Merge branch 'master' of https://github.com/prusa3d/Slic3r into objects_centering

This commit is contained in:
Enrico Turri 2019-01-25 08:29:15 +01:00
commit 16bd7325c1
25 changed files with 964 additions and 660 deletions

View file

@ -50,7 +50,6 @@ if (SLIC3R_GUI)
if(WIN32)
message(STATUS "WXWIN environment set to: $ENV{WXWIN}")
elseif(UNIX)
message(STATUS "wx-config path: ${wxWidgets_CONFIG_EXECUTABLE}")
set(wxWidgets_USE_UNICODE ON)
if(SLIC3R_STATIC)
set(wxWidgets_USE_STATIC ON)
@ -72,6 +71,10 @@ if (SLIC3R_GUI)
find_package(wxWidgets 3.1 REQUIRED COMPONENTS base core adv html gl)
endif ()
if(UNIX)
message(STATUS "wx-config path: ${wxWidgets_CONFIG_EXECUTABLE}")
endif()
include(${wxWidgets_USE_FILE})
endif()

View file

@ -310,16 +310,15 @@ ExPolygon::medial_axis(double max_width, double min_width, Polylines* polylines)
polylines->insert(polylines->end(), tp.begin(), tp.end());
}
void
ExPolygon::get_trapezoids(Polygons* polygons) const
/*
void ExPolygon::get_trapezoids(Polygons* polygons) const
{
ExPolygons expp;
expp.push_back(*this);
boost::polygon::get_trapezoids(*polygons, expp);
}
void
ExPolygon::get_trapezoids(Polygons* polygons, double angle) const
void ExPolygon::get_trapezoids(Polygons* polygons, double angle) const
{
ExPolygon clone = *this;
clone.rotate(PI/2 - angle, Point(0,0));
@ -327,12 +326,12 @@ ExPolygon::get_trapezoids(Polygons* polygons, double angle) const
for (Polygons::iterator polygon = polygons->begin(); polygon != polygons->end(); ++polygon)
polygon->rotate(-(PI/2 - angle), Point(0,0));
}
*/
// This algorithm may return more trapezoids than necessary
// (i.e. it may break a single trapezoid in several because
// other parts of the object have x coordinates in the middle)
void
ExPolygon::get_trapezoids2(Polygons* polygons) const
void ExPolygon::get_trapezoids2(Polygons* polygons) const
{
// get all points of this ExPolygon
Points pp = *this;
@ -370,8 +369,7 @@ ExPolygon::get_trapezoids2(Polygons* polygons) const
}
}
void
ExPolygon::get_trapezoids2(Polygons* polygons, double angle) const
void ExPolygon::get_trapezoids2(Polygons* polygons, double angle) const
{
ExPolygon clone = *this;
clone.rotate(PI/2 - angle, Point(0,0));
@ -382,8 +380,7 @@ ExPolygon::get_trapezoids2(Polygons* polygons, double angle) const
// While this triangulates successfully, it's NOT a constrained triangulation
// as it will create more vertices on the boundaries than the ones supplied.
void
ExPolygon::triangulate(Polygons* polygons) const
void ExPolygon::triangulate(Polygons* polygons) const
{
// first make trapezoids
Polygons trapezoids;
@ -394,8 +391,8 @@ ExPolygon::triangulate(Polygons* polygons) const
polygon->triangulate_convex(polygons);
}
void
ExPolygon::triangulate_pp(Polygons* polygons) const
/*
void ExPolygon::triangulate_pp(Polygons* polygons) const
{
// convert polygons
std::list<TPPLPoly> input;
@ -452,9 +449,113 @@ ExPolygon::triangulate_pp(Polygons* polygons) const
polygons->push_back(p);
}
}
*/
void
ExPolygon::triangulate_p2t(Polygons* polygons) const
std::list<TPPLPoly> expoly_to_polypartition_input(const ExPolygon &ex)
{
std::list<TPPLPoly> input;
// contour
{
input.emplace_back();
TPPLPoly &p = input.back();
p.Init(int(ex.contour.points.size()));
for (const Point &point : ex.contour.points) {
size_t i = &point - &ex.contour.points.front();
p[i].x = point(0);
p[i].y = point(1);
}
p.SetHole(false);
}
// holes
for (const Polygon &hole : ex.holes) {
input.emplace_back();
TPPLPoly &p = input.back();
p.Init(hole.points.size());
for (const Point &point : hole.points) {
size_t i = &point - &hole.points.front();
p[i].x = point(0);
p[i].y = point(1);
}
p.SetHole(true);
}
return input;
}
std::list<TPPLPoly> expoly_to_polypartition_input(const ExPolygons &expps)
{
std::list<TPPLPoly> input;
for (const ExPolygon &ex : expps) {
// contour
{
input.emplace_back();
TPPLPoly &p = input.back();
p.Init(int(ex.contour.points.size()));
for (const Point &point : ex.contour.points) {
size_t i = &point - &ex.contour.points.front();
p[i].x = point(0);
p[i].y = point(1);
}
p.SetHole(false);
}
// holes
for (const Polygon &hole : ex.holes) {
input.emplace_back();
TPPLPoly &p = input.back();
p.Init(hole.points.size());
for (const Point &point : hole.points) {
size_t i = &point - &hole.points.front();
p[i].x = point(0);
p[i].y = point(1);
}
p.SetHole(true);
}
}
return input;
}
std::vector<Point> polypartition_output_to_triangles(const std::list<TPPLPoly> &output)
{
size_t num_triangles = 0;
for (const TPPLPoly &poly : output)
if (poly.GetNumPoints() >= 3)
num_triangles += (size_t)poly.GetNumPoints() - 2;
std::vector<Point> triangles;
triangles.reserve(triangles.size() + num_triangles * 3);
for (const TPPLPoly &poly : output) {
long num_points = poly.GetNumPoints();
if (num_points >= 3) {
const TPPLPoint *pt0 = &poly[0];
const TPPLPoint *pt1 = nullptr;
const TPPLPoint *pt2 = &poly[1];
for (long i = 2; i < num_points; ++ i) {
pt1 = pt2;
pt2 = &poly[i];
triangles.emplace_back(coord_t(pt0->x), coord_t(pt0->y));
triangles.emplace_back(coord_t(pt1->x), coord_t(pt1->y));
triangles.emplace_back(coord_t(pt2->x), coord_t(pt2->y));
}
}
}
return triangles;
}
void ExPolygon::triangulate_pp(Points *triangles) const
{
ExPolygons expp = union_ex(simplify_polygons(to_polygons(*this), true));
std::list<TPPLPoly> input = expoly_to_polypartition_input(expp);
// perform triangulation
std::list<TPPLPoly> output;
int res = TPPLPartition().Triangulate_MONO(&input, &output);
// int TPPLPartition::Triangulate_EC(TPPLPolyList *inpolys, TPPLPolyList *triangles) {
if (res != 1)
throw std::runtime_error("Triangulation failed");
*triangles = polypartition_output_to_triangles(output);
}
// Uses the Poly2tri library maintained by Jan Niklas Hasse @jhasse // https://github.com/jhasse/poly2tri
// See https://github.com/jhasse/poly2tri/blob/master/README.md for the limitations of the library!
// No duplicate points are allowed, no very close points, holes must not touch outer contour etc.
void ExPolygon::triangulate_p2t(Polygons* polygons) const
{
ExPolygons expp = simplify_polygons_ex(*this, true);
@ -478,16 +579,21 @@ ExPolygon::triangulate_p2t(Polygons* polygons) const
}
// perform triangulation
cdt.Triangulate();
std::vector<p2t::Triangle*> triangles = cdt.GetTriangles();
for (std::vector<p2t::Triangle*>::const_iterator triangle = triangles.begin(); triangle != triangles.end(); ++triangle) {
Polygon p;
for (int i = 0; i <= 2; ++i) {
p2t::Point* point = (*triangle)->GetPoint(i);
p.points.push_back(Point(point->x, point->y));
try {
cdt.Triangulate();
std::vector<p2t::Triangle*> triangles = cdt.GetTriangles();
for (std::vector<p2t::Triangle*>::const_iterator triangle = triangles.begin(); triangle != triangles.end(); ++triangle) {
Polygon p;
for (int i = 0; i <= 2; ++i) {
p2t::Point* point = (*triangle)->GetPoint(i);
p.points.push_back(Point(point->x, point->y));
}
polygons->push_back(p);
}
polygons->push_back(p);
} catch (const std::runtime_error & /* err */) {
assert(false);
// just ignore, don't triangulate
}
for (p2t::Point *ptr : ContourPoints)
@ -495,8 +601,7 @@ ExPolygon::triangulate_p2t(Polygons* polygons) const
}
}
Lines
ExPolygon::lines() const
Lines ExPolygon::lines() const
{
Lines lines = this->contour.lines();
for (Polygons::const_iterator h = this->holes.begin(); h != this->holes.end(); ++h) {

View file

@ -6,6 +6,9 @@
#include "Polyline.hpp"
#include <vector>
// polygon class of the polypartition library
class TPPLPoly;
namespace Slic3r {
class ExPolygon;
@ -55,12 +58,13 @@ public:
void simplify(double tolerance, ExPolygons* expolygons) const;
void medial_axis(double max_width, double min_width, ThickPolylines* polylines) const;
void medial_axis(double max_width, double min_width, Polylines* polylines) const;
void get_trapezoids(Polygons* polygons) const;
void get_trapezoids(Polygons* polygons, double angle) const;
// void get_trapezoids(Polygons* polygons) const;
// void get_trapezoids(Polygons* polygons, double angle) const;
void get_trapezoids2(Polygons* polygons) const;
void get_trapezoids2(Polygons* polygons, double angle) const;
void triangulate(Polygons* polygons) const;
void triangulate_pp(Polygons* polygons) const;
// Triangulate into triples of points.
void triangulate_pp(Points *triangles) const;
void triangulate_p2t(Polygons* polygons) const;
Lines lines() const;
};
@ -297,6 +301,10 @@ extern std::vector<BoundingBox> get_extents_vector(const ExPolygons &polygons);
extern bool remove_sticks(ExPolygon &poly);
extern std::list<TPPLPoly> expoly_to_polypartition_input(const ExPolygons &expp);
extern std::list<TPPLPoly> expoly_to_polypartition_input(const ExPolygon &ex);
extern std::vector<Point> polypartition_output_to_triangles(const std::list<TPPLPoly> &output);
} // namespace Slic3r
// start Boost

View file

@ -41,7 +41,7 @@
namespace Slic3r {
TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd>& facets )
TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd>& facets)
: repaired(false)
{
stl_initialize(&this->stl);

View file

@ -1,6 +1,6 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
@ -29,10 +29,16 @@
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "shapes.h"
#include <cassert>
#include <iostream>
namespace p2t {
std::ostream& operator<<(std::ostream& out, const Point& point) {
return out << point.x << "," << point.y;
}
Triangle::Triangle(Point& a, Point& b, Point& c)
{
points_[0] = &a; points_[1] = &b; points_[2] = &c;
@ -150,7 +156,7 @@ void Triangle::Legalize(Point& opoint, Point& npoint)
}
}
int Triangle::Index(const Point* p) const
int Triangle::Index(const Point* p)
{
if (p == points_[0]) {
return 0;
@ -163,7 +169,7 @@ int Triangle::Index(const Point* p) const
return -1;
}
int Triangle::EdgeIndex(const Point* p1, const Point* p2) const
int Triangle::EdgeIndex(const Point* p1, const Point* p2)
{
if (points_[0] == p1) {
if (points_[1] == p2) {
@ -259,7 +265,7 @@ Triangle* Triangle::NeighborCCW(const Point& point)
return neighbors_[1];
}
bool Triangle::GetConstrainedEdgeCCW(const Point& p) const
bool Triangle::GetConstrainedEdgeCCW(const Point& p)
{
if (&p == points_[0]) {
return constrained_edge[2];
@ -269,7 +275,7 @@ bool Triangle::GetConstrainedEdgeCCW(const Point& p) const
return constrained_edge[1];
}
bool Triangle::GetConstrainedEdgeCW(const Point& p) const
bool Triangle::GetConstrainedEdgeCW(const Point& p)
{
if (&p == points_[0]) {
return constrained_edge[1];
@ -301,7 +307,7 @@ void Triangle::SetConstrainedEdgeCW(const Point& p, bool ce)
}
}
bool Triangle::GetDelunayEdgeCCW(const Point& p) const
bool Triangle::GetDelunayEdgeCCW(const Point& p)
{
if (&p == points_[0]) {
return delaunay_edge[2];
@ -311,7 +317,7 @@ bool Triangle::GetDelunayEdgeCCW(const Point& p) const
return delaunay_edge[1];
}
bool Triangle::GetDelunayEdgeCW(const Point& p) const
bool Triangle::GetDelunayEdgeCW(const Point& p)
{
if (&p == points_[0]) {
return delaunay_edge[1];
@ -356,10 +362,7 @@ Triangle& Triangle::NeighborAcross(const Point& opoint)
void Triangle::DebugPrint()
{
using namespace std;
cout << points_[0]->x << "," << points_[0]->y << " ";
cout << points_[1]->x << "," << points_[1]->y << " ";
cout << points_[2]->x << "," << points_[2]->y << endl;
std::cout << *points_[0] << " " << *points_[1] << " " << *points_[2] << std::endl;
}
}
}

View file

@ -1,6 +1,6 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
@ -33,10 +33,10 @@
#ifndef SHAPES_H
#define SHAPES_H
#include <vector>
#include <cstddef>
#include <assert.h>
#include <cmath>
#include <cstddef>
#include <stdexcept>
#include <vector>
namespace p2t {
@ -119,6 +119,8 @@ struct Point {
};
std::ostream& operator<<(std::ostream&, const Point&);
// Represents a simple polygon's edge
struct Edge {
@ -130,13 +132,13 @@ struct Edge {
if (p1.y > p2.y) {
q = &p1;
p = &p2;
} else if (p1.y == p2.y) {
} else if (std::abs(p1.y - p2.y) < 1e-10) {
if (p1.x > p2.x) {
q = &p1;
p = &p2;
} else if (p1.x == p2.x) {
} else if (std::abs(p1.x - p2.x) < 1e-10) {
// Repeat points
assert(false);
throw std::runtime_error("Edge::Edge: p1 == p2");
}
}
@ -171,23 +173,23 @@ void MarkConstrainedEdge(int index);
void MarkConstrainedEdge(Edge& edge);
void MarkConstrainedEdge(Point* p, Point* q);
int Index(const Point* p) const;
int EdgeIndex(const Point* p1, const Point* p2) const;
int Index(const Point* p);
int EdgeIndex(const Point* p1, const Point* p2);
Triangle* NeighborCW(const Point& point);
Triangle* NeighborCCW(const Point& point);
bool GetConstrainedEdgeCCW(const Point& p) const;
bool GetConstrainedEdgeCW(const Point& p) const;
bool GetConstrainedEdgeCCW(const Point& p);
bool GetConstrainedEdgeCW(const Point& p);
void SetConstrainedEdgeCCW(const Point& p, bool ce);
void SetConstrainedEdgeCW(const Point& p, bool ce);
bool GetDelunayEdgeCCW(const Point& p) const;
bool GetDelunayEdgeCW(const Point& p) const;
bool GetDelunayEdgeCCW(const Point& p);
bool GetDelunayEdgeCW(const Point& p);
void SetDelunayEdgeCCW(const Point& p, bool e);
void SetDelunayEdgeCW(const Point& p, bool e);
bool Contains(const Point* p) const;
bool Contains(const Edge& e) const;
bool Contains(const Point* p, const Point* q) const;
bool Contains(const Point* p);
bool Contains(const Edge& e);
bool Contains(const Point* p, const Point* q);
void Legalize(Point& point);
void Legalize(Point& opoint, Point& npoint);
/**
@ -198,7 +200,7 @@ void ClearNeighbor(const Triangle *triangle);
void ClearNeighbors();
void ClearDelunayEdges();
inline bool IsInterior() const;
inline bool IsInterior();
inline void IsInterior(bool b);
Triangle& NeighborAcross(const Point& opoint);
@ -293,22 +295,22 @@ inline Triangle* Triangle::GetNeighbor(int index)
return neighbors_[index];
}
inline bool Triangle::Contains(const Point* p) const
inline bool Triangle::Contains(const Point* p)
{
return p == points_[0] || p == points_[1] || p == points_[2];
}
inline bool Triangle::Contains(const Edge& e) const
inline bool Triangle::Contains(const Edge& e)
{
return Contains(e.p) && Contains(e.q);
}
inline bool Triangle::Contains(const Point* p, const Point* q) const
inline bool Triangle::Contains(const Point* p, const Point* q)
{
return Contains(p) && Contains(q);
}
inline bool Triangle::IsInterior() const
inline bool Triangle::IsInterior()
{
return interior_;
}
@ -320,4 +322,4 @@ inline void Triangle::IsInterior(bool b)
}
#endif
#endif

View file

@ -1,6 +1,6 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
@ -34,11 +34,18 @@
// Otherwise #defines like M_PI are undeclared under Visual Studio
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif /* _USE_MATH_DEFINES */
#include "shapes.h"
#include <cmath>
#include <exception>
#include <math.h>
// C99 removes M_PI from math.h
#ifndef M_PI
#define M_PI 3.14159265358979323846264338327
#endif
namespace p2t {
@ -121,4 +128,4 @@ bool InScanArea(const Point& pa, const Point& pb, const Point& pc, const Point&
}
#endif
#endif

View file

@ -1,6 +1,6 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
@ -35,4 +35,4 @@
#include "common/shapes.h"
#include "sweep/cdt.h"
#endif
#endif

View file

@ -1,6 +1,6 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
@ -30,6 +30,8 @@
*/
#include "advancing_front.h"
#include <cassert>
namespace p2t {
AdvancingFront::AdvancingFront(Node& head, Node& tail)
@ -105,4 +107,4 @@ AdvancingFront::~AdvancingFront()
{
}
}
}

View file

@ -1,6 +1,6 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
@ -115,4 +115,4 @@ inline void AdvancingFront::set_search(Node* node)
}
#endif
#endif

View file

@ -1,6 +1,6 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
@ -68,4 +68,4 @@ CDT::~CDT()
delete sweep_;
}
}
}

View file

@ -1,6 +1,6 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
@ -102,4 +102,4 @@ public:
}
#endif
#endif

View file

@ -1,6 +1,6 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
@ -28,19 +28,21 @@
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdexcept>
#include "sweep.h"
#include "sweep_context.h"
#include "advancing_front.h"
#include "../common/utils.h"
#include <cassert>
#include <stdexcept>
namespace p2t {
// Triangulate simple polygon with holes
void Sweep::Triangulate(SweepContext& tcx)
{
tcx.InitTriangulation();
tcx.CreateAdvancingFront(nodes_);
tcx.CreateAdvancingFront();
// Sweep points; build mesh
SweepPoints(tcx);
// Clean up
@ -699,13 +701,6 @@ void Sweep::FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* t,
Triangle& ot = t->NeighborAcross(p);
Point& op = *ot.OppositePoint(*t, p);
if (&ot == NULL) {
// If we want to integrate the fillEdgeEvent do it here
// With current implementation we should never get here
//throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle");
assert(0);
}
if (InScanArea(p, *t->PointCCW(p), *t->PointCW(p), op)) {
// Lets rotate shared edge one vertex CW
RotateTrianglePair(*t, p, ot, op);
@ -772,13 +767,6 @@ void Sweep::FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle&
Triangle& ot = t.NeighborAcross(p);
Point& op = *ot.OppositePoint(t, p);
if (&t.NeighborAcross(p) == NULL) {
// If we want to integrate the fillEdgeEvent do it here
// With current implementation we should never get here
//throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle");
assert(0);
}
if (InScanArea(eq, *flip_triangle.PointCCW(eq), *flip_triangle.PointCW(eq), op)) {
// flip with new edge op->eq
FlipEdgeEvent(tcx, eq, op, &ot, op);

View file

@ -1,6 +1,6 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
@ -282,4 +282,4 @@ private:
}
#endif
#endif

View file

@ -1,6 +1,6 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
@ -120,10 +120,9 @@ Node& SweepContext::LocateNode(const Point& point)
return *front_->LocateNode(point.x);
}
void SweepContext::CreateAdvancingFront(const std::vector<Node*>& nodes)
void SweepContext::CreateAdvancingFront()
{
(void) nodes;
// Initial triangle
Triangle* triangle = new Triangle(*points_[0], *tail_, *head_);
@ -169,8 +168,8 @@ void SweepContext::MeshClean(Triangle& triangle)
triangles.push_back(&triangle);
while(!triangles.empty()){
Triangle *t = triangles.back();
triangles.pop_back();
Triangle *t = triangles.back();
triangles.pop_back();
if (t != NULL && !t->IsInterior()) {
t->IsInterior(true);

View file

@ -1,6 +1,6 @@
/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
@ -70,7 +70,7 @@ Node& LocateNode(const Point& point);
void RemoveNode(Node* node);
void CreateAdvancingFront(const std::vector<Node*>& nodes);
void CreateAdvancingFront();
/// Try to map a node to all sides of this triangle that don't have a neighbor
void MapTriangleToNodes(Triangle& t);

View file

@ -25,6 +25,8 @@
#include <list>
#include <algorithm>
#include <set>
#include <vector>
#include <stdexcept>
using namespace std;
@ -66,21 +68,26 @@ void TPPLPoly::Triangle(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) {
points[2] = p3;
}
TPPLPoly::TPPLPoly(const TPPLPoly &src) {
TPPLPoly::TPPLPoly(const TPPLPoly &src) : TPPLPoly() {
hole = src.hole;
numpoints = src.numpoints;
points = new TPPLPoint[numpoints];
memcpy(points, src.points, numpoints*sizeof(TPPLPoint));
}
TPPLPoly& TPPLPoly::operator=(const TPPLPoly &src) {
if(&src != this) {
Clear();
hole = src.hole;
numpoints = src.numpoints;
if(numpoints > 0) {
points = new TPPLPoint[numpoints];
memcpy(points, src.points, numpoints*sizeof(TPPLPoint));
}
}
TPPLPoly& TPPLPoly::operator=(const TPPLPoly &src) {
Clear();
hole = src.hole;
numpoints = src.numpoints;
if(numpoints > 0) {
points = new TPPLPoint[numpoints];
memcpy(points, src.points, numpoints*sizeof(TPPLPoint));
}
return *this;
}
@ -105,16 +112,11 @@ void TPPLPoly::SetOrientation(int orientation) {
}
void TPPLPoly::Invert() {
long i;
TPPLPoint *invpoints;
std::reverse(points, points + numpoints);
}
invpoints = new TPPLPoint[numpoints];
for(i=0;i<numpoints;i++) {
invpoints[i] = points[numpoints-i-1];
}
TPPLPartition::PartitionVertex::PartitionVertex() : previous(NULL), next(NULL) {
delete [] points;
points = invpoints;
}
TPPLPoint TPPLPartition::Normalize(const TPPLPoint &p) {
@ -169,10 +171,10 @@ int TPPLPartition::Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TP
}
//removes holes from inpolys by merging them with non-holes
int TPPLPartition::RemoveHoles(list<TPPLPoly> *inpolys, list<TPPLPoly> *outpolys) {
list<TPPLPoly> polys;
list<TPPLPoly>::iterator holeiter,polyiter,iter,iter2;
long i,i2,holepointindex,polypointindex = 0;
int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
TPPLPolyList polys;
TPPLPolyList::iterator holeiter,polyiter,iter,iter2;
long i,i2,holepointindex,polypointindex;
TPPLPoint holepoint,polypoint,bestpolypoint;
TPPLPoint linep1,linep2;
TPPLPoint v1,v2;
@ -183,14 +185,14 @@ int TPPLPartition::RemoveHoles(list<TPPLPoly> *inpolys, list<TPPLPoly> *outpolys
//check for trivial case (no holes)
hasholes = false;
for(iter = inpolys->begin(); iter!=inpolys->end(); ++iter) {
for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) {
if(iter->IsHole()) {
hasholes = true;
break;
}
}
if(!hasholes) {
for(iter = inpolys->begin(); iter!=inpolys->end(); ++iter) {
for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) {
outpolys->push_back(*iter);
}
return 1;
@ -201,7 +203,7 @@ int TPPLPartition::RemoveHoles(list<TPPLPoly> *inpolys, list<TPPLPoly> *outpolys
while(1) {
//find the hole point with the largest x
hasholes = false;
for(iter = polys.begin(); iter!=polys.end(); ++iter) {
for(iter = polys.begin(); iter!=polys.end(); iter++) {
if(!iter->IsHole()) continue;
if(!hasholes) {
@ -221,7 +223,7 @@ int TPPLPartition::RemoveHoles(list<TPPLPoly> *inpolys, list<TPPLPoly> *outpolys
holepoint = holeiter->GetPoint(holepointindex);
pointfound = false;
for(iter = polys.begin(); iter!=polys.end(); ++iter) {
for(iter = polys.begin(); iter!=polys.end(); iter++) {
if(iter->IsHole()) continue;
for(i=0; i < iter->GetNumPoints(); i++) {
if(iter->GetPoint(i).x <= holepoint.x) continue;
@ -237,7 +239,7 @@ int TPPLPartition::RemoveHoles(list<TPPLPoly> *inpolys, list<TPPLPoly> *outpolys
if(v2.x > v1.x) continue;
}
pointvisible = true;
for(iter2 = polys.begin(); iter2!=polys.end(); ++iter2) {
for(iter2 = polys.begin(); iter2!=polys.end(); iter2++) {
if(iter2->IsHole()) continue;
for(i2=0; i2 < iter2->GetNumPoints(); i2++) {
linep1 = iter2->GetPoint(i2);
@ -280,7 +282,7 @@ int TPPLPartition::RemoveHoles(list<TPPLPoly> *inpolys, list<TPPLPoly> *outpolys
polys.push_back(newpoly);
}
for(iter = polys.begin(); iter!=polys.end(); ++iter) {
for(iter = polys.begin(); iter!=polys.end(); iter++) {
outpolys->push_back(*iter);
}
@ -335,7 +337,7 @@ bool TPPLPartition::InCone(PartitionVertex *v, TPPLPoint &p) {
}
void TPPLPartition::UpdateVertexReflexity(PartitionVertex *v) {
PartitionVertex *v1,*v3;
PartitionVertex *v1 = NULL,*v3 = NULL;
v1 = v->previous;
v3 = v->next;
v->isConvex = !IsReflex(v1->p,v->p,v3->p);
@ -343,7 +345,7 @@ void TPPLPartition::UpdateVertexReflexity(PartitionVertex *v) {
void TPPLPartition::UpdateVertex(PartitionVertex *v, PartitionVertex *vertices, long numvertices) {
long i;
PartitionVertex *v1,*v3;
PartitionVertex *v1 = NULL,*v3 = NULL;
TPPLPoint vec1,vec3;
v1 = v->previous;
@ -372,10 +374,12 @@ void TPPLPartition::UpdateVertex(PartitionVertex *v, PartitionVertex *vertices,
}
//triangulation by ear removal
int TPPLPartition::Triangulate_EC(TPPLPoly *poly, list<TPPLPoly> *triangles) {
int TPPLPartition::Triangulate_EC(TPPLPoly *poly, TPPLPolyList *triangles) {
if(!poly->Valid()) return 0;
long numvertices;
PartitionVertex *vertices;
PartitionVertex *ear;
PartitionVertex *vertices = NULL;
PartitionVertex *ear = NULL;
TPPLPoly triangle;
long i,j;
bool earfound;
@ -446,21 +450,23 @@ int TPPLPartition::Triangulate_EC(TPPLPoly *poly, list<TPPLPoly> *triangles) {
return 1;
}
int TPPLPartition::Triangulate_EC(list<TPPLPoly> *inpolys, list<TPPLPoly> *triangles) {
list<TPPLPoly> outpolys;
list<TPPLPoly>::iterator iter;
int TPPLPartition::Triangulate_EC(TPPLPolyList *inpolys, TPPLPolyList *triangles) {
TPPLPolyList outpolys;
TPPLPolyList::iterator iter;
if(!RemoveHoles(inpolys,&outpolys)) return 0;
for(iter=outpolys.begin();iter!=outpolys.end();++iter) {
for(iter=outpolys.begin();iter!=outpolys.end();iter++) {
if(!Triangulate_EC(&(*iter),triangles)) return 0;
}
return 1;
}
int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, list<TPPLPoly> *parts) {
list<TPPLPoly> triangles;
list<TPPLPoly>::iterator iter1,iter2;
TPPLPoly *poly1,*poly2;
int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts) {
if(!poly->Valid()) return 0;
TPPLPolyList triangles;
TPPLPolyList::iterator iter1,iter2;
TPPLPoly *poly1 = NULL,*poly2 = NULL;
TPPLPoly newpoly;
TPPLPoint d1,d2,p1,p2,p3;
long i11,i12,i21,i22,i13,i23,j,k;
@ -486,7 +492,7 @@ int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, list<TPPLPoly> *parts) {
if(!Triangulate_EC(poly,&triangles)) return 0;
for(iter1 = triangles.begin(); iter1 != triangles.end(); ++iter1) {
for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) {
poly1 = &(*iter1);
for(i11=0;i11<poly1->GetNumPoints();i11++) {
d1 = poly1->GetPoint(i11);
@ -494,7 +500,7 @@ int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, list<TPPLPoly> *parts) {
d2 = poly1->GetPoint(i12);
isdiagonal = false;
for(iter2 = iter1; iter2 != triangles.end(); ++iter2) {
for(iter2 = iter1; iter2 != triangles.end(); iter2++) {
if(iter1 == iter2) continue;
poly2 = &(*iter2);
@ -550,19 +556,19 @@ int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, list<TPPLPoly> *parts) {
}
}
for(iter1 = triangles.begin(); iter1 != triangles.end(); ++iter1) {
for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) {
parts->push_back(*iter1);
}
return 1;
}
int TPPLPartition::ConvexPartition_HM(list<TPPLPoly> *inpolys, list<TPPLPoly> *parts) {
list<TPPLPoly> outpolys;
list<TPPLPoly>::iterator iter;
int TPPLPartition::ConvexPartition_HM(TPPLPolyList *inpolys, TPPLPolyList *parts) {
TPPLPolyList outpolys;
TPPLPolyList::iterator iter;
if(!RemoveHoles(inpolys,&outpolys)) return 0;
for(iter=outpolys.begin();iter!=outpolys.end();++iter) {
for(iter=outpolys.begin();iter!=outpolys.end();iter++) {
if(!ConvexPartition_HM(&(*iter),parts)) return 0;
}
return 1;
@ -571,14 +577,16 @@ int TPPLPartition::ConvexPartition_HM(list<TPPLPoly> *inpolys, list<TPPLPoly> *p
//minimum-weight polygon triangulation by dynamic programming
//O(n^3) time complexity
//O(n^2) space complexity
int TPPLPartition::Triangulate_OPT(TPPLPoly *poly, list<TPPLPoly> *triangles) {
int TPPLPartition::Triangulate_OPT(TPPLPoly *poly, TPPLPolyList *triangles) {
if(!poly->Valid()) return 0;
long i,j,k,gap,n;
DPState **dpstates;
DPState **dpstates = NULL;
TPPLPoint p1,p2,p3,p4;
long bestvertex;
tppl_float weight,minweight,d1,d2;
Diagonal diagonal,newdiagonal;
list<Diagonal> diagonals;
DiagonalList diagonals;
TPPLPoly triangle;
int ret = 1;
@ -703,7 +711,7 @@ int TPPLPartition::Triangulate_OPT(TPPLPoly *poly, list<TPPLPoly> *triangles) {
void TPPLPartition::UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates) {
Diagonal newdiagonal;
list<Diagonal> *pairs;
DiagonalList *pairs = NULL;
long w2;
w2 = dpstates[a][b].weight;
@ -725,8 +733,8 @@ void TPPLPartition::UpdateState(long a, long b, long w, long i, long j, DPState2
}
void TPPLPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
list<Diagonal> *pairs;
list<Diagonal>::iterator iter,lastiter;
DiagonalList *pairs = NULL;
DiagonalList::iterator iter,lastiter;
long top;
long w;
@ -742,7 +750,7 @@ void TPPLPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPS
iter = pairs->end();
lastiter = pairs->end();
while(iter!=pairs->begin()) {
--iter;
iter--;
if(!IsReflex(vertices[iter->index2].p,vertices[j].p,vertices[k].p)) lastiter = iter;
else break;
}
@ -756,8 +764,8 @@ void TPPLPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPS
}
void TPPLPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
list<Diagonal> *pairs;
list<Diagonal>::iterator iter,lastiter;
DiagonalList *pairs = NULL;
DiagonalList::iterator iter,lastiter;
long top;
long w;
@ -778,7 +786,7 @@ void TPPLPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPS
while(iter!=pairs->end()) {
if(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->index1].p)) {
lastiter = iter;
++iter;
iter++;
}
else break;
}
@ -789,19 +797,21 @@ void TPPLPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPS
UpdateState(i,k,w,j,top,dpstates);
}
int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, list<TPPLPoly> *parts) {
int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
if(!poly->Valid()) return 0;
TPPLPoint p1,p2,p3,p4;
PartitionVertex *vertices;
DPState2 **dpstates;
PartitionVertex *vertices = NULL;
DPState2 **dpstates = NULL;
long i,j,k,n,gap;
list<Diagonal> diagonals,diagonals2;
DiagonalList diagonals,diagonals2;
Diagonal diagonal,newdiagonal;
list<Diagonal> *pairs,*pairs2;
list<Diagonal>::iterator iter,iter2;
DiagonalList *pairs = NULL,*pairs2 = NULL;
DiagonalList::iterator iter,iter2;
int ret;
TPPLPoly newpoly;
list<long> indices;
list<long>::iterator iiter;
vector<long> indices;
vector<long>::iterator iiter;
bool ijreal,jkreal;
n = poly->GetNumPoints();
@ -919,7 +929,7 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, list<TPPLPoly> *parts) {
}
if(!vertices[diagonal.index1].isConvex) {
iter = pairs->end();
--iter;
iter--;
j = iter->index2;
newdiagonal.index1 = j;
newdiagonal.index2 = diagonal.index2;
@ -933,7 +943,7 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, list<TPPLPoly> *parts) {
break;
}
iter2 = pairs2->end();
--iter2;
iter2--;
if(iter->index1 != iter2->index1) pairs2->pop_back();
else break;
}
@ -1003,7 +1013,7 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, list<TPPLPoly> *parts) {
pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
if(!vertices[diagonal.index1].isConvex) {
iter = pairs->end();
--iter;
iter--;
j = iter->index2;
if(iter->index1 != iter->index2) ijreal = false;
} else {
@ -1031,10 +1041,10 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, list<TPPLPoly> *parts) {
indices.push_back(j);
}
indices.sort();
std::sort(indices.begin(), indices.end());
newpoly.Init((long)indices.size());
k=0;
for(iiter = indices.begin();iiter!=indices.end(); ++iiter) {
for(iiter = indices.begin();iiter!=indices.end();iiter++) {
newpoly[k] = vertices[*iiter].p;
k++;
}
@ -1055,18 +1065,19 @@ int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, list<TPPLPoly> *parts) {
//the algorithm used here is outlined in the book
//"Computational Geometry: Algorithms and Applications"
//by Mark de Berg, Otfried Cheong, Marc van Kreveld and Mark Overmars
int TPPLPartition::MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *monotonePolys) {
list<TPPLPoly>::iterator iter;
MonotoneVertex *vertices;
int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monotonePolys) {
TPPLPolyList::iterator iter;
MonotoneVertex *vertices = NULL;
long i,numvertices,vindex,vindex2,newnumvertices,maxnumvertices;
long polystartindex, polyendindex;
TPPLPoly *poly;
MonotoneVertex *v,*v2,*vprev,*vnext;
TPPLPoly *poly = NULL;
MonotoneVertex *v = NULL,*v2 = NULL,*vprev = NULL,*vnext = NULL;
ScanLineEdge newedge;
bool error = false;
numvertices = 0;
for(iter = inpolys->begin(); iter != inpolys->end(); ++iter) {
for(iter = inpolys->begin(); iter != inpolys->end(); iter++) {
if(!iter->Valid()) return 0;
numvertices += iter->GetNumPoints();
}
@ -1075,7 +1086,7 @@ int TPPLPartition::MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *mo
newnumvertices = numvertices;
polystartindex = 0;
for(iter = inpolys->begin(); iter != inpolys->end(); ++iter) {
for(iter = inpolys->begin(); iter != inpolys->end(); iter++) {
poly = &(*iter);
polyendindex = polystartindex + poly->GetNumPoints()-1;
for(i=0;i<poly->GetNumPoints();i++) {
@ -1130,6 +1141,7 @@ int TPPLPartition::MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *mo
set<ScanLineEdge>::iterator *edgeTreeIterators,edgeIter;
edgeTreeIterators = new set<ScanLineEdge>::iterator[maxnumvertices];
pair<set<ScanLineEdge>::iterator,bool> edgeTreeRet;
for(i = 0; i<numvertices; i++) edgeTreeIterators[i] = edgeTree.end();
//for each vertex
for(i=0;i<numvertices;i++) {
@ -1152,16 +1164,15 @@ int TPPLPartition::MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *mo
break;
case TPPL_VERTEXTYPE_END:
if (edgeTreeIterators[v->previous] == edgeTree.end()) {
error = true;
break;
}
//if helper(ei-1) is a merge vertex
if(vertextypes[helpers[v->previous]]==TPPL_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(ei-1) in D.
AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous]);
vertextypes[newnumvertices-2] = vertextypes[vindex];
edgeTreeIterators[newnumvertices-2] = edgeTreeIterators[vindex];
helpers[newnumvertices-2] = helpers[vindex];
vertextypes[newnumvertices-1] = vertextypes[helpers[v->previous]];
edgeTreeIterators[newnumvertices-1] = edgeTreeIterators[helpers[v->previous]];
helpers[newnumvertices-1] = helpers[helpers[v->previous]];
AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous],
vertextypes, edgeTreeIterators, &edgeTree, helpers);
}
//Delete ei-1 from T
edgeTree.erase(edgeTreeIterators[v->previous]);
@ -1176,15 +1187,10 @@ int TPPLPartition::MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *mo
error = true;
break;
}
--edgeIter;
edgeIter--;
//Insert the diagonal connecting vi to helper(ej) in D.
AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index]);
vertextypes[newnumvertices-2] = vertextypes[vindex];
edgeTreeIterators[newnumvertices-2] = edgeTreeIterators[vindex];
helpers[newnumvertices-2] = helpers[vindex];
vertextypes[newnumvertices-1] = vertextypes[helpers[edgeIter->index]];
edgeTreeIterators[newnumvertices-1] = edgeTreeIterators[helpers[edgeIter->index]];
helpers[newnumvertices-1] = helpers[helpers[edgeIter->index]];
AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index],
vertextypes, edgeTreeIterators, &edgeTree, helpers);
vindex2 = newnumvertices-2;
v2 = &(vertices[vindex2]);
//helper(e j)<29>vi
@ -1199,16 +1205,15 @@ int TPPLPartition::MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *mo
break;
case TPPL_VERTEXTYPE_MERGE:
if (edgeTreeIterators[v->previous] == edgeTree.end()) {
error = true;
break;
}
//if helper(ei-1) is a merge vertex
if(vertextypes[helpers[v->previous]]==TPPL_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(ei-1) in D.
AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous]);
vertextypes[newnumvertices-2] = vertextypes[vindex];
edgeTreeIterators[newnumvertices-2] = edgeTreeIterators[vindex];
helpers[newnumvertices-2] = helpers[vindex];
vertextypes[newnumvertices-1] = vertextypes[helpers[v->previous]];
edgeTreeIterators[newnumvertices-1] = edgeTreeIterators[helpers[v->previous]];
helpers[newnumvertices-1] = helpers[helpers[v->previous]];
AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous],
vertextypes, edgeTreeIterators, &edgeTree, helpers);
vindex2 = newnumvertices-2;
v2 = &(vertices[vindex2]);
}
@ -1222,17 +1227,12 @@ int TPPLPartition::MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *mo
error = true;
break;
}
--edgeIter;
edgeIter--;
//if helper(ej) is a merge vertex
if(vertextypes[helpers[edgeIter->index]]==TPPL_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(e j) in D.
AddDiagonal(vertices,&newnumvertices,vindex2,helpers[edgeIter->index]);
vertextypes[newnumvertices-2] = vertextypes[vindex2];
edgeTreeIterators[newnumvertices-2] = edgeTreeIterators[vindex2];
helpers[newnumvertices-2] = helpers[vindex2];
vertextypes[newnumvertices-1] = vertextypes[helpers[edgeIter->index]];
edgeTreeIterators[newnumvertices-1] = edgeTreeIterators[helpers[edgeIter->index]];
helpers[newnumvertices-1] = helpers[helpers[edgeIter->index]];
AddDiagonal(vertices,&newnumvertices,vindex2,helpers[edgeIter->index],
vertextypes, edgeTreeIterators, &edgeTree, helpers);
}
//helper(e j)<29>vi
helpers[edgeIter->index] = vindex2;
@ -1241,16 +1241,15 @@ int TPPLPartition::MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *mo
case TPPL_VERTEXTYPE_REGULAR:
//if the interior of P lies to the right of vi
if(Below(v->p,vertices[v->previous].p)) {
if (edgeTreeIterators[v->previous] == edgeTree.end()) {
error = true;
break;
}
//if helper(ei-1) is a merge vertex
if(vertextypes[helpers[v->previous]]==TPPL_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(ei-1) in D.
AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous]);
vertextypes[newnumvertices-2] = vertextypes[vindex];
edgeTreeIterators[newnumvertices-2] = edgeTreeIterators[vindex];
helpers[newnumvertices-2] = helpers[vindex];
vertextypes[newnumvertices-1] = vertextypes[helpers[v->previous]];
edgeTreeIterators[newnumvertices-1] = edgeTreeIterators[helpers[v->previous]];
helpers[newnumvertices-1] = helpers[helpers[v->previous]];
AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous],
vertextypes, edgeTreeIterators, &edgeTree, helpers);
vindex2 = newnumvertices-2;
v2 = &(vertices[vindex2]);
}
@ -1272,17 +1271,12 @@ int TPPLPartition::MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *mo
error = true;
break;
}
--edgeIter;
edgeIter--;
//if helper(ej) is a merge vertex
if(vertextypes[helpers[edgeIter->index]]==TPPL_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(e j) in D.
AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index]);
vertextypes[newnumvertices-2] = vertextypes[vindex];
edgeTreeIterators[newnumvertices-2] = edgeTreeIterators[vindex];
helpers[newnumvertices-2] = helpers[vindex];
vertextypes[newnumvertices-1] = vertextypes[helpers[edgeIter->index]];
edgeTreeIterators[newnumvertices-1] = edgeTreeIterators[helpers[edgeIter->index]];
helpers[newnumvertices-1] = helpers[helpers[edgeIter->index]];
AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index],
vertextypes, edgeTreeIterators, &edgeTree, helpers);
}
//helper(e j)<29>vi
helpers[edgeIter->index] = vindex;
@ -1342,7 +1336,10 @@ int TPPLPartition::MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *mo
}
//adds a diagonal to the doubly-connected list of vertices
void TPPLPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2) {
void TPPLPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
char *vertextypes, set<ScanLineEdge>::iterator *edgeTreeIterators,
set<ScanLineEdge> *edgeTree, long *helpers)
{
long newindex1,newindex2;
newindex1 = *numvertices;
@ -1364,6 +1361,18 @@ void TPPLPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, lon
vertices[index2].next = newindex1;
vertices[newindex1].previous = index2;
//update all relevant structures
vertextypes[newindex1] = vertextypes[index1];
edgeTreeIterators[newindex1] = edgeTreeIterators[index1];
helpers[newindex1] = helpers[index1];
if(edgeTreeIterators[newindex1] != edgeTree->end())
edgeTreeIterators[newindex1]->index = newindex1;
vertextypes[newindex2] = vertextypes[index2];
edgeTreeIterators[newindex2] = edgeTreeIterators[index2];
helpers[newindex2] = helpers[index2];
if(edgeTreeIterators[newindex2] != edgeTree->end())
edgeTreeIterators[newindex2]->index = newindex2;
}
bool TPPLPartition::Below(TPPLPoint &p1, TPPLPoint &p2) {
@ -1375,7 +1384,7 @@ bool TPPLPartition::Below(TPPLPoint &p1, TPPLPoint &p2) {
}
//sorts in the falling order of y values, if y is equal, x is used instead
bool TPPLPartition::VertexSorter::operator() (long index1, long index2) const {
bool TPPLPartition::VertexSorter::operator() (long index1, long index2) {
if(vertices[index1].p.y > vertices[index2].p.y) return true;
else if(vertices[index1].p.y == vertices[index2].p.y) {
if(vertices[index1].p.x > vertices[index2].p.x) return true;
@ -1412,19 +1421,21 @@ bool TPPLPartition::ScanLineEdge::operator < (const ScanLineEdge & other) const
//triangulates monotone polygon
//O(n) time, O(n) space complexity
int TPPLPartition::TriangulateMonotone(TPPLPoly *inPoly, list<TPPLPoly> *triangles) {
int TPPLPartition::TriangulateMonotone(TPPLPoly *inPoly, TPPLPolyList *triangles) {
if(!inPoly->Valid()) return 0;
long i,i2,j,topindex,bottomindex,leftindex,rightindex,vindex;
TPPLPoint *points;
TPPLPoint *points = NULL;
long numpoints;
TPPLPoly triangle;
numpoints = inPoly->GetNumPoints();
points = inPoly->GetPoints();
//trivial calses
if(numpoints < 3) return 0;
//trivial case
if(numpoints == 3) {
triangles->push_back(*inPoly);
return 1;
}
topindex = 0; bottomindex=0;
@ -1544,19 +1555,19 @@ int TPPLPartition::TriangulateMonotone(TPPLPoly *inPoly, list<TPPLPoly> *triangl
return 1;
}
int TPPLPartition::Triangulate_MONO(list<TPPLPoly> *inpolys, list<TPPLPoly> *triangles) {
list<TPPLPoly> monotone;
list<TPPLPoly>::iterator iter;
int TPPLPartition::Triangulate_MONO(TPPLPolyList *inpolys, TPPLPolyList *triangles) {
TPPLPolyList monotone;
TPPLPolyList::iterator iter;
if(!MonotonePartition(inpolys,&monotone)) return 0;
for(iter = monotone.begin(); iter!=monotone.end(); ++iter) {
for(iter = monotone.begin(); iter!=monotone.end();iter++) {
if(!TriangulateMonotone(&(*iter),triangles)) return 0;
}
return 1;
}
int TPPLPartition::Triangulate_MONO(TPPLPoly *poly, list<TPPLPoly> *triangles) {
list<TPPLPoly> polys;
int TPPLPartition::Triangulate_MONO(TPPLPoly *poly, TPPLPolyList *triangles) {
TPPLPolyList polys;
polys.push_back(*poly);
return Triangulate_MONO(&polys, triangles);

View file

@ -18,9 +18,11 @@
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
//THE SOFTWARE.
#ifndef POLYPARTITION_H
#define POLYPARTITION_H
#include <list>
using namespace std;
#include <set>
typedef double tppl_float;
@ -29,315 +31,349 @@ typedef double tppl_float;
//2D point structure
struct TPPLPoint {
tppl_float x;
tppl_float y;
TPPLPoint operator + (const TPPLPoint& p) const {
TPPLPoint r;
r.x = x + p.x;
r.y = y + p.y;
return r;
}
TPPLPoint operator - (const TPPLPoint& p) const {
TPPLPoint r;
r.x = x - p.x;
r.y = y - p.y;
return r;
}
TPPLPoint operator * (const tppl_float f ) const {
TPPLPoint r;
r.x = x*f;
r.y = y*f;
return r;
}
TPPLPoint operator / (const tppl_float f ) const {
TPPLPoint r;
r.x = x/f;
r.y = y/f;
return r;
}
bool operator==(const TPPLPoint& p) const {
if((x == p.x)&&(y==p.y)) return true;
else return false;
}
bool operator!=(const TPPLPoint& p) const {
if((x == p.x)&&(y==p.y)) return false;
else return true;
}
tppl_float x;
tppl_float y;
// User-specified vertex identifier. Note that this isn't used internally
// by the library, but will be faithfully copied around.
int id;
TPPLPoint operator + (const TPPLPoint& p) const {
TPPLPoint r;
r.x = x + p.x;
r.y = y + p.y;
return r;
}
TPPLPoint operator - (const TPPLPoint& p) const {
TPPLPoint r;
r.x = x - p.x;
r.y = y - p.y;
return r;
}
TPPLPoint operator * (const tppl_float f ) const {
TPPLPoint r;
r.x = x*f;
r.y = y*f;
return r;
}
TPPLPoint operator / (const tppl_float f ) const {
TPPLPoint r;
r.x = x/f;
r.y = y/f;
return r;
}
bool operator==(const TPPLPoint& p) const {
if((x == p.x)&&(y==p.y)) return true;
else return false;
}
bool operator!=(const TPPLPoint& p) const {
if((x == p.x)&&(y==p.y)) return false;
else return true;
}
};
//Polygon implemented as an array of points with a 'hole' flag
class TPPLPoly {
protected:
protected:
TPPLPoint *points;
long numpoints;
bool hole;
public:
//constructors/destructors
TPPLPoly();
~TPPLPoly();
TPPLPoly(const TPPLPoly &src);
TPPLPoly& operator=(const TPPLPoly &src);
//getters and setters
long GetNumPoints() const {
return numpoints;
}
bool IsHole() const {
return hole;
}
void SetHole(bool hole) {
this->hole = hole;
}
TPPLPoint &GetPoint(long i) {
return points[i];
}
const TPPLPoint &GetPoint(long i) const {
return points[i];
}
TPPLPoint *points;
long numpoints;
bool hole;
TPPLPoint *GetPoints() {
return points;
}
TPPLPoint& operator[] (int i) {
return points[i];
}
public:
const TPPLPoint& operator[] (int i) const {
return points[i];
}
//clears the polygon points
void Clear();
//inits the polygon with numpoints vertices
void Init(long numpoints);
//creates a triangle with points p1,p2,p3
void Triangle(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3);
//inverts the orfer of vertices
void Invert();
//returns the orientation of the polygon
//possible values:
// TPPL_CCW : polygon vertices are in counter-clockwise order
// TPPL_CW : polygon vertices are in clockwise order
// 0 : the polygon has no (measurable) area
int GetOrientation() const;
//sets the polygon orientation
//orientation can be
// TPPL_CCW : sets vertices in counter-clockwise order
// TPPL_CW : sets vertices in clockwise order
void SetOrientation(int orientation);
//constructors/destructors
TPPLPoly();
~TPPLPoly();
TPPLPoly(const TPPLPoly &src);
TPPLPoly& operator=(const TPPLPoly &src);
//getters and setters
long GetNumPoints() const {
return numpoints;
}
bool IsHole() const {
return hole;
}
void SetHole(bool hole) {
this->hole = hole;
}
TPPLPoint &GetPoint(long i) {
return points[i];
}
TPPLPoint *GetPoints() {
return points;
}
TPPLPoint& operator[] (int i) {
return points[i];
}
//clears the polygon points
void Clear();
//inits the polygon with numpoints vertices
void Init(long numpoints);
//creates a triangle with points p1,p2,p3
void Triangle(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3);
//inverts the orfer of vertices
void Invert();
//returns the orientation of the polygon
//possible values:
// TPPL_CCW : polygon vertices are in counter-clockwise order
// TPPL_CW : polygon vertices are in clockwise order
// 0 : the polygon has no (measurable) area
int GetOrientation() const;
//sets the polygon orientation
//orientation can be
// TPPL_CCW : sets vertices in counter-clockwise order
// TPPL_CW : sets vertices in clockwise order
void SetOrientation(int orientation);
//checks whether a polygon is valid or not
inline bool Valid() const { return this->numpoints >= 3; }
};
#ifdef TPPL_ALLOCATOR
typedef std::list<TPPLPoly, TPPL_ALLOCATOR(TPPLPoly)> TPPLPolyList;
#else
typedef std::list<TPPLPoly> TPPLPolyList;
#endif
class TPPLPartition {
protected:
struct PartitionVertex {
bool isActive;
bool isConvex;
bool isEar;
protected:
struct PartitionVertex {
bool isActive;
bool isConvex;
bool isEar;
TPPLPoint p;
tppl_float angle;
PartitionVertex *previous;
PartitionVertex *next;
PartitionVertex();
};
struct MonotoneVertex {
TPPLPoint p;
long previous;
long next;
};
class VertexSorter{
MonotoneVertex *vertices;
public:
VertexSorter(MonotoneVertex *v) : vertices(v) {}
bool operator() (long index1, long index2);
};
struct Diagonal {
long index1;
long index2;
};
TPPLPoint p;
tppl_float angle;
PartitionVertex *previous;
PartitionVertex *next;
};
struct MonotoneVertex {
TPPLPoint p;
long previous;
long next;
};
class VertexSorter{
MonotoneVertex *vertices;
public:
VertexSorter(MonotoneVertex *v) : vertices(v) {}
bool operator() (long index1, long index2) const;
};
struct Diagonal {
long index1;
long index2;
};
//dynamic programming state for minimum-weight triangulation
struct DPState {
bool visible;
tppl_float weight;
long bestvertex;
};
//dynamic programming state for convex partitioning
struct DPState2 {
bool visible;
long weight;
list<Diagonal> pairs;
};
//edge that intersects the scanline
struct ScanLineEdge {
long index;
TPPLPoint p1;
TPPLPoint p2;
//determines if the edge is to the left of another edge
bool operator< (const ScanLineEdge & other) const;
bool IsConvex(const TPPLPoint& p1, const TPPLPoint& p2, const TPPLPoint& p3) const;
};
//standard helper functions
bool IsConvex(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3);
bool IsReflex(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3);
bool IsInside(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3, TPPLPoint &p);
bool InCone(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p);
bool InCone(PartitionVertex *v, TPPLPoint &p);
int Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TPPLPoint &p22);
TPPLPoint Normalize(const TPPLPoint &p);
tppl_float Distance(const TPPLPoint &p1, const TPPLPoint &p2);
//helper functions for Triangulate_EC
void UpdateVertexReflexity(PartitionVertex *v);
void UpdateVertex(PartitionVertex *v,PartitionVertex *vertices, long numvertices);
//helper functions for ConvexPartition_OPT
void UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates);
void TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
void TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
//helper functions for MonotonePartition
bool Below(TPPLPoint &p1, TPPLPoint &p2);
void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2);
//triangulates a monotone polygon, used in Triangulate_MONO
int TriangulateMonotone(TPPLPoly *inPoly, list<TPPLPoly> *triangles);
public:
//simple heuristic procedure for removing holes from a list of polygons
//works by creating a diagonal from the rightmost hole vertex to some visible vertex
//time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : a list of polygons that can contain holes
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// outpolys : a list of polygons without holes
//returns 1 on success, 0 on failure
int RemoveHoles(list<TPPLPoly> *inpolys, list<TPPLPoly> *outpolys);
//triangulates a polygon by ear clipping
//time complexity O(n^2), n is the number of vertices
//space complexity: O(n)
//params:
// poly : an input polygon to be triangulated
// vertices have to be in counter-clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_EC(TPPLPoly *poly, list<TPPLPoly> *triangles);
//triangulates a list of polygons that may contain holes by ear clipping algorithm
//first calls RemoveHoles to get rid of the holes, and then Triangulate_EC for each resulting polygon
//time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : a list of polygons to be triangulated (can contain holes)
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_EC(list<TPPLPoly> *inpolys, list<TPPLPoly> *triangles);
//creates an optimal polygon triangulation in terms of minimal edge length
//time complexity: O(n^3), n is the number of vertices
//space complexity: O(n^2)
//params:
// poly : an input polygon to be triangulated
// vertices have to be in counter-clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_OPT(TPPLPoly *poly, list<TPPLPoly> *triangles);
//triangulates a polygons by firstly partitioning it into monotone polygons
//time complexity: O(n*log(n)), n is the number of vertices
//space complexity: O(n)
//params:
// poly : an input polygon to be triangulated
// vertices have to be in counter-clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_MONO(TPPLPoly *poly, list<TPPLPoly> *triangles);
//triangulates a list of polygons by firstly partitioning them into monotone polygons
//time complexity: O(n*log(n)), n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : a list of polygons to be triangulated (can contain holes)
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_MONO(list<TPPLPoly> *inpolys, list<TPPLPoly> *triangles);
//creates a monotone partition of a list of polygons that can contain holes
//time complexity: O(n*log(n)), n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : a list of polygons to be triangulated (can contain holes)
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// monotonePolys : a list of monotone polygons (result)
//returns 1 on success, 0 on failure
int MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *monotonePolys);
//partitions a polygon into convex polygons by using Hertel-Mehlhorn algorithm
//the algorithm gives at most four times the number of parts as the optimal algorithm
//however, in practice it works much better than that and often gives optimal partition
//uses triangulation obtained by ear clipping as intermediate result
//time complexity O(n^2), n is the number of vertices
//space complexity: O(n)
//params:
// poly : an input polygon to be partitioned
// vertices have to be in counter-clockwise order
// parts : resulting list of convex polygons
//returns 1 on success, 0 on failure
int ConvexPartition_HM(TPPLPoly *poly, list<TPPLPoly> *parts);
//partitions a list of polygons into convex parts by using Hertel-Mehlhorn algorithm
//the algorithm gives at most four times the number of parts as the optimal algorithm
//however, in practice it works much better than that and often gives optimal partition
//uses triangulation obtained by ear clipping as intermediate result
//time complexity O(n^2), n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : an input list of polygons to be partitioned
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// parts : resulting list of convex polygons
//returns 1 on success, 0 on failure
int ConvexPartition_HM(list<TPPLPoly> *inpolys, list<TPPLPoly> *parts);
//optimal convex partitioning (in terms of number of resulting convex polygons)
//using the Keil-Snoeyink algorithm
//M. Keil, J. Snoeyink, "On the time bound for convex decomposition of simple polygons", 1998
//time complexity O(n^3), n is the number of vertices
//space complexity: O(n^3)
// poly : an input polygon to be partitioned
// vertices have to be in counter-clockwise order
// parts : resulting list of convex polygons
//returns 1 on success, 0 on failure
int ConvexPartition_OPT(TPPLPoly *poly, list<TPPLPoly> *parts);
#ifdef TPPL_ALLOCATOR
typedef std::list<Diagonal, TPPL_ALLOCATOR(Diagonal)> DiagonalList;
#else
typedef std::list<Diagonal> DiagonalList;
#endif
//dynamic programming state for minimum-weight triangulation
struct DPState {
bool visible;
tppl_float weight;
long bestvertex;
};
//dynamic programming state for convex partitioning
struct DPState2 {
bool visible;
long weight;
DiagonalList pairs;
};
//edge that intersects the scanline
struct ScanLineEdge {
mutable long index;
TPPLPoint p1;
TPPLPoint p2;
//determines if the edge is to the left of another edge
bool operator< (const ScanLineEdge & other) const;
bool IsConvex(const TPPLPoint& p1, const TPPLPoint& p2, const TPPLPoint& p3) const;
};
//standard helper functions
bool IsConvex(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3);
bool IsReflex(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3);
bool IsInside(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3, TPPLPoint &p);
bool InCone(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p);
bool InCone(PartitionVertex *v, TPPLPoint &p);
int Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TPPLPoint &p22);
TPPLPoint Normalize(const TPPLPoint &p);
tppl_float Distance(const TPPLPoint &p1, const TPPLPoint &p2);
//helper functions for Triangulate_EC
void UpdateVertexReflexity(PartitionVertex *v);
void UpdateVertex(PartitionVertex *v,PartitionVertex *vertices, long numvertices);
//helper functions for ConvexPartition_OPT
void UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates);
void TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
void TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
//helper functions for MonotonePartition
bool Below(TPPLPoint &p1, TPPLPoint &p2);
void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
char *vertextypes, std::set<ScanLineEdge>::iterator *edgeTreeIterators,
std::set<ScanLineEdge> *edgeTree, long *helpers);
//triangulates a monotone polygon, used in Triangulate_MONO
int TriangulateMonotone(TPPLPoly *inPoly, TPPLPolyList *triangles);
public:
//simple heuristic procedure for removing holes from a list of polygons
//works by creating a diagonal from the rightmost hole vertex to some visible vertex
//time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : a list of polygons that can contain holes
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// outpolys : a list of polygons without holes
//returns 1 on success, 0 on failure
int RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys);
//triangulates a polygon by ear clipping
//time complexity O(n^2), n is the number of vertices
//space complexity: O(n)
//params:
// poly : an input polygon to be triangulated
// vertices have to be in counter-clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_EC(TPPLPoly *poly, TPPLPolyList *triangles);
//triangulates a list of polygons that may contain holes by ear clipping algorithm
//first calls RemoveHoles to get rid of the holes, and then Triangulate_EC for each resulting polygon
//time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : a list of polygons to be triangulated (can contain holes)
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_EC(TPPLPolyList *inpolys, TPPLPolyList *triangles);
//creates an optimal polygon triangulation in terms of minimal edge length
//time complexity: O(n^3), n is the number of vertices
//space complexity: O(n^2)
//params:
// poly : an input polygon to be triangulated
// vertices have to be in counter-clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_OPT(TPPLPoly *poly, TPPLPolyList *triangles);
//triangulates a polygons by firstly partitioning it into monotone polygons
//time complexity: O(n*log(n)), n is the number of vertices
//space complexity: O(n)
//params:
// poly : an input polygon to be triangulated
// vertices have to be in counter-clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_MONO(TPPLPoly *poly, TPPLPolyList *triangles);
//triangulates a list of polygons by firstly partitioning them into monotone polygons
//time complexity: O(n*log(n)), n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : a list of polygons to be triangulated (can contain holes)
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
int Triangulate_MONO(TPPLPolyList *inpolys, TPPLPolyList *triangles);
//creates a monotone partition of a list of polygons that can contain holes
//time complexity: O(n*log(n)), n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : a list of polygons to be triangulated (can contain holes)
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// monotonePolys : a list of monotone polygons (result)
//returns 1 on success, 0 on failure
int MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monotonePolys);
//partitions a polygon into convex polygons by using Hertel-Mehlhorn algorithm
//the algorithm gives at most four times the number of parts as the optimal algorithm
//however, in practice it works much better than that and often gives optimal partition
//uses triangulation obtained by ear clipping as intermediate result
//time complexity O(n^2), n is the number of vertices
//space complexity: O(n)
//params:
// poly : an input polygon to be partitioned
// vertices have to be in counter-clockwise order
// parts : resulting list of convex polygons
//returns 1 on success, 0 on failure
int ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts);
//partitions a list of polygons into convex parts by using Hertel-Mehlhorn algorithm
//the algorithm gives at most four times the number of parts as the optimal algorithm
//however, in practice it works much better than that and often gives optimal partition
//uses triangulation obtained by ear clipping as intermediate result
//time complexity O(n^2), n is the number of vertices
//space complexity: O(n)
//params:
// inpolys : an input list of polygons to be partitioned
// vertices of all non-hole polys have to be in counter-clockwise order
// vertices of all hole polys have to be in clockwise order
// parts : resulting list of convex polygons
//returns 1 on success, 0 on failure
int ConvexPartition_HM(TPPLPolyList *inpolys, TPPLPolyList *parts);
//optimal convex partitioning (in terms of number of resulting convex polygons)
//using the Keil-Snoeyink algorithm
//M. Keil, J. Snoeyink, "On the time bound for convex decomposition of simple polygons", 1998
//time complexity O(n^3), n is the number of vertices
//space complexity: O(n^3)
// poly : an input polygon to be partitioned
// vertices have to be in counter-clockwise order
// parts : resulting list of convex polygons
//returns 1 on success, 0 on failure
int ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts);
};
#endif

View file

@ -1959,7 +1959,7 @@ bool GLBed::on_init_from_file(const std::string& filename, bool useVBOs)
{
model = Model::read_from_file(filename);
}
catch (std::exception &e)
catch (std::exception & /* ex */)
{
return false;
}
@ -1978,7 +1978,7 @@ bool GLBed::on_init_from_file(const std::string& filename, bool useVBOs)
else
m_volume.indexed_vertex_array.load_mesh_flat_shading(mesh);
float color[4] = { 0.235f, 0.235, 0.235f, 1.0f };
float color[4] = { 0.235f, 0.235f, 0.235f, 1.0f };
set_color(color, 4);
m_volume.bounding_box = m_volume.indexed_vertex_array.bounding_box();

View file

@ -2,6 +2,7 @@
#include "GLCanvas3D.hpp"
#include "admesh/stl.h"
#include "polypartition.h"
#include "libslic3r/libslic3r.h"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/PrintConfig.hpp"
@ -6431,6 +6432,219 @@ void GLCanvas3D::_render_camera_target() const
}
#endif // ENABLE_SHOW_CAMERA_TARGET
class TessWrapper {
public:
static Pointf3s tesselate(const ExPolygon &expoly, double z_, bool flipped_)
{
z = z_;
flipped = flipped_;
triangles.clear();
intersection_points.clear();
std::vector<GLdouble> coords;
{
size_t num_coords = expoly.contour.points.size();
for (const Polygon &poly : expoly.holes)
num_coords += poly.points.size();
coords.reserve(num_coords * 3);
}
GLUtesselator *tess = gluNewTess(); // create a tessellator
// register callback functions
gluTessCallback(tess, GLU_TESS_BEGIN, (void(__stdcall*)(void))tessBeginCB);
gluTessCallback(tess, GLU_TESS_END, (void(__stdcall*)(void))tessEndCB);
gluTessCallback(tess, GLU_TESS_ERROR, (void(__stdcall*)(void))tessErrorCB);
gluTessCallback(tess, GLU_TESS_VERTEX, (void(__stdcall*)())tessVertexCB);
gluTessCallback(tess, GLU_TESS_COMBINE, (void (__stdcall*)(void))tessCombineCB);
gluTessBeginPolygon(tess, 0); // with NULL data
gluTessBeginContour(tess);
for (const Point &pt : expoly.contour.points) {
coords.emplace_back(unscale<double>(pt[0]));
coords.emplace_back(unscale<double>(pt[1]));
coords.emplace_back(0.);
gluTessVertex(tess, &coords[coords.size() - 3], &coords[coords.size() - 3]);
}
gluTessEndContour(tess);
for (const Polygon &poly : expoly.holes) {
gluTessBeginContour(tess);
for (const Point &pt : poly.points) {
coords.emplace_back(unscale<double>(pt[0]));
coords.emplace_back(unscale<double>(pt[1]));
coords.emplace_back(0.);
gluTessVertex(tess, &coords[coords.size() - 3], &coords[coords.size() - 3]);
}
gluTessEndContour(tess);
}
gluTessEndPolygon(tess);
gluDeleteTess(tess);
return std::move(triangles);
}
private:
static void tessBeginCB(GLenum which)
{
assert(which == GL_TRIANGLES || which == GL_TRIANGLE_FAN || which == GL_TRIANGLE_STRIP);
if (!(which == GL_TRIANGLES || which == GL_TRIANGLE_FAN || which == GL_TRIANGLE_STRIP))
printf("Co je to za haluz!?\n");
primitive_type = which;
num_points = 0;
}
static void tessEndCB()
{
num_points = 0;
}
static void tessVertexCB(const GLvoid *data)
{
if (data == nullptr)
return;
const GLdouble *ptr = (const GLdouble*)data;
++ num_points;
if (num_points == 1) {
memcpy(pt0, ptr, sizeof(GLdouble) * 3);
} else if (num_points == 2) {
memcpy(pt1, ptr, sizeof(GLdouble) * 3);
} else {
bool flip = flipped;
if (primitive_type == GL_TRIANGLE_STRIP && num_points == 4) {
flip = !flip;
num_points = 2;
}
triangles.emplace_back(pt0[0], pt0[1], z);
if (flip) {
triangles.emplace_back(ptr[0], ptr[1], z);
triangles.emplace_back(pt1[0], pt1[1], z);
} else {
triangles.emplace_back(pt1[0], pt1[1], z);
triangles.emplace_back(ptr[0], ptr[1], z);
}
if (primitive_type == GL_TRIANGLE_STRIP) {
memcpy(pt0, pt1, sizeof(GLdouble) * 3);
memcpy(pt1, ptr, sizeof(GLdouble) * 3);
} else if (primitive_type == GL_TRIANGLE_FAN) {
memcpy(pt1, ptr, sizeof(GLdouble) * 3);
} else {
assert(which == GL_TRIANGLES);
assert(num_points == 3);
num_points = 0;
}
}
}
static void tessCombineCB(const GLdouble newVertex[3], const GLdouble *neighborVertex[4], const GLfloat neighborWeight[4], GLdouble **outData)
{
intersection_points.emplace_back(newVertex[0], newVertex[1], newVertex[2]);
*outData = intersection_points.back().data();
}
static void tessErrorCB(GLenum errorCode)
{
const GLubyte *errorStr;
errorStr = gluErrorString(errorCode);
printf("Error: %s\n", (const char*)errorStr);
}
static GLenum primitive_type;
static GLdouble pt0[3];
static GLdouble pt1[3];
static int num_points;
static Pointf3s triangles;
static std::deque<Vec3d> intersection_points;
static double z;
static bool flipped;
};
GLenum TessWrapper::primitive_type;
GLdouble TessWrapper::pt0[3];
GLdouble TessWrapper::pt1[3];
int TessWrapper::num_points;
Pointf3s TessWrapper::triangles;
std::deque<Vec3d> TessWrapper::intersection_points;
double TessWrapper::z;
bool TessWrapper::flipped;
static Pointf3s triangulate_expolygons(const ExPolygons &polys, coordf_t z, bool flip)
{
Pointf3s triangles;
#if 0
for (const ExPolygon& poly : polys) {
Polygons poly_triangles;
// poly.triangulate() is based on a trapezoidal decomposition implemented in an extremely expensive way by clipping the whole input contour with a polygon!
poly.triangulate(&poly_triangles);
// poly.triangulate_p2t() is based on the poly2tri library, which is not quite stable, it often ends up in a nice stack overflow!
// poly.triangulate_p2t(&poly_triangles);
for (const Polygon &t : poly_triangles)
if (flip) {
triangles.emplace_back(to_3d(unscale(t.points[2]), z));
triangles.emplace_back(to_3d(unscale(t.points[1]), z));
triangles.emplace_back(to_3d(unscale(t.points[0]), z));
} else {
triangles.emplace_back(to_3d(unscale(t.points[0]), z));
triangles.emplace_back(to_3d(unscale(t.points[1]), z));
triangles.emplace_back(to_3d(unscale(t.points[2]), z));
}
}
#else
// for (const ExPolygon &poly : union_ex(simplify_polygons(to_polygons(polys), true))) {
for (const ExPolygon &poly : polys) {
append(triangles, TessWrapper::tesselate(poly, z, flip));
continue;
std::list<TPPLPoly> input = expoly_to_polypartition_input(poly);
std::list<TPPLPoly> output;
// int res = TPPLPartition().Triangulate_MONO(&input, &output);
int res = TPPLPartition().Triangulate_EC(&input, &output);
if (res == 1) {
// Triangulation succeeded. Convert to triangles.
size_t num_triangles = 0;
for (const TPPLPoly &poly : output)
if (poly.GetNumPoints() >= 3)
num_triangles += (size_t)poly.GetNumPoints() - 2;
triangles.reserve(triangles.size() + num_triangles * 3);
for (const TPPLPoly &poly : output) {
long num_points = poly.GetNumPoints();
if (num_points >= 3) {
const TPPLPoint *pt0 = &poly[0];
const TPPLPoint *pt1 = nullptr;
const TPPLPoint *pt2 = &poly[1];
for (long i = 2; i < num_points; ++i) {
pt1 = pt2;
pt2 = &poly[i];
if (flip) {
triangles.emplace_back(unscale<double>(pt2->x), unscale<double>(pt2->y), z);
triangles.emplace_back(unscale<double>(pt1->x), unscale<double>(pt1->y), z);
triangles.emplace_back(unscale<double>(pt0->x), unscale<double>(pt0->y), z);
} else {
triangles.emplace_back(unscale<double>(pt0->x), unscale<double>(pt0->y), z);
triangles.emplace_back(unscale<double>(pt1->x), unscale<double>(pt1->y), z);
triangles.emplace_back(unscale<double>(pt2->x), unscale<double>(pt2->y), z);
}
}
}
}
} else {
// Triangulation by polypartition failed. Use the expensive slow implementation.
Polygons poly_triangles;
// poly.triangulate() is based on a trapezoidal decomposition implemented in an extremely expensive way by clipping the whole input contour with a polygon!
poly.triangulate(&poly_triangles);
// poly.triangulate_p2t() is based on the poly2tri library, which is not quite stable, it often ends up in a nice stack overflow!
// poly.triangulate_p2t(&poly_triangles);
for (const Polygon &t : poly_triangles)
if (flip) {
triangles.emplace_back(to_3d(unscale(t.points[2]), z));
triangles.emplace_back(to_3d(unscale(t.points[1]), z));
triangles.emplace_back(to_3d(unscale(t.points[0]), z));
} else {
triangles.emplace_back(to_3d(unscale(t.points[0]), z));
triangles.emplace_back(to_3d(unscale(t.points[1]), z));
triangles.emplace_back(to_3d(unscale(t.points[2]), z));
}
}
}
#endif
return triangles;
}
void GLCanvas3D::_render_sla_slices() const
{
if (!m_use_clipping_planes || wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA)
@ -6448,34 +6662,32 @@ void GLCanvas3D::_render_sla_slices() const
{
const SLAPrintObject* obj = print_objects[i];
Pointf3s bottom_obj_triangles;
Pointf3s bottom_sup_triangles;
Pointf3s top_obj_triangles;
Pointf3s top_sup_triangles;
double shift_z = obj->get_current_elevation();
double min_z = clip_min_z - shift_z;
double max_z = clip_max_z - shift_z;
if (m_sla_caps[0].matches(min_z))
SlaCap::ObjectIdToTrianglesMap::iterator it_caps_bottom = m_sla_caps[0].triangles.find(i);
SlaCap::ObjectIdToTrianglesMap::iterator it_caps_top = m_sla_caps[1].triangles.find(i);
{
SlaCap::ObjectIdToTrianglesMap::const_iterator it = m_sla_caps[0].triangles.find(i);
if (it != m_sla_caps[0].triangles.end())
{
bottom_obj_triangles = it->second.object;
bottom_sup_triangles = it->second.suppports;
}
}
if (m_sla_caps[1].matches(max_z))
{
SlaCap::ObjectIdToTrianglesMap::const_iterator it = m_sla_caps[1].triangles.find(i);
if (it != m_sla_caps[1].triangles.end())
{
top_obj_triangles = it->second.object;
top_sup_triangles = it->second.suppports;
if (it_caps_bottom == m_sla_caps[0].triangles.end())
it_caps_bottom = m_sla_caps[0].triangles.emplace(i, SlaCap::Triangles()).first;
if (! m_sla_caps[0].matches(min_z)) {
m_sla_caps[0].z = min_z;
it_caps_bottom->second.object.clear();
it_caps_bottom->second.supports.clear();
}
if (it_caps_top == m_sla_caps[1].triangles.end())
it_caps_top = m_sla_caps[1].triangles.emplace(i, SlaCap::Triangles()).first;
if (! m_sla_caps[1].matches(max_z)) {
m_sla_caps[1].z = max_z;
it_caps_top->second.object.clear();
it_caps_top->second.supports.clear();
}
}
Pointf3s &bottom_obj_triangles = it_caps_bottom->second.object;
Pointf3s &bottom_sup_triangles = it_caps_bottom->second.supports;
Pointf3s &top_obj_triangles = it_caps_top->second.object;
Pointf3s &top_sup_triangles = it_caps_top->second.supports;
const std::vector<SLAPrintObject::Instance>& instances = obj->instances();
struct InstanceTransform
@ -6501,86 +6713,22 @@ void GLCanvas3D::_render_sla_slices() const
if (it_min_z != index.end())
{
// calculate model bottom cap
if (bottom_obj_triangles.empty() && (it_min_z->second.model_slices_idx < model_slices.size()))
{
// calculate model bottom cap
const ExPolygons& polys = model_slices[it_min_z->second.model_slices_idx];
for (const ExPolygon& poly : polys)
{
Polygons poly_triangles;
poly.triangulate(&poly_triangles);
for (const Polygon& t : poly_triangles)
{
for (int v = 2; v >= 0; --v)
{
bottom_obj_triangles.emplace_back(to_3d(unscale(t.points[v]), min_z));
}
}
}
}
bottom_obj_triangles = triangulate_expolygons(model_slices[it_min_z->second.model_slices_idx], min_z, true);
// calculate support bottom cap
if (bottom_sup_triangles.empty() && (it_min_z->second.support_slices_idx < support_slices.size()))
{
// calculate support bottom cap
const ExPolygons& polys = support_slices[it_min_z->second.support_slices_idx];
for (const ExPolygon& poly : polys)
{
Polygons poly_triangles;
poly.triangulate(&poly_triangles);
for (const Polygon& t : poly_triangles)
{
for (int v = 2; v >= 0; --v)
{
bottom_sup_triangles.emplace_back(to_3d(unscale(t.points[v]), min_z));
}
}
}
m_sla_caps[0].triangles.insert(SlaCap::ObjectIdToTrianglesMap::value_type(i, { bottom_obj_triangles, bottom_sup_triangles }));
m_sla_caps[0].z = min_z;
}
bottom_sup_triangles = triangulate_expolygons(support_slices[it_min_z->second.support_slices_idx], min_z, true);
}
if (it_max_z != index.end())
{
// calculate model top cap
if (top_obj_triangles.empty() && (it_max_z->second.model_slices_idx < model_slices.size()))
{
// calculate model top cap
const ExPolygons& polys = model_slices[it_max_z->second.model_slices_idx];
for (const ExPolygon& poly : polys)
{
Polygons poly_triangles;
poly.triangulate(&poly_triangles);
for (const Polygon& t : poly_triangles)
{
for (int v = 0; v < 3; ++v)
{
top_obj_triangles.emplace_back(to_3d(unscale(t.points[v]), max_z));
}
}
}
}
top_obj_triangles = triangulate_expolygons(model_slices[it_max_z->second.model_slices_idx], max_z, false);
// calculate support top cap
if (top_sup_triangles.empty() && (it_max_z->second.support_slices_idx < support_slices.size()))
{
// calculate support top cap
const ExPolygons& polys = support_slices[it_max_z->second.support_slices_idx];
for (const ExPolygon& poly : polys)
{
Polygons poly_triangles;
poly.triangulate(&poly_triangles);
for (const Polygon& t : poly_triangles)
{
for (int v = 0; v < 3; ++v)
{
top_sup_triangles.emplace_back(to_3d(unscale(t.points[v]), max_z));
}
}
}
}
m_sla_caps[1].triangles.insert(SlaCap::ObjectIdToTrianglesMap::value_type(i, { top_obj_triangles, top_sup_triangles }));
m_sla_caps[1].z = max_z;
top_sup_triangles = triangulate_expolygons(support_slices[it_max_z->second.support_slices_idx], max_z, false);
}
}

View file

@ -780,7 +780,7 @@ private:
struct Triangles
{
Pointf3s object;
Pointf3s suppports;
Pointf3s supports;
};
typedef std::map<unsigned int, Triangles> ObjectIdToTrianglesMap;
double z;

View file

@ -245,8 +245,6 @@ void show_info(wxWindow* parent, const wxString& message, const wxString& title)
void warning_catcher(wxWindow* parent, const wxString& message)
{
if (message == "GLUquadricObjPtr | " + _(L("Attempt to free unreferenced scalar")) )
return;
wxMessageDialog msg(parent, message, _(L("Warning")), wxOK | wxICON_WARNING);
msg.ShowModal();
}

View file

@ -30,6 +30,10 @@ PrintHostSendDialog::PrintHostSendDialog(const fs::path &path)
, txt_filename(new wxTextCtrl(this, wxID_ANY, path.filename().wstring()))
, box_print(new wxCheckBox(this, wxID_ANY, _(L("Start printing after upload"))))
{
#ifdef __APPLE__
txt_filename->OSXDisableAllSmartSubstitutions();
#endif
auto *label_dir_hint = new wxStaticText(this, wxID_ANY, _(L("Use forward slashes ( / ) as a directory separator if needed.")));
label_dir_hint->Wrap(CONTENT_WIDTH);

View file

@ -5,7 +5,7 @@ use warnings;
use List::Util qw(first sum);
use Slic3r::XS;
use Test::More tests => 33;
use Test::More tests => 31;
use constant PI => 4 * atan2(1, 1);
@ -133,10 +133,4 @@ is $expolygon->area, 100*100-20*20, 'area';
is scalar(grep { $_->area == 100*200 } @$polygons), 1, 'trapezoids have expected area';
}
{
my $triangles = $expolygon->triangulate_pp;
is scalar(@$triangles), 8, 'expected number of triangles';
is sum(map $_->area, @$triangles), $expolygon->area, 'sum of triangles area equals original expolygon area';
}
__END__

View file

@ -31,14 +31,10 @@
Polygons simplify_p(double tolerance);
Polylines medial_axis(double max_width, double min_width)
%code{% THIS->medial_axis(max_width, min_width, &RETVAL); %};
Polygons get_trapezoids(double angle)
%code{% THIS->get_trapezoids(&RETVAL, angle); %};
Polygons get_trapezoids2(double angle)
%code{% THIS->get_trapezoids2(&RETVAL, angle); %};
Polygons triangulate()
%code{% THIS->triangulate(&RETVAL); %};
Polygons triangulate_pp()
%code{% THIS->triangulate_pp(&RETVAL); %};
%{
ExPolygon*