Extend kdtree with k-nearest and bounding box queries
Also add test to verify it
This commit is contained in:
parent
72b82547dd
commit
12a54251c9
5 changed files with 495 additions and 186 deletions
|
@ -212,6 +212,7 @@ set(SLIC3R_SOURCES
|
|||
PrintObject.cpp
|
||||
PrintObjectSlice.cpp
|
||||
PrintRegion.cpp
|
||||
PointGrid.hpp
|
||||
PNGReadWrite.hpp
|
||||
PNGReadWrite.cpp
|
||||
QuadricEdgeCollapse.cpp
|
||||
|
|
|
@ -11,6 +11,12 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
enum class VisitorReturnMask : unsigned int {
|
||||
CONTINUE_LEFT = 1,
|
||||
CONTINUE_RIGHT = 2,
|
||||
STOP = 4,
|
||||
};
|
||||
|
||||
// KD tree for N-dimensional closest point search.
|
||||
template<size_t ANumDimensions, typename ACoordType, typename ACoordinateFn>
|
||||
class KDTreeIndirect
|
||||
|
@ -25,8 +31,7 @@ public:
|
|||
};
|
||||
|
||||
KDTreeIndirect(CoordinateFn coordinate) : coordinate(coordinate) {}
|
||||
KDTreeIndirect(CoordinateFn coordinate, std::vector<size_t> indices) : coordinate(coordinate) { this->build(std::move(indices)); }
|
||||
KDTreeIndirect(CoordinateFn coordinate, std::vector<size_t> &&indices) : coordinate(coordinate) { this->build(std::move(indices)); }
|
||||
KDTreeIndirect(CoordinateFn coordinate, std::vector<size_t> indices) : coordinate(coordinate) { this->build(indices); }
|
||||
KDTreeIndirect(CoordinateFn coordinate, size_t num_indices) : coordinate(coordinate) { this->build(num_indices); }
|
||||
KDTreeIndirect(KDTreeIndirect &&rhs) : m_nodes(std::move(rhs.m_nodes)), coordinate(std::move(rhs.coordinate)) {}
|
||||
KDTreeIndirect& operator=(KDTreeIndirect &&rhs) { m_nodes = std::move(rhs.m_nodes); coordinate = std::move(rhs.coordinate); return *this; }
|
||||
|
@ -38,10 +43,10 @@ public:
|
|||
indices.reserve(num_indices);
|
||||
for (size_t i = 0; i < num_indices; ++ i)
|
||||
indices.emplace_back(i);
|
||||
this->build(std::move(indices));
|
||||
this->build(indices);
|
||||
}
|
||||
|
||||
void build(std::vector<size_t> &&indices)
|
||||
void build(std::vector<size_t> &indices)
|
||||
{
|
||||
if (indices.empty())
|
||||
clear();
|
||||
|
@ -53,12 +58,6 @@ public:
|
|||
indices.clear();
|
||||
}
|
||||
|
||||
enum class VisitorReturnMask : unsigned int
|
||||
{
|
||||
CONTINUE_LEFT = 1,
|
||||
CONTINUE_RIGHT = 2,
|
||||
STOP = 4,
|
||||
};
|
||||
template<typename CoordType>
|
||||
unsigned int descent_mask(const CoordType &point_coord, const CoordType &search_radius, size_t idx, size_t dimension) const
|
||||
{
|
||||
|
@ -192,37 +191,83 @@ private:
|
|||
|
||||
// Find a closest point using Euclidian metrics.
|
||||
// Returns npos if not found.
|
||||
template<typename KDTreeIndirectType, typename PointType, typename FilterFn>
|
||||
size_t find_closest_point(const KDTreeIndirectType &kdtree, const PointType &point, FilterFn filter)
|
||||
template<size_t K,
|
||||
typename PointType,
|
||||
typename FilterFn,
|
||||
size_t D,
|
||||
typename CoordT,
|
||||
typename CoordFn>
|
||||
std::array<size_t, K> find_closest_points(
|
||||
const KDTreeIndirect<D, CoordT, CoordFn> &kdtree,
|
||||
const PointType &point,
|
||||
FilterFn filter)
|
||||
{
|
||||
using CoordType = typename KDTreeIndirectType::CoordType;
|
||||
using Tree = KDTreeIndirect<D, CoordT, CoordFn>;
|
||||
|
||||
struct Visitor {
|
||||
const KDTreeIndirectType &kdtree;
|
||||
struct Visitor
|
||||
{
|
||||
const Tree &kdtree;
|
||||
const PointType &point;
|
||||
const FilterFn filter;
|
||||
size_t min_idx = KDTreeIndirectType::npos;
|
||||
CoordType min_dist = std::numeric_limits<CoordType>::max();
|
||||
|
||||
Visitor(const KDTreeIndirectType &kdtree, const PointType &point, FilterFn filter) : kdtree(kdtree), point(point), filter(filter) {}
|
||||
unsigned int operator()(size_t idx, size_t dimension) {
|
||||
std::array<std::pair<size_t, CoordT>, K> results;
|
||||
|
||||
Visitor(const Tree &kdtree, const PointType &point, FilterFn filter)
|
||||
: kdtree(kdtree), point(point), filter(filter)
|
||||
{
|
||||
results.fill(std::make_pair(Tree::npos,
|
||||
std::numeric_limits<CoordT>::max()));
|
||||
}
|
||||
unsigned int operator()(size_t idx, size_t dimension)
|
||||
{
|
||||
if (this->filter(idx)) {
|
||||
auto dist = CoordType(0);
|
||||
for (size_t i = 0; i < KDTreeIndirectType::NumDimensions; ++ i) {
|
||||
CoordType d = point[i] - kdtree.coordinate(idx, i);
|
||||
auto dist = CoordT(0);
|
||||
for (size_t i = 0; i < D; ++i) {
|
||||
CoordT d = point[i] - kdtree.coordinate(idx, i);
|
||||
dist += d * d;
|
||||
}
|
||||
if (dist < min_dist) {
|
||||
min_dist = dist;
|
||||
min_idx = idx;
|
||||
|
||||
auto res = std::make_pair(idx, dist);
|
||||
auto it = std::lower_bound(results.begin(), results.end(),
|
||||
res, [](auto &r1, auto &r2) {
|
||||
return r1.second < r2.second;
|
||||
});
|
||||
|
||||
if (it != results.end()) {
|
||||
std::rotate(it, std::prev(results.end()), results.end());
|
||||
*it = res;
|
||||
}
|
||||
}
|
||||
return kdtree.descent_mask(point[dimension], min_dist, idx, dimension);
|
||||
return kdtree.descent_mask(point[dimension],
|
||||
results.front().second, idx,
|
||||
dimension);
|
||||
}
|
||||
} visitor(kdtree, point, filter);
|
||||
|
||||
kdtree.visit(visitor);
|
||||
return visitor.min_idx;
|
||||
std::array<size_t, K> ret;
|
||||
for (size_t i = 0; i < K; i++) ret[i] = visitor.results[i].first;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<size_t K, typename PointType, size_t D, typename CoordT, typename CoordFn>
|
||||
std::array<size_t, K> find_closest_points(
|
||||
const KDTreeIndirect<D, CoordT, CoordFn> &kdtree, const PointType &point)
|
||||
{
|
||||
return find_closest_points<K>(kdtree, point, [](size_t) { return true; });
|
||||
}
|
||||
|
||||
template<typename PointType,
|
||||
typename FilterFn,
|
||||
size_t D,
|
||||
typename CoordT,
|
||||
typename CoordFn>
|
||||
size_t find_closest_point(const KDTreeIndirect<D, CoordT, CoordFn> &kdtree,
|
||||
const PointType &point,
|
||||
FilterFn filter)
|
||||
{
|
||||
return find_closest_points<1>(kdtree, point, filter)[0];
|
||||
}
|
||||
|
||||
template<typename KDTreeIndirectType, typename PointType>
|
||||
|
@ -277,6 +322,52 @@ std::vector<size_t> find_nearby_points(const KDTreeIndirectType &kdtree, const P
|
|||
});
|
||||
}
|
||||
|
||||
// Find nearby points (spherical neighbourhood) using Euclidian metrics.
|
||||
template<typename KDTreeIndirectType, typename PointType, typename FilterFn>
|
||||
std::vector<size_t> find_nearby_points(const KDTreeIndirectType &kdtree,
|
||||
const PointType &bb_min,
|
||||
const PointType &bb_max,
|
||||
FilterFn filter)
|
||||
{
|
||||
struct Visitor {
|
||||
const KDTreeIndirectType &kdtree;
|
||||
const PointType &bb_min, &bb_max;
|
||||
const FilterFn filter;
|
||||
std::vector<size_t> result;
|
||||
|
||||
Visitor(const KDTreeIndirectType &kdtree, const PointType& bbmin, const PointType& bbmax,
|
||||
FilterFn filter) :
|
||||
kdtree(kdtree), bb_min{bbmin}, bb_max{bbmax}, filter(filter) {
|
||||
}
|
||||
unsigned int operator()(size_t idx, size_t dimension) {
|
||||
unsigned int ret =
|
||||
static_cast<unsigned int>(VisitorReturnMask::CONTINUE_LEFT) |
|
||||
static_cast<unsigned int>(VisitorReturnMask::CONTINUE_RIGHT);
|
||||
|
||||
if (this->filter(idx)) {
|
||||
PointType p;
|
||||
bool contains = true;
|
||||
for (size_t i = 0; i < KDTreeIndirectType::NumDimensions; ++i) {
|
||||
p(i) = kdtree.coordinate(idx, i);
|
||||
contains = contains && bb_min(i) <= p(i) && p(i) <= bb_max(i);
|
||||
}
|
||||
|
||||
if (p(dimension) < bb_min(dimension))
|
||||
ret = static_cast<unsigned int>(VisitorReturnMask::CONTINUE_RIGHT);
|
||||
if (p(dimension) > bb_max(dimension))
|
||||
ret = static_cast<unsigned int>(VisitorReturnMask::CONTINUE_LEFT);
|
||||
|
||||
if (contains)
|
||||
result.emplace_back(idx);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
} visitor(kdtree, bb_min, bb_max, filter);
|
||||
|
||||
kdtree.visit(visitor);
|
||||
return visitor.result;
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
|
|
74
src/libslic3r/PointGrid.hpp
Normal file
74
src/libslic3r/PointGrid.hpp
Normal file
|
@ -0,0 +1,74 @@
|
|||
#ifndef POINTGRID_HPP
|
||||
#define POINTGRID_HPP
|
||||
|
||||
#include <libslic3r/Execution/Execution.hpp>
|
||||
#include <libslic3r/Point.hpp>
|
||||
#include <libslic3r/BoundingBox.hpp>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
template<class T>
|
||||
class PointGrid {
|
||||
Vec3i m_size;
|
||||
std::vector<Vec<3, T>> m_data;
|
||||
const int XY;
|
||||
|
||||
public:
|
||||
explicit PointGrid(std::vector<Vec<3, T>> data, const Vec3i &size)
|
||||
: m_data(std::move(data)), m_size{size}, XY{m_size.x() * m_size.y()}
|
||||
{}
|
||||
|
||||
const Vec<3, T> & get(size_t idx) const { return m_data[idx]; }
|
||||
const Vec<3, T> & get(const Vec3i &coord) const
|
||||
{
|
||||
return m_data[get_idx(coord)];
|
||||
}
|
||||
|
||||
size_t get_idx(const Vec3i &coord) const
|
||||
{
|
||||
size_t ret = coord.z() * XY + coord.y() * m_size.x() + coord.x();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
Vec3i get_coord(size_t idx) const {
|
||||
size_t iz = idx / XY;
|
||||
size_t iy = (idx / m_size.x()) % m_size.y();
|
||||
size_t ix = idx % m_size.x();
|
||||
|
||||
return {ix, iy, iz};
|
||||
}
|
||||
|
||||
const std::vector<Vec<3, T>> & data() const { return m_data; }
|
||||
size_t point_count() const { return m_data.size(); }
|
||||
bool empty() const { return m_data.empty(); }
|
||||
};
|
||||
|
||||
template<class Ex, class CoordT>
|
||||
PointGrid<CoordT> point_grid(Ex policy,
|
||||
const BoundingBox3Base<Vec<3, CoordT>> &bounds,
|
||||
const Vec<3, CoordT> &stride)
|
||||
{
|
||||
Vec3i numpts = Vec3i::Zero();
|
||||
|
||||
for (int n = 0; n < 3; ++n)
|
||||
numpts(n) = (bounds.max(n) - bounds.min(n)) / stride(n);
|
||||
|
||||
std::vector<Vec<3, CoordT>> out(numpts.x() * numpts.y() * numpts.z());
|
||||
|
||||
size_t XY = numpts[X] * numpts[Y];
|
||||
|
||||
execution::for_each(policy, size_t(0), out.size(), [&](size_t i) {
|
||||
size_t iz = i / XY;
|
||||
size_t iy = (i / numpts[X]) % numpts[Y];
|
||||
size_t ix = i % numpts[X];
|
||||
|
||||
out[i] = Vec<3, CoordT>(ix * stride.x(), iy * stride.y(), iz * stride.z());
|
||||
});
|
||||
|
||||
return PointGrid{std::move(out), numpts};
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // POINTGRID_HPP
|
|
@ -4,6 +4,7 @@ add_executable(${_TEST_NAME}_tests
|
|||
${_TEST_NAME}_tests.cpp
|
||||
test_3mf.cpp
|
||||
test_aabbindirect.cpp
|
||||
test_kdtreeindirect.cpp
|
||||
test_clipper_offset.cpp
|
||||
test_clipper_utils.cpp
|
||||
test_color.cpp
|
||||
|
|
142
tests/libslic3r/test_kdtreeindirect.cpp
Normal file
142
tests/libslic3r/test_kdtreeindirect.cpp
Normal file
|
@ -0,0 +1,142 @@
|
|||
#include <catch2/catch.hpp>
|
||||
|
||||
#include "libslic3r/KDTreeIndirect.hpp"
|
||||
#include "libslic3r/Execution/ExecutionSeq.hpp"
|
||||
#include "libslic3r/BoundingBox.hpp"
|
||||
#include "libslic3r/PointGrid.hpp"
|
||||
|
||||
using namespace Slic3r;
|
||||
|
||||
//template<class G>
|
||||
//struct Within { // Wrapper for the `within` predicate that counts calls.
|
||||
|
||||
// kdtree::Within<G> pred;
|
||||
|
||||
// Within(G box): pred{box} {}
|
||||
|
||||
// // Number of times the predicate was called
|
||||
// mutable size_t call_count = 0;
|
||||
|
||||
// std::pair<bool, unsigned int> operator() (const Vec3f &p, size_t dim)
|
||||
// {
|
||||
// ++call_count;
|
||||
|
||||
// return pred(p, dim);
|
||||
// }
|
||||
//};
|
||||
|
||||
static double volume(const BoundingBox3Base<Vec3f> &box)
|
||||
{
|
||||
auto sz = box.size();
|
||||
return sz.x() * sz.y() * sz.z();
|
||||
}
|
||||
|
||||
static double volume(const Eigen::AlignedBox<float, 3> &box)
|
||||
{
|
||||
return box.volume();
|
||||
}
|
||||
|
||||
TEST_CASE("Test kdtree query for a Box", "[KDTreeIndirect]")
|
||||
{
|
||||
auto vol = BoundingBox3Base<Vec3f>{{0.f, 0.f, 0.f}, {10.f, 10.f, 10.f}};
|
||||
|
||||
auto pgrid = point_grid(ex_seq, vol, Vec3f{0.1f, 0.1f, 0.1f});
|
||||
|
||||
REQUIRE(!pgrid.empty());
|
||||
|
||||
auto coordfn = [&pgrid] (size_t i, size_t D) { return pgrid.get(i)(int(D)); };
|
||||
KDTreeIndirect<3, float, decltype(coordfn)> tree{coordfn, pgrid.point_count()};
|
||||
|
||||
std::vector<size_t> out;
|
||||
|
||||
auto qbox = BoundingBox3Base{Vec3f{0.f, 0.f, 0.f}, Vec3f{.5f, .5f, .5f}};
|
||||
|
||||
size_t call_count = 0;
|
||||
out = find_nearby_points(tree, qbox.min, qbox.max, [&call_count](size_t) {
|
||||
call_count++;
|
||||
return true;
|
||||
});
|
||||
|
||||
// Output shall be non-empty
|
||||
REQUIRE(!out.empty());
|
||||
|
||||
std::sort(out.begin(), out.end());
|
||||
|
||||
// No duplicates allowed in the output
|
||||
auto it = std::unique(out.begin(), out.end());
|
||||
REQUIRE(it == out.end());
|
||||
|
||||
// Test if inside points are in the output and outside points are not.
|
||||
bool succ = true;
|
||||
for (size_t i = 0; i < pgrid.point_count(); ++i) {
|
||||
auto foundit = std::find(out.begin(), out.end(), i);
|
||||
bool contains = qbox.contains(pgrid.get(i));
|
||||
succ = succ && contains ? foundit != out.end() : foundit == out.end();
|
||||
|
||||
if (!succ) {
|
||||
std::cout << "invalid point: " << i << " " << pgrid.get(i).transpose()
|
||||
<< std::endl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
REQUIRE(succ);
|
||||
|
||||
// Test for the expected cost of the query.
|
||||
double gridvolume = volume(vol);
|
||||
double queryvolume = volume(qbox);
|
||||
double volratio = (queryvolume / gridvolume);
|
||||
REQUIRE(call_count < 3 * volratio * pgrid.point_count());
|
||||
REQUIRE(call_count < pgrid.point_count());
|
||||
}
|
||||
|
||||
//TEST_CASE("Test kdtree query for a Sphere", "[KDTreeIndirect]") {
|
||||
// auto vol = BoundingBox3Base<Vec3f>{{0.f, 0.f, 0.f}, {10.f, 10.f, 10.f}};
|
||||
|
||||
// auto pgrid = point_grid(ex_seq, vol, Vec3f{0.1f, 0.1f, 0.1f});
|
||||
|
||||
// REQUIRE(!pgrid.empty());
|
||||
|
||||
// auto coordfn = [&pgrid] (size_t i, size_t D) { return pgrid.get(i)(int(D)); };
|
||||
// kdtree::KDTreeIndirect<3, float, decltype(coordfn)> tree{coordfn, pgrid.point_count()};
|
||||
|
||||
// std::vector<size_t> out;
|
||||
|
||||
// auto querysphere = kdtree::Sphere{Vec3f{5.f, 5.f, 5.f}, 2.f};
|
||||
|
||||
// auto pred = Within(querysphere);
|
||||
|
||||
// kdtree::query(tree, pred, std::back_inserter(out));
|
||||
|
||||
// // Output shall be non-empty
|
||||
// REQUIRE(!out.empty());
|
||||
|
||||
// std::sort(out.begin(), out.end());
|
||||
|
||||
// // No duplicates allowed in the output
|
||||
// auto it = std::unique(out.begin(), out.end());
|
||||
// REQUIRE(it == out.end());
|
||||
|
||||
// // Test if inside points are in the output and outside points are not.
|
||||
// bool succ = true;
|
||||
// for (size_t i = 0; i < pgrid.point_count(); ++i) {
|
||||
// auto foundit = std::find(out.begin(), out.end(), i);
|
||||
// bool contains = (querysphere.center - pgrid.get(i)).squaredNorm() < pred.pred.r2;
|
||||
// succ = succ && contains ? foundit != out.end() : foundit == out.end();
|
||||
|
||||
// if (!succ) {
|
||||
// std::cout << "invalid point: " << i << " " << pgrid.get(i).transpose()
|
||||
// << std::endl;
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
|
||||
// REQUIRE(succ);
|
||||
|
||||
// // Test for the expected cost of the query.
|
||||
// double gridvolume = volume(vol);
|
||||
// double queryvolume = volume(querysphere);
|
||||
// double volratio = (queryvolume / gridvolume);
|
||||
// REQUIRE(pred.call_count < 3 * volratio * pgrid.point_count());
|
||||
// REQUIRE(pred.call_count < pgrid.point_count());
|
||||
//}
|
Loading…
Reference in a new issue