)
// : pts{points}, onring{&upper}, offring{&lower}
// {}
//};
Wall triangulate_wall(
const Polygon & lower,
const Polygon & upper,
double lower_z_mm,
double upper_z_mm)
{
if (upper.points.size() < 3 || lower.points.size() < 3) return {};
Wall wall;
auto &pts = wall.first;
auto &ind = wall.second;
//template<class Sc, class I>
//void triangulate_wall(std::vector<Vec<3, Sc>> &pts,
// std::vector<Vec<3, I>> & ind,
// const Polygon & lower,
// const Polygon & upper,
// double lower_z_mm,
// double upper_z_mm)
//{
// if (upper.points.size() < 3 || lower.points.size() < 3) return;
pts.reserve(lower.points.size() + upper.points.size());
for (auto &p : lower.points)
wall.first.emplace_back(unscaled(p.x()), unscaled(p.y()), lower_z_mm);
for (auto &p : upper.points)
wall.first.emplace_back(unscaled(p.x()), unscaled(p.y()), upper_z_mm);
// pts.reserve(lower.points.size() + upper.points.size());
// for (auto &p : lower.points)
// pts.emplace_back(unscaled(p.x()), unscaled(p.y()), lower_z_mm);
// for (auto &p : upper.points)
// pts.emplace_back(unscaled(p.x()), unscaled(p.y()), upper_z_mm);
// ind.reserve(2 * (lower.size() + upper.size()));
// Ring lring{0, lower.points.size()}, uring{lower.points.size(), pts.size()};
// Triangulator t{&pts, lring, uring};
// t.run(ind);
//}
//Wall triangulate_wall(const Polygon &lower,
// const Polygon &upper,
// double lower_z_mm,
// double upper_z_mm)
//{
// if (upper.points.size() < 3 || lower.points.size() < 3) return {};
ind.reserve(2 * (lower.size() + upper.size()));
// Wall wall;
// auto &pts = wall.first;
// auto &ind = wall.second;
// pts.reserve(lower.points.size() + upper.points.size());
// for (auto &p : lower.points)
// wall.first.emplace_back(unscaled(p.x()), unscaled(p.y()), lower_z_mm);
// for (auto &p : upper.points)
// wall.first.emplace_back(unscaled(p.x()), unscaled(p.y()), upper_z_mm);
Ring lring{0, lower.points.size()}, uring{lower.points.size(), pts.size()};
Triangulator t{&pts, lring, uring};
t.run(ind);
// ind.reserve(2 * (lower.size() + upper.size()));
return wall;
}
// Ring lring{0, lower.points.size()}, uring{lower.points.size(), pts.size()};
// Triangulator t{&pts, lring, uring};
// t.run(ind);
// return wall;
//}
} // namespace Slic3r

View file

@ -5,13 +5,148 @@
namespace Slic3r {
using Wall = std::pair<std::vector<Vec3d>, std::vector<Vec3i>>;
namespace trianglulate_wall_detail {
Wall triangulate_wall(
const Polygon & lower,
const Polygon & upper,
double lower_z_mm,
double upper_z_mm);
class Ring {
size_t idx = 0, nextidx = 1, startidx = 0, begin = 0, end = 0;
public:
explicit Ring(size_t from, size_t to) : begin(from), end(to) { init(begin); }
size_t size() const { return end - begin; }
std::pair<size_t, size_t> pos() const { return {idx, nextidx}; }
bool is_lower() const { return idx < size(); }
void inc()
{
if (nextidx != startidx) nextidx++;
if (nextidx == end) nextidx = begin;
idx ++;
if (idx == end) idx = begin;
}
void init(size_t pos)
{
startidx = begin + (pos - begin) % size();
idx = startidx;
nextidx = begin + (idx + 1 - begin) % size();
}
bool is_finished() const { return nextidx == idx; }
};
template<class Sc>
static Sc sq_dst(const Vec<3, Sc> &v1, const Vec<3, Sc>& v2)
{
Vec<3, Sc> v = v1 - v2;
return v.x() * v.x() + v.y() * v.y() /*+ v.z() * v.z()*/;
}
template<class Sc>
static Sc trscore(const Ring & onring,
const Ring & offring,
const std::vector<Vec<3, Sc>> &pts)
{
Sc a = sq_dst(pts[onring.pos().first], pts[offring.pos().first]);
Sc b = sq_dst(pts[onring.pos().second], pts[offring.pos().first]);
return (std::abs(a) + std::abs(b)) / 2.;
}
template<class Sc>
class Triangulator {
const std::vector<Vec<3, Sc>> *pts;
Ring *onring, *offring;
double calc_score() const
{
return trscore(*onring, *offring, *pts);
}
void synchronize_rings()
{
Ring lring = *offring;
auto minsc = trscore(*onring, lring, *pts);
size_t imin = lring.pos().first;
lring.inc();
while(!lring.is_finished()) {
double score = trscore(*onring, lring, *pts);
if (score < minsc) { minsc = score; imin = lring.pos().first; }
lring.inc();
}
offring->init(imin);
}
void emplace_indices(std::vector<Vec3i> &indices)
{
Vec3i tr{int(onring->pos().first), int(onring->pos().second),
int(offring->pos().first)};
if (onring->is_lower()) std::swap(tr(0), tr(1));
indices.emplace_back(tr);
}
public:
void run(std::vector<Vec3i> &indices)
{
synchronize_rings();
double score = 0, prev_score = 0;
while (!onring->is_finished() || !offring->is_finished()) {
prev_score = score;
if (onring->is_finished() || (score = calc_score()) > prev_score) {
std::swap(onring, offring);
} else {
emplace_indices(indices);
onring->inc();
}
}
}
explicit Triangulator(const std::vector<Vec<3, Sc>> *points,
Ring & lower,
Ring & upper)
: pts{points}, onring{&upper}, offring{&lower}
{}
};
} // namespace trianglulate_wall_detail
template<class Sc, class I>
void triangulate_wall(std::vector<Vec<3, Sc>> &pts,
std::vector<Vec<3, I>> & ind,
const Polygon & lower,
const Polygon & upper,
double lower_z_mm,
double upper_z_mm)
{
using namespace trianglulate_wall_detail;
if (upper.points.size() < 3 || lower.points.size() < 3) return;
pts.reserve(lower.points.size() + upper.points.size());
for (auto &p : lower.points)
pts.emplace_back(unscaled(p.x()), unscaled(p.y()), lower_z_mm);
for (auto &p : upper.points)
pts.emplace_back(unscaled(p.x()), unscaled(p.y()), upper_z_mm);
ind.reserve(2 * (lower.size() + upper.size()));
Ring lring{0, lower.points.size()}, uring{lower.points.size(), pts.size()};
Triangulator t{&pts, lring, uring};
t.run(ind);
}
//using Wall = std::pair<std::vector<Vec3d>, std::vector<Vec3i>>;
//Wall triangulate_wall(
// const Polygon & lower,
// const Polygon & upper,
// double lower_z_mm,
// double upper_z_mm);
//}
} // namespace Slic3r
#endif // TRIANGULATEWALL_HPP

View file

@ -236,10 +236,10 @@ TEST_CASE("Triangle mesh conversions should be correct", "[SLAConversions]")
TEST_CASE("halfcone test", "[halfcone]") {
sla::DiffBridge br{Vec3d{1., 1., 1.}, Vec3d{10., 10., 10.}, 0.25, 0.5};
TriangleMesh m = sla::to_triangle_mesh(sla::get_mesh(br, 45));
indexed_triangle_set m = sla::get_mesh(br, 45);
m.require_shared_vertices();
m.WriteOBJFile("Halfcone.obj");
its_merge_vertices(m);
its_write_obj(m, "Halfcone.obj");
}
TEST_CASE("Test concurrency")

View file

@ -69,9 +69,10 @@ void export_failed_case(const std::vector<ExPolygons> &support_slices, const Sup
svg.Close();
}
}
TriangleMesh m;
byproducts.supporttree.retrieve_full_mesh(m);
indexed_triangle_set its;
byproducts.supporttree.retrieve_full_mesh(its);
TriangleMesh m{its};
m.merge(byproducts.input_mesh);
m.repair();
m.require_shared_vertices();
@ -151,7 +152,7 @@ void test_supports(const std::string &obj_filename,
check_support_tree_integrity(treebuilder, supportcfg);
const TriangleMesh &output_mesh = treebuilder.retrieve_mesh();
TriangleMesh output_mesh{treebuilder.retrieve_mesh(sla::MeshType::Support)};
check_validity(output_mesh, validityflags);
@ -228,14 +229,16 @@ void test_pad(const std::string &obj_filename, const sla::PadConfig &padcfg, Pad
REQUIRE_FALSE(mesh.empty());
// Create pad skeleton only from the model
Slic3r::sla::pad_blueprint(mesh, out.model_contours);
Slic3r::sla::pad_blueprint(mesh.its, out.model_contours);
test_concave_hull(out.model_contours);
REQUIRE_FALSE(out.model_contours.empty());
// Create the pad geometry for the model contours only
Slic3r::sla::create_pad({}, out.model_contours, out.mesh, padcfg);
indexed_triangle_set out_its;
Slic3r::sla::create_pad({}, out.model_contours, out_its, padcfg);
out.mesh = TriangleMesh{out_its};
check_validity(out.mesh);