WIP "ensure verticall wall thickness" rework:
1) New region expansion code to propagate wave from a boundary of a region inside of it. 2) get_extents() extended with a template attribute to work with zero area data sets. 3) ClipperZUtils.hpp for handling Clipper operation with Z coordinate (for source contour identification)
This commit is contained in:
parent
d3734aa5ae
commit
11c0e567a6
19 changed files with 964 additions and 85 deletions
|
@ -23,6 +23,7 @@ add_executable(${_TEST_NAME}_tests
|
|||
test_stl.cpp
|
||||
test_meshboolean.cpp
|
||||
test_marchingsquares.cpp
|
||||
test_region_expansion.cpp
|
||||
test_timeutils.cpp
|
||||
test_utils.cpp
|
||||
test_voronoi.cpp
|
||||
|
|
254
tests/libslic3r/test_region_expansion.cpp
Normal file
254
tests/libslic3r/test_region_expansion.cpp
Normal file
|
@ -0,0 +1,254 @@
|
|||
#include <catch2/catch.hpp>
|
||||
|
||||
#include <libslic3r/libslic3r.h>
|
||||
#include <libslic3r/Algorithm/RegionExpansion.hpp>
|
||||
#include <libslic3r/ClipperUtils.hpp>
|
||||
#include <libslic3r/ExPolygon.hpp>
|
||||
#include <libslic3r/Polygon.hpp>
|
||||
#include <libslic3r/SVG.cpp>
|
||||
|
||||
using namespace Slic3r;
|
||||
|
||||
//#define DEBUG_TEMP_DIR "d:\\temp\\"
|
||||
|
||||
SCENARIO("Region expansion basics", "[RegionExpansion]") {
|
||||
static constexpr const coord_t ten = scaled<coord_t>(10.);
|
||||
GIVEN("two touching squares") {
|
||||
Polygon square1{ { 1 * ten, 1 * ten }, { 2 * ten, 1 * ten }, { 2 * ten, 2 * ten }, { 1 * ten, 2 * ten } };
|
||||
Polygon square2{ { 2 * ten, 1 * ten }, { 3 * ten, 1 * ten }, { 3 * ten, 2 * ten }, { 2 * ten, 2 * ten } };
|
||||
Polygon square3{ { 1 * ten, 2 * ten }, { 2 * ten, 2 * ten }, { 2 * ten, 3 * ten }, { 1 * ten, 3 * ten } };
|
||||
static constexpr const float expansion = scaled<float>(1.);
|
||||
auto test_expansion = [](const Polygon &src, const Polygon &boundary) {
|
||||
std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{src} }, { ExPolygon{boundary} },
|
||||
expansion,
|
||||
scaled<float>(0.3), // expansion step
|
||||
5); // max num steps
|
||||
THEN("Single anchor is produced") {
|
||||
REQUIRE(expanded.size() == 1);
|
||||
}
|
||||
THEN("The area of the anchor is 10mm2") {
|
||||
REQUIRE(area(expanded.front()) == Approx(expansion * ten));
|
||||
}
|
||||
};
|
||||
|
||||
WHEN("second square expanded into the first square (to left)") {
|
||||
test_expansion(square2, square1);
|
||||
}
|
||||
WHEN("first square expanded into the second square (to right)") {
|
||||
test_expansion(square1, square2);
|
||||
}
|
||||
WHEN("third square expanded into the first square (down)") {
|
||||
test_expansion(square3, square1);
|
||||
}
|
||||
WHEN("first square expanded into the third square (up)") {
|
||||
test_expansion(square1, square3);
|
||||
}
|
||||
}
|
||||
|
||||
GIVEN("simple bridge") {
|
||||
Polygon square1{ { 1 * ten, 1 * ten }, { 2 * ten, 1 * ten }, { 2 * ten, 2 * ten }, { 1 * ten, 2 * ten } };
|
||||
Polygon square2{ { 2 * ten, 1 * ten }, { 3 * ten, 1 * ten }, { 3 * ten, 2 * ten }, { 2 * ten, 2 * ten } };
|
||||
Polygon square3{ { 3 * ten, 1 * ten }, { 4 * ten, 1 * ten }, { 4 * ten, 2 * ten }, { 3 * ten, 2 * ten } };
|
||||
|
||||
WHEN("expanded") {
|
||||
static constexpr const float expansion = scaled<float>(1.);
|
||||
std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{square2} }, { ExPolygon{square1}, ExPolygon{square3} },
|
||||
expansion,
|
||||
scaled<float>(0.3), // expansion step
|
||||
5); // max num steps
|
||||
THEN("Two anchors are produced") {
|
||||
REQUIRE(expanded.size() == 1);
|
||||
REQUIRE(expanded.front().size() == 2);
|
||||
}
|
||||
THEN("The area of each anchor is 10mm2") {
|
||||
REQUIRE(area(expanded.front().front()) == Approx(expansion * ten));
|
||||
REQUIRE(area(expanded.front().back()) == Approx(expansion * ten));
|
||||
}
|
||||
}
|
||||
|
||||
WHEN("fully expanded") {
|
||||
static constexpr const float expansion = scaled<float>(10.1);
|
||||
std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{square2} }, { ExPolygon{square1}, ExPolygon{square3} },
|
||||
expansion,
|
||||
scaled<float>(2.3), // expansion step
|
||||
5); // max num steps
|
||||
THEN("Two anchors are produced") {
|
||||
REQUIRE(expanded.size() == 1);
|
||||
REQUIRE(expanded.front().size() == 2);
|
||||
}
|
||||
THEN("The area of each anchor is 100mm2") {
|
||||
REQUIRE(area(expanded.front().front()) == Approx(sqr<double>(ten)));
|
||||
REQUIRE(area(expanded.front().back()) == Approx(sqr<double>(ten)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GIVEN("two bridges") {
|
||||
Polygon left_support { { 1 * ten, 1 * ten }, { 2 * ten, 1 * ten }, { 2 * ten, 4 * ten }, { 1 * ten, 4 * ten } };
|
||||
Polygon right_support { { 3 * ten, 1 * ten }, { 4 * ten, 1 * ten }, { 4 * ten, 4 * ten }, { 3 * ten, 4 * ten } };
|
||||
Polygon bottom_bridge { { 2 * ten, 1 * ten }, { 3 * ten, 1 * ten }, { 3 * ten, 2 * ten }, { 2 * ten, 2 * ten } };
|
||||
Polygon top_bridge { { 2 * ten, 3 * ten }, { 3 * ten, 3 * ten }, { 3 * ten, 4 * ten }, { 2 * ten, 4 * ten } };
|
||||
|
||||
WHEN("expanded") {
|
||||
static constexpr const float expansion = scaled<float>(1.);
|
||||
std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{bottom_bridge}, ExPolygon{top_bridge} }, { ExPolygon{left_support}, ExPolygon{right_support} },
|
||||
expansion,
|
||||
scaled<float>(0.3), // expansion step
|
||||
5); // max num steps
|
||||
#if 0
|
||||
SVG::export_expolygons(DEBUG_TEMP_DIR "two_bridges-out.svg",
|
||||
{ { { { ExPolygon{left_support}, ExPolygon{right_support} } }, { "supports", "orange", 0.5f } },
|
||||
{ { { ExPolygon{bottom_bridge}, ExPolygon{top_bridge} } }, { "bridges", "blue", 0.5f } },
|
||||
{ { union_ex(union_(expanded.front(), expanded.back())) }, { "expanded", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
|
||||
#endif
|
||||
THEN("Two anchors are produced for each bridge") {
|
||||
REQUIRE(expanded.size() == 2);
|
||||
REQUIRE(expanded.front().size() == 2);
|
||||
REQUIRE(expanded.back().size() == 2);
|
||||
}
|
||||
THEN("The area of each anchor is 10mm2") {
|
||||
double a = expansion * ten + M_PI * sqr(expansion) / 4;
|
||||
double eps = sqr(scaled<double>(0.1));
|
||||
REQUIRE(is_approx(area(expanded.front().front()), a, eps));
|
||||
REQUIRE(is_approx(area(expanded.front().back()), a, eps));
|
||||
REQUIRE(is_approx(area(expanded.back().front()), a, eps));
|
||||
REQUIRE(is_approx(area(expanded.back().back()), a, eps));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GIVEN("rectangle with rhombic cut-out") {
|
||||
double diag = 1 * ten * sqrt(2.) / 4.;
|
||||
Polygon square_with_rhombic_cutout{ { 0, 0 }, { 1 * ten, 0 }, { ten / 2, ten / 2 }, { 1 * ten, 1 * ten }, { 0, 1 * ten } };
|
||||
Polygon rhombic { { ten / 2, ten / 2 }, { 3 * ten / 4, ten / 4 }, { 1 * ten, ten / 2 }, { 3 * ten / 4, 3 * ten / 4 } };
|
||||
|
||||
WHEN("expanded") {
|
||||
static constexpr const float expansion = scaled<float>(1.);
|
||||
std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{rhombic} }, { ExPolygon{square_with_rhombic_cutout} },
|
||||
expansion,
|
||||
scaled<float>(0.1), // expansion step
|
||||
11); // max num steps
|
||||
#if 0
|
||||
SVG::export_expolygons(DEBUG_TEMP_DIR "rectangle_with_rhombic_cut-out.svg",
|
||||
{ { { { ExPolygon{square_with_rhombic_cutout} } }, { "square_with_rhombic_cutout", "orange", 0.5f } },
|
||||
{ { { ExPolygon{rhombic} } }, { "rhombic", "blue", 0.5f } },
|
||||
{ { union_ex(expanded.front()) }, { "bridges", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
|
||||
#endif
|
||||
THEN("Single anchor is produced") {
|
||||
REQUIRE(expanded.size() == 1);
|
||||
}
|
||||
THEN("The area of anchor is correct") {
|
||||
double area_calculated = area(expanded.front());
|
||||
double area_expected = 2. * diag * expansion + M_PI * sqr(expansion) * 0.75;
|
||||
REQUIRE(is_approx(area_expected, area_calculated, sqr(scaled<double>(0.2))));
|
||||
}
|
||||
}
|
||||
|
||||
WHEN("extra expanded") {
|
||||
static constexpr const float expansion = scaled<float>(2.5);
|
||||
std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{rhombic} }, { ExPolygon{square_with_rhombic_cutout} },
|
||||
expansion,
|
||||
scaled<float>(0.25), // expansion step
|
||||
11); // max num steps
|
||||
#if 0
|
||||
SVG::export_expolygons(DEBUG_TEMP_DIR "rectangle_with_rhombic_cut-out2.svg",
|
||||
{ { { { ExPolygon{square_with_rhombic_cutout} } }, { "square_with_rhombic_cutout", "orange", 0.5f } },
|
||||
{ { { ExPolygon{rhombic} } }, { "rhombic", "blue", 0.5f } },
|
||||
{ { union_ex(expanded.front()) }, { "bridges", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
|
||||
#endif
|
||||
THEN("Single anchor is produced") {
|
||||
REQUIRE(expanded.size() == 1);
|
||||
}
|
||||
THEN("The area of anchor is correct") {
|
||||
double area_calculated = area(expanded.front());
|
||||
double area_expected = 2. * diag * expansion + M_PI * sqr(expansion) * 0.75;
|
||||
REQUIRE(is_approx(area_expected, area_calculated, sqr(scaled<double>(0.3))));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GIVEN("square with two holes") {
|
||||
Polygon outer{ { 0, 0 }, { 3 * ten, 0 }, { 3 * ten, 5 * ten }, { 0, 5 * ten } };
|
||||
Polygon hole1{ { 1 * ten, 1 * ten }, { 1 * ten, 2 * ten }, { 2 * ten, 2 * ten }, { 2 * ten, 1 * ten } };
|
||||
Polygon hole2{ { 1 * ten, 3 * ten }, { 1 * ten, 4 * ten }, { 2 * ten, 4 * ten }, { 2 * ten, 3 * ten } };
|
||||
ExPolygon boundary(outer);
|
||||
boundary.holes = { hole1, hole2 };
|
||||
|
||||
Polygon anchor{ { -1 * ten, coord_t(1.5 * ten) }, { 0 * ten, coord_t(1.5 * ten) }, { 0, coord_t(3.5 * ten) }, { -1 * ten, coord_t(3.5 * ten) } };
|
||||
|
||||
WHEN("expanded") {
|
||||
static constexpr const float expansion = scaled<float>(5.);
|
||||
std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{anchor} }, { boundary },
|
||||
expansion,
|
||||
scaled<float>(0.4), // expansion step
|
||||
15); // max num steps
|
||||
#if 0
|
||||
SVG::export_expolygons(DEBUG_TEMP_DIR "square_with_two_holes-out.svg",
|
||||
{ { { { ExPolygon{anchor} } }, { "anchor", "orange", 0.5f } },
|
||||
{ { { boundary } }, { "boundary", "blue", 0.5f } },
|
||||
{ { union_ex(expanded.front()) }, { "expanded", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
|
||||
#endif
|
||||
THEN("The anchor expands into a single region") {
|
||||
REQUIRE(expanded.size() == 1);
|
||||
REQUIRE(expanded.front().size() == 1);
|
||||
}
|
||||
THEN("The area of anchor is correct") {
|
||||
double area_calculated = area(expanded.front());
|
||||
double area_expected = double(expansion) * 2. * double(ten) + M_PI * sqr(expansion) * 0.5;
|
||||
REQUIRE(is_approx(area_expected, area_calculated, sqr(scaled<double>(0.45))));
|
||||
}
|
||||
}
|
||||
WHEN("expanded even more") {
|
||||
static constexpr const float expansion = scaled<float>(25.);
|
||||
std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{anchor} }, { boundary },
|
||||
expansion,
|
||||
scaled<float>(2.), // expansion step
|
||||
15); // max num steps
|
||||
#if 0
|
||||
SVG::export_expolygons(DEBUG_TEMP_DIR "square_with_two_holes-expanded2-out.svg",
|
||||
{ { { { ExPolygon{anchor} } }, { "anchor", "orange", 0.5f } },
|
||||
{ { { boundary } }, { "boundary", "blue", 0.5f } },
|
||||
{ { union_ex(expanded.front()) }, { "expanded", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
|
||||
#endif
|
||||
THEN("The anchor expands into a single region") {
|
||||
REQUIRE(expanded.size() == 1);
|
||||
REQUIRE(expanded.front().size() == 1);
|
||||
}
|
||||
}
|
||||
WHEN("expanded yet even more") {
|
||||
static constexpr const float expansion = scaled<float>(28.);
|
||||
std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{anchor} }, { boundary },
|
||||
expansion,
|
||||
scaled<float>(2.), // expansion step
|
||||
20); // max num steps
|
||||
#if 0
|
||||
SVG::export_expolygons(DEBUG_TEMP_DIR "square_with_two_holes-expanded3-out.svg",
|
||||
{ { { { ExPolygon{anchor} } }, { "anchor", "orange", 0.5f } },
|
||||
{ { { boundary } }, { "boundary", "blue", 0.5f } },
|
||||
{ { union_ex(expanded.front()) }, { "expanded", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
|
||||
#endif
|
||||
THEN("The anchor expands into a single region with two holes") {
|
||||
REQUIRE(expanded.size() == 1);
|
||||
REQUIRE(expanded.front().size() == 3);
|
||||
}
|
||||
}
|
||||
WHEN("expanded fully") {
|
||||
static constexpr const float expansion = scaled<float>(35.);
|
||||
std::vector<Polygons> expanded = Algorithm::expand_expolygons({ ExPolygon{anchor} }, { boundary },
|
||||
expansion,
|
||||
scaled<float>(2.), // expansion step
|
||||
25); // max num steps
|
||||
#if 0
|
||||
SVG::export_expolygons(DEBUG_TEMP_DIR "square_with_two_holes-expanded_fully-out.svg",
|
||||
{ { { { ExPolygon{anchor} } }, { "anchor", "orange", 0.5f } },
|
||||
{ { { boundary } }, { "boundary", "blue", 0.5f } },
|
||||
{ { union_ex(expanded.front()) }, { "expanded", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
|
||||
#endif
|
||||
THEN("The anchor expands into a single region with two holes, fully covering the boundary") {
|
||||
REQUIRE(expanded.size() == 1);
|
||||
REQUIRE(expanded.front().size() == 3);
|
||||
REQUIRE(area(expanded.front()) == Approx(area(boundary)));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue