accumulators given base height;

object base split to separate islands by connectivity
This commit is contained in:
Godrak 2022-04-27 14:15:21 +02:00 committed by PavelMikus
parent d9bd1080da
commit 148b24bd93

View file

@ -23,10 +23,8 @@ namespace Slic3r {
namespace SupportableIssues {
void Issues::add(const Issues &layer_issues) {
supports_nedded.insert(supports_nedded.end(),
layer_issues.supports_nedded.begin(), layer_issues.supports_nedded.end());
curling_up.insert(curling_up.end(), layer_issues.curling_up.begin(),
layer_issues.curling_up.end());
supports_nedded.insert(supports_nedded.end(), layer_issues.supports_nedded.begin(), layer_issues.supports_nedded.end());
curling_up.insert(curling_up.end(), layer_issues.curling_up.begin(), layer_issues.curling_up.end());
}
bool Issues::empty() const {
@ -56,12 +54,15 @@ struct Cell {
};
struct CentroidAccumulator {
//TODO add base height
Polygon convex_hull { };
Points points { };
Vec3d accumulated_value { };
float accumulated_weight { };
const double base_height { };
Polygon convex_hull;
Points points;
Vec3d accumulated_value;
float accumulated_weight;
explicit CentroidAccumulator(double base_height) :
base_height(base_height) {
}
void calculate_base_hull() {
convex_hull = Geometry::convex_hull(points);
@ -72,11 +73,14 @@ struct CentroidAccumulators {
std::unordered_map<int, size_t> mapping;
std::vector<CentroidAccumulator> acccumulators;
explicit CentroidAccumulators(int count) {
acccumulators.resize(count);
for (int index = 0; index < count; ++index) {
mapping[index - 1] = index;
}
explicit CentroidAccumulators(size_t reserve_count) {
acccumulators.reserve(reserve_count);
}
CentroidAccumulator& create_accumulator(int id, double base_height) {
mapping[id] = acccumulators.size();
acccumulators.push_back(CentroidAccumulator { base_height });
return this->access(id);
}
CentroidAccumulator& access(int id) {
@ -160,14 +164,12 @@ struct WeightDistributionMatrix {
assert(local_cell_coords.z() >= 0);
assert(local_cell_coords.z() < local_z_cell_count);
return local_cell_coords.z() * global_cell_count.x() * global_cell_count.y()
+ local_cell_coords.y() * global_cell_count.x() +
local_cell_coords.x();
return local_cell_coords.z() * global_cell_count.x() * global_cell_count.y() + local_cell_coords.y() * global_cell_count.x()
+ local_cell_coords.x();
}
Vec3crd get_cell_center(const Vec3i &global_cell_coords) const {
return global_origin + global_cell_coords.cwiseProduct(this->cell_size)
+ this->cell_size.cwiseQuotient(Vec3crd(2, 2, 2));
return global_origin + global_cell_coords.cwiseProduct(this->cell_size) + this->cell_size.cwiseQuotient(Vec3crd(2, 2, 2));
}
Cell& access_cell(const Point &p, float print_z) {
@ -210,8 +212,7 @@ struct WeightDistributionMatrix {
void merge(const WeightDistributionMatrix &other) {
int z_start = std::max(local_z_index_offset, other.local_z_index_offset);
int z_end = std::min(local_z_index_offset + local_z_cell_count,
other.local_z_index_offset + other.local_z_cell_count);
int z_end = std::min(local_z_index_offset + local_z_cell_count, other.local_z_index_offset + other.local_z_cell_count);
for (int x = 0; x < global_cell_count.x(); ++x) {
for (int y = 0; y < global_cell_count.y(); ++y) {
@ -226,34 +227,50 @@ struct WeightDistributionMatrix {
}
void analyze(Issues &issues) {
CentroidAccumulators accumulators(issues.supports_nedded.size() + 1);
CentroidAccumulators accumulators(issues.supports_nedded.size() + 4);
//TODO split base support points by connectivity!!
for (int x = 0; x < global_cell_count.x(); ++x) {
for (int y = 0; y < global_cell_count.y(); ++y) {
int next_island_id = -1;
for (int y = 0; y < global_cell_count.y(); ++y) {
for (int x = 0; x < global_cell_count.x(); ++x) {
Cell &cell = this->access_cell(Vec3i(x, y, 0));
if (cell.weight > 0) {
cell.island_id = -1;
Vec3crd cell_center = this->get_cell_center(Vec3i(x, y, local_z_index_offset));
CentroidAccumulator &acc = accumulators.access(-1);
acc.points.push_back(Point(cell_center.head<2>()));
acc.accumulated_value += cell_center.cast<double>() * cell.weight;
acc.accumulated_weight += cell.weight;
if (cell.weight > 0 && cell.island_id == std::numeric_limits<int>::max()) {
CentroidAccumulator &acc = accumulators.create_accumulator(next_island_id, 0);
std::set<Vec2i> coords_to_check { Vec2i(x, y) };
while (!coords_to_check.empty()) {
Vec2i current_coords = *coords_to_check.begin();
coords_to_check.erase(coords_to_check.begin());
cell = this->access_cell(Vec3i(current_coords.x(), current_coords.y(), 0));
if (cell.weight > 0 && cell.island_id == std::numeric_limits<int>::max()) {
cell.island_id = next_island_id;
Vec3crd cell_center = this->get_cell_center(
Vec3i(current_coords.x(), current_coords.y(), local_z_index_offset));
acc.points.push_back(Point(cell_center.head<2>()));
acc.accumulated_value += cell_center.cast<double>() * cell.weight;
acc.accumulated_weight += cell.weight;
for (int y_offset = -1; y_offset <= 1; ++y_offset) {
for (int x_offset = -1; x_offset <= 1; ++x_offset) {
if (y_offset != 0 || x_offset != 0) {
coords_to_check.insert(Vec2i(current_coords.x() + x_offset, current_coords.y() + y_offset));
}
}
}
}
}
next_island_id--;
acc.calculate_base_hull();
}
}
}
std::sort(issues.supports_nedded.begin(), issues.supports_nedded.end(),
[](const SupportPoint &left, const SupportPoint &right) {
return left.position.z() < right.position.z();
});
std::sort(issues.supports_nedded.begin(), issues.supports_nedded.end(), [](const SupportPoint &left, const SupportPoint &right) {
return left.position.z() < right.position.z();
});
for (int index = 0; index < int(issues.supports_nedded.size()); ++index) {
Vec3i local_coords = this->to_local_cell_coords(
this->to_global_cell_coords(issues.supports_nedded[index].position));
Vec3i local_coords = this->to_local_cell_coords(this->to_global_cell_coords(issues.supports_nedded[index].position));
this->access_cell(local_coords).island_id = index;
accumulators.access(index).points.push_back(
Point(scaled(Vec2f(issues.supports_nedded[index].position.head<2>()))));
CentroidAccumulator &acc = accumulators.create_accumulator(index, issues.supports_nedded[index].position.z());
acc.points.push_back(Point(scaled(Vec2f(issues.supports_nedded[index].position.head<2>()))));
acc.calculate_base_hull();
}
for (const CurledFilament &curling : issues.curling_up) {
@ -261,8 +278,8 @@ struct WeightDistributionMatrix {
}
const auto validate_xy_coords = [&](const Vec2i &local_coords) {
return local_coords.x() >= 0 && local_coords.y() >= 0 &&
local_coords.x() < this->global_cell_count.x() && local_coords.y() < this->global_cell_count.y();
return local_coords.x() >= 0 && local_coords.y() >= 0 && local_coords.x() < this->global_cell_count.x()
&& local_coords.y() < this->global_cell_count.y();
};
std::unordered_set<int> modified_acc_ids;
@ -283,8 +300,7 @@ struct WeightDistributionMatrix {
Cell &under = this->access_cell(Vec3i(x, y, z - 1));
int island_id = std::min(under.island_id, current.island_id);
int merging_id = std::max(under.island_id, current.island_id);
if (merging_id != std::numeric_limits<int>::max()
&& island_id != merging_id) {
if (merging_id != std::numeric_limits<int>::max() && island_id != merging_id) {
accumulators.merge_to(merging_id, island_id);
}
if (island_id != std::numeric_limits<int>::max()) {
@ -292,8 +308,7 @@ struct WeightDistributionMatrix {
modified_acc_ids.insert(current.island_id);
}
current.curled_height += under.curled_height
/ (2 + std::abs(x_offset) + std::abs(y_offset));
current.curled_height += under.curled_height / (2 + std::abs(x_offset) + std::abs(y_offset));
}
}
}
@ -302,22 +317,28 @@ struct WeightDistributionMatrix {
//Propagate to accumulators. TODO what to do if no supporter is found?
if (current.island_id != std::numeric_limits<int>::max()) {
CentroidAccumulator &acc = accumulators.access(current.island_id);
acc.accumulated_value += current.weight * this->get_cell_center(
this->to_global_cell_coords(Vec3i(x, y, z))).cast<double>();
acc.accumulated_value += current.weight
* this->get_cell_center(this->to_global_cell_coords(Vec3i(x, y, z))).cast<double>();
acc.accumulated_weight += current.weight;
}
}
}
// check stability of modified centroid accumulators
// check stability of modified centroid accumulators.
// Stability is the amount of work needed to push the object from stable position into unstable.
// This amount of work is proportional to the increase of height of the centroid during toppling.
// image here: https://hgphysics.com/gph/c-forces/2-force-effects/1-moment/stability/
// better image in Czech here in the first question: https://www.priklady.eu/cs/fyzika/mechanika-tuheho-telesa/stabilita-teles.alej
for (int acc_index : modified_acc_ids) {
CentroidAccumulator &acc = accumulators.access(acc_index);
Vec3d centroid = acc.accumulated_value / acc.accumulated_weight;
if (!acc.convex_hull.contains(Point(centroid.head<2>().cast<coord_t>()))) {
//TODO :]
//determine signed shortest distance to the convex hull
Point centroid_base_projection = Point(centroid.head<2>().cast<coord_t>());
double distance_sq = std::numeric_limits<double>::max();
bool inside = true;
for (Line line : acc.convex_hull.lines()) {
distance_sq = std::min(line.distance_to_squared(centroid_base_projection), distance_sq);
}
}
}
}
@ -348,15 +369,10 @@ struct WeightDistributionMatrix {
for (int x = 0; x < global_cell_count.x(); ++x) {
for (int y = 0; y < global_cell_count.y(); ++y) {
for (int z = 0; z < local_z_cell_count; ++z) {
Vec3f center = unscale(get_cell_center(to_global_cell_coords(Vec3i { x, y, z }))).cast<
float>();
Vec3f center = unscale(get_cell_center(to_global_cell_coords(Vec3i { x, y, z }))).cast<float>();
const Cell &cell = access_cell(Vec3i(x, y, z));
if (cell.weight != 0) {
fprintf(fp, "v %f %f %f %f %f %f\n",
center(0), center(1),
center(2),
cell.weight / max_weight, 0.0, 0.0
);
fprintf(fp, "v %f %f %f %f %f %f\n", center(0), center(1), center(2), cell.weight / max_weight, 0.0, 0.0);
}
}
}
@ -397,11 +413,8 @@ void debug_export(Issues issues, std::string file_name) {
}
for (size_t i = 0; i < issues.supports_nedded.size(); ++i) {
fprintf(fp, "v %f %f %f %f %f %f\n",
issues.supports_nedded[i].position(0), issues.supports_nedded[i].position(1),
issues.supports_nedded[i].position(2),
1.0, 0.0, 0.0
);
fprintf(fp, "v %f %f %f %f %f %f\n", issues.supports_nedded[i].position(0), issues.supports_nedded[i].position(1),
issues.supports_nedded[i].position(2), 1.0, 0.0, 0.0);
}
fclose(fp);
@ -415,11 +428,8 @@ void debug_export(Issues issues, std::string file_name) {
}
for (size_t i = 0; i < issues.curling_up.size(); ++i) {
fprintf(fp, "v %f %f %f %f %f %f\n",
issues.curling_up[i].position(0), issues.curling_up[i].position(1),
issues.curling_up[i].position(2),
0.0, 1.0, 0.0
);
fprintf(fp, "v %f %f %f %f %f %f\n", issues.curling_up[i].position(0), issues.curling_up[i].position(1),
issues.curling_up[i].position(2), 0.0, 1.0, 0.0);
}
fclose(fp);
}
@ -430,8 +440,7 @@ void debug_export(Issues issues, std::string file_name) {
EdgeGridWrapper compute_layer_edge_grid(const Layer *layer) {
float min_region_flow_width { 1.0f };
for (const auto *region : layer->regions()) {
min_region_flow_width = std::min(min_region_flow_width,
region->flow(FlowRole::frExternalPerimeter).width());
min_region_flow_width = std::min(min_region_flow_width, region->flow(FlowRole::frExternalPerimeter).width());
}
std::vector<Points> lines;
for (const LayerRegion *layer_region : layer->regions()) {
@ -452,26 +461,23 @@ EdgeGridWrapper compute_layer_edge_grid(const Layer *layer) {
//TODO needs revision
coordf_t get_flow_width(const LayerRegion *region, ExtrusionRole role) {
switch (role) {
case ExtrusionRole::erBridgeInfill:
return region->flow(FlowRole::frExternalPerimeter).scaled_width();
case ExtrusionRole::erExternalPerimeter:
return region->flow(FlowRole::frExternalPerimeter).scaled_width();
case ExtrusionRole::erGapFill:
return region->flow(FlowRole::frInfill).scaled_width();
case ExtrusionRole::erPerimeter:
return region->flow(FlowRole::frPerimeter).scaled_width();
case ExtrusionRole::erSolidInfill:
return region->flow(FlowRole::frSolidInfill).scaled_width();
default:
return region->flow(FlowRole::frPerimeter).scaled_width();
case ExtrusionRole::erBridgeInfill:
return region->flow(FlowRole::frExternalPerimeter).scaled_width();
case ExtrusionRole::erExternalPerimeter:
return region->flow(FlowRole::frExternalPerimeter).scaled_width();
case ExtrusionRole::erGapFill:
return region->flow(FlowRole::frInfill).scaled_width();
case ExtrusionRole::erPerimeter:
return region->flow(FlowRole::frPerimeter).scaled_width();
case ExtrusionRole::erSolidInfill:
return region->flow(FlowRole::frSolidInfill).scaled_width();
default:
return region->flow(FlowRole::frPerimeter).scaled_width();
}
}
coordf_t get_max_allowed_distance(ExtrusionRole role, coordf_t flow_width, bool external_perimeters_first,
const Params &params) { // <= distance / flow_width (can be larger for perimeter, if not external perimeter first)
if ((role == ExtrusionRole::erExternalPerimeter || role == ExtrusionRole::erOverhangPerimeter)
&& (external_perimeters_first)
) {
coordf_t get_max_allowed_distance(ExtrusionRole role, coordf_t flow_width, bool external_perimeters_first, const Params &params) { // <= distance / flow_width (can be larger for perimeter, if not external perimeter first)
if ((role == ExtrusionRole::erExternalPerimeter || role == ExtrusionRole::erOverhangPerimeter) && (external_perimeters_first)) {
return params.max_first_ex_perim_unsupported_distance_factor * flow_width;
} else {
return params.max_unsupported_distance_factor * flow_width;
@ -500,19 +506,13 @@ struct SegmentAccumulator {
};
Issues check_extrusion_entity_stability(const ExtrusionEntity *entity,
float print_z,
const LayerRegion *layer_region,
const EdgeGridWrapper &supported_grid,
WeightDistributionMatrix &weight_matrix,
const Params &params) {
Issues check_extrusion_entity_stability(const ExtrusionEntity *entity, float print_z, const LayerRegion *layer_region,
const EdgeGridWrapper &supported_grid, WeightDistributionMatrix &weight_matrix, const Params &params) {
Issues issues { };
if (entity->is_collection()) {
for (const auto *e : static_cast<const ExtrusionEntityCollection*>(entity)->entities) {
issues.add(
check_extrusion_entity_stability(e, print_z, layer_region, supported_grid, weight_matrix,
params));
issues.add(check_extrusion_entity_stability(e, print_z, layer_region, supported_grid, weight_matrix, params));
}
} else { //single extrusion path, with possible varying parameters
//prepare stack of points on the extrusion path. If there are long segments, additional points might be pushed onto the stack during the algorithm.
@ -535,8 +535,8 @@ Issues check_extrusion_entity_stability(const ExtrusionEntity *entity,
Vec3f prev_fpoint = to_vec3f(prev_point);
coordf_t flow_width = get_flow_width(layer_region, entity->role());
bool external_perimters_first = layer_region->region().config().external_perimeters_first;
const coordf_t max_allowed_dist_from_prev_layer = get_max_allowed_distance(entity->role(), flow_width,
external_perimters_first, params);
const coordf_t max_allowed_dist_from_prev_layer = get_max_allowed_distance(entity->role(), flow_width, external_perimters_first,
params);
while (!points.empty()) {
Point point = points.top();
@ -568,10 +568,8 @@ Issues check_extrusion_entity_stability(const ExtrusionEntity *entity,
supports_acc.add_distance(edge_len); // for algorithm simplicity, expect that the whole line between prev and current point is unsupported
if (supports_acc.distance // if unsupported distance is larger than bridge distance linearly decreased by curvature, enforce supports.
> params.bridge_distance
/ (1.0f
+ (supports_acc.max_curvature
* params.bridge_distance_decrease_by_curvature_factor / PI))) {
> params.bridge_distance
/ (1.0f + (supports_acc.max_curvature * params.bridge_distance_decrease_by_curvature_factor / PI))) {
issues.supports_nedded.push_back(SupportPoint(fpoint));
supports_acc.reset();
}
@ -610,8 +608,8 @@ Issues check_extrusion_entity_stability(const ExtrusionEntity *entity,
return issues;
}
Issues check_layer_stability(const PrintObject *po, size_t layer_idx, bool full_check,
WeightDistributionMatrix &weight_matrix, const Params &params) {
Issues check_layer_stability(const PrintObject *po, size_t layer_idx, bool full_check, WeightDistributionMatrix &weight_matrix,
const Params &params) {
std::cout << "Checking: " << layer_idx << std::endl;
if (layer_idx == 0) {
// first layer is usually ok
@ -626,18 +624,17 @@ Issues check_layer_stability(const PrintObject *po, size_t layer_idx, bool full_
for (const LayerRegion *layer_region : layer->regions()) {
for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) {
for (const ExtrusionEntity *perimeter : static_cast<const ExtrusionEntityCollection*>(ex_entity)->entities) {
issues.add(check_extrusion_entity_stability(perimeter,
layer->print_z, layer_region,
supported_grid, weight_matrix, params));
issues.add(
check_extrusion_entity_stability(perimeter, layer->print_z, layer_region, supported_grid, weight_matrix,
params));
} // perimeter
} // ex_entity
for (const ExtrusionEntity *ex_entity : layer_region->fills.entities) {
for (const ExtrusionEntity *fill : static_cast<const ExtrusionEntityCollection*>(ex_entity)->entities) {
if (fill->role() == ExtrusionRole::erGapFill
|| fill->role() == ExtrusionRole::erBridgeInfill) {
issues.add(check_extrusion_entity_stability(fill,
layer->print_z, layer_region,
supported_grid, weight_matrix, params));
if (fill->role() == ExtrusionRole::erGapFill || fill->role() == ExtrusionRole::erBridgeInfill) {
issues.add(
check_extrusion_entity_stability(fill, layer->print_z, layer_region, supported_grid, weight_matrix,
params));
}
} // fill
} // ex_entity
@ -649,9 +646,9 @@ Issues check_layer_stability(const PrintObject *po, size_t layer_idx, bool full_
for (const ExtrusionEntity *perimeter : static_cast<const ExtrusionEntityCollection*>(ex_entity)->entities) {
if (perimeter->role() == ExtrusionRole::erExternalPerimeter
|| perimeter->role() == ExtrusionRole::erOverhangPerimeter) {
issues.add(check_extrusion_entity_stability(perimeter,
layer->print_z, layer_region,
supported_grid, weight_matrix, params));
issues.add(
check_extrusion_entity_stability(perimeter, layer->print_z, layer_region, supported_grid, weight_matrix,
params));
}; // ex_perimeter
} // perimeter
} // ex_entity
@ -672,23 +669,21 @@ std::vector<size_t> quick_search(const PrintObject *po, const Params &params) {
size_t layer_count = po->layer_count();
std::vector<bool> layer_needs_supports(layer_count, false);
tbb::parallel_for(tbb::blocked_range<size_t>(1, layer_count),
[&](tbb::blocked_range<size_t> r) {
WeightDistributionMatrix weight_matrix { };
weight_matrix.init(po, r.begin(), r.end());
tbb::parallel_for(tbb::blocked_range<size_t>(1, layer_count), [&](tbb::blocked_range<size_t> r) {
WeightDistributionMatrix weight_matrix { };
weight_matrix.init(po, r.begin(), r.end());
for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) {
auto layer_issues = check_layer_stability(po, layer_idx,
false, weight_matrix, params);
if (!layer_issues.supports_nedded.empty()) {
layer_needs_supports[layer_idx] = true;
}
}
for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) {
auto layer_issues = check_layer_stability(po, layer_idx, false, weight_matrix, params);
if (!layer_issues.supports_nedded.empty()) {
layer_needs_supports[layer_idx] = true;
}
}
matrix_mutex.lock();
matrix.merge(weight_matrix);
matrix_mutex.unlock();
});
matrix_mutex.lock();
matrix.merge(weight_matrix);
matrix_mutex.unlock();
});
std::vector<size_t> problematic_layers;
for (size_t index = 0; index < layer_needs_supports.size(); ++index) {
@ -699,8 +694,7 @@ std::vector<size_t> quick_search(const PrintObject *po, const Params &params) {
return problematic_layers;
}
Issues
full_search(const PrintObject *po, const Params &params) {
Issues full_search(const PrintObject *po, const Params &params) {
using namespace Impl;
WeightDistributionMatrix matrix { };