This commit is contained in:
bubnikv 2018-12-12 18:37:25 +01:00
commit 1925a34043
10 changed files with 125 additions and 87 deletions

View File

@ -2389,6 +2389,13 @@ void PrintConfigDef::init_sla_params()
def->min = 100; def->min = 100;
def->default_value = new ConfigOptionInt(1440); def->default_value = new ConfigOptionInt(1440);
def = this->add("display_flip_xy", coBool);
def->label = ("Flip X and Y axis");
def->tooltip = L("Flip X and Y axis in the output raster");
def->cli = "display-flip-xy=i";
def->min = 0;
def->default_value = new ConfigOptionBool(true);
def = this->add("printer_correction", coFloats); def = this->add("printer_correction", coFloats);
def->full_label = L("Printer scaling correction"); def->full_label = L("Printer scaling correction");
def->tooltip = L("Printer scaling correction"); def->tooltip = L("Printer scaling correction");

View File

@ -1035,6 +1035,7 @@ public:
ConfigOptionFloat display_height; ConfigOptionFloat display_height;
ConfigOptionInt display_pixels_x; ConfigOptionInt display_pixels_x;
ConfigOptionInt display_pixels_y; ConfigOptionInt display_pixels_y;
ConfigOptionBool display_flip_xy;
ConfigOptionFloats printer_correction; ConfigOptionFloats printer_correction;
protected: protected:
void initialize(StaticCacheBase &cache, const char *base_ptr) void initialize(StaticCacheBase &cache, const char *base_ptr)
@ -1046,6 +1047,7 @@ protected:
OPT_PTR(display_height); OPT_PTR(display_height);
OPT_PTR(display_pixels_x); OPT_PTR(display_pixels_x);
OPT_PTR(display_pixels_y); OPT_PTR(display_pixels_y);
OPT_PTR(display_flip_xy);
OPT_PTR(printer_correction); OPT_PTR(printer_correction);
} }
}; };

View File

@ -447,8 +447,11 @@ void base_plate(const TriangleMesh &mesh, ExPolygons &output, float h,
ExPolygons tmp; tmp.reserve(count); ExPolygons tmp; tmp.reserve(count);
for(auto& o : out) for(auto& e : o) tmp.emplace_back(std::move(e)); for(auto& o : out) for(auto& e : o) tmp.emplace_back(std::move(e));
output = unify(tmp); ExPolygons utmp = unify(tmp);
for(auto& o : output) o = o.simplify(0.1/SCALING_FACTOR).front(); for(auto& o : utmp) {
auto&& smp = o.simplify(0.1/SCALING_FACTOR);
output.insert(output.end(), smp.begin(), smp.end());
}
} }
void create_base_pool(const ExPolygons &ground_layer, TriangleMesh& out, void create_base_pool(const ExPolygons &ground_layer, TriangleMesh& out,

View File

@ -20,7 +20,6 @@ std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
using libnest2d::opt::Optimizer; using libnest2d::opt::Optimizer;
using libnest2d::opt::TOptimizer; using libnest2d::opt::TOptimizer;
using libnest2d::opt::StopCriteria; using libnest2d::opt::StopCriteria;
using Quaternion = Eigen::Quaternion<double>;
static const unsigned MAX_TRIES = 100000; static const unsigned MAX_TRIES = 100000;

View File

@ -169,7 +169,7 @@ Contour3D cylinder(double r, double h, size_t ssteps) {
auto steps = int(ssteps); auto steps = int(ssteps);
auto& points = ret.points; auto& points = ret.points;
auto& indices = ret.indices; auto& indices = ret.indices;
points.reserve(2*steps); points.reserve(2*ssteps);
double a = 2*PI/steps; double a = 2*PI/steps;
Vec3d jp = {0, 0, 0}; Vec3d jp = {0, 0, 0};
@ -189,7 +189,7 @@ Contour3D cylinder(double r, double h, size_t ssteps) {
points.emplace_back(x, y, jp(Z)); points.emplace_back(x, y, jp(Z));
} }
indices.reserve(2*steps); indices.reserve(2*ssteps);
auto offs = steps; auto offs = steps;
for(int i = 0; i < steps - 1; ++i) { for(int i = 0; i < steps - 1; ++i) {
indices.emplace_back(i, i + offs, offs + i + 1); indices.emplace_back(i, i + offs, offs + i + 1);
@ -347,19 +347,22 @@ struct Pillar {
double radius = 1, size_t st = 45): double radius = 1, size_t st = 45):
r(radius), steps(st), endpoint(endp), starts_from_head(false) r(radius), steps(st), endpoint(endp), starts_from_head(false)
{ {
assert(steps > 0);
int steps_1 = int(steps - 1);
auto& points = mesh.points; auto& points = mesh.points;
auto& indices = mesh.indices; auto& indices = mesh.indices;
points.reserve(2*steps); points.reserve(2*steps);
double a = 2*PI/steps; double a = 2*PI/steps;
for(int i = 0; i < steps; ++i) { for(size_t i = 0; i < steps; ++i) {
double phi = i*a; double phi = i*a;
double x = jp(X) + r*std::cos(phi); double x = jp(X) + r*std::cos(phi);
double y = jp(Y) + r*std::sin(phi); double y = jp(Y) + r*std::sin(phi);
points.emplace_back(x, y, jp(Z)); points.emplace_back(x, y, jp(Z));
} }
for(int i = 0; i < steps; ++i) { for(size_t i = 0; i < steps; ++i) {
double phi = i*a; double phi = i*a;
double ex = endp(X) + r*std::cos(phi); double ex = endp(X) + r*std::cos(phi);
double ey = endp(Y) + r*std::sin(phi); double ey = endp(Y) + r*std::sin(phi);
@ -368,14 +371,13 @@ struct Pillar {
indices.reserve(2*steps); indices.reserve(2*steps);
int offs = int(steps); int offs = int(steps);
for(int i = 0; i < steps - 1; ++i) { for(int i = 0; i < steps_1 ; ++i) {
indices.emplace_back(i, i + offs, offs + i + 1); indices.emplace_back(i, i + offs, offs + i + 1);
indices.emplace_back(i, offs + i + 1, i + 1); indices.emplace_back(i, offs + i + 1, i + 1);
} }
int last = int(steps) - 1; indices.emplace_back(0, steps_1, offs);
indices.emplace_back(0, last, offs); indices.emplace_back(steps_1, offs + steps_1, offs);
indices.emplace_back(last, offs + last, offs);
} }
Pillar(const Junction& junc, const Vec3d& endp): Pillar(const Junction& junc, const Vec3d& endp):
@ -390,19 +392,22 @@ struct Pillar {
void add_base(double height = 3, double radius = 2) { void add_base(double height = 3, double radius = 2) {
if(height <= 0) return; if(height <= 0) return;
assert(steps > 0);
auto last = int(steps - 1);
if(radius < r ) radius = r; if(radius < r ) radius = r;
double a = 2*PI/steps; double a = 2*PI/steps;
double z = endpoint(2) + height; double z = endpoint(2) + height;
for(int i = 0; i < steps; ++i) { for(size_t i = 0; i < steps; ++i) {
double phi = i*a; double phi = i*a;
double x = endpoint(0) + r*std::cos(phi); double x = endpoint(0) + r*std::cos(phi);
double y = endpoint(1) + r*std::sin(phi); double y = endpoint(1) + r*std::sin(phi);
base.points.emplace_back(x, y, z); base.points.emplace_back(x, y, z);
} }
for(int i = 0; i < steps; ++i) { for(size_t i = 0; i < steps; ++i) {
double phi = i*a; double phi = i*a;
double x = endpoint(0) + radius*std::cos(phi); double x = endpoint(0) + radius*std::cos(phi);
double y = endpoint(1) + radius*std::sin(phi); double y = endpoint(1) + radius*std::sin(phi);
@ -417,14 +422,13 @@ struct Pillar {
auto hcenter = int(base.points.size() - 1); auto hcenter = int(base.points.size() - 1);
auto lcenter = int(base.points.size() - 2); auto lcenter = int(base.points.size() - 2);
auto offs = int(steps); auto offs = int(steps);
for(int i = 0; i < steps - 1; ++i) { for(int i = 0; i < last; ++i) {
indices.emplace_back(i, i + offs, offs + i + 1); indices.emplace_back(i, i + offs, offs + i + 1);
indices.emplace_back(i, offs + i + 1, i + 1); indices.emplace_back(i, offs + i + 1, i + 1);
indices.emplace_back(i, i + 1, hcenter); indices.emplace_back(i, i + 1, hcenter);
indices.emplace_back(lcenter, offs + i + 1, offs + i); indices.emplace_back(lcenter, offs + i + 1, offs + i);
} }
auto last = int(steps - 1);
indices.emplace_back(0, last, offs); indices.emplace_back(0, last, offs);
indices.emplace_back(last, offs + last, offs); indices.emplace_back(last, offs + last, offs);
indices.emplace_back(hcenter, last, 0); indices.emplace_back(hcenter, last, 0);
@ -462,8 +466,6 @@ struct Bridge {
Bridge(const Junction& j1, const Junction& j2, double r_mm = 0.8): Bridge(const Junction& j1, const Junction& j2, double r_mm = 0.8):
Bridge(j1.pos, j2.pos, r_mm, j1.steps) {} Bridge(j1.pos, j2.pos, r_mm, j1.steps) {}
Bridge(const Junction& j, const Pillar& cl) {}
}; };
// A bridge that spans from model surface to model surface with small connecting // A bridge that spans from model surface to model surface with small connecting
@ -537,12 +539,12 @@ EigenMesh3D to_eigenmesh(const Contour3D& cntr) {
auto& V = emesh.V; auto& V = emesh.V;
auto& F = emesh.F; auto& F = emesh.F;
V.resize(cntr.points.size(), 3); V.resize(Eigen::Index(cntr.points.size()), 3);
F.resize(cntr.indices.size(), 3); F.resize(Eigen::Index(cntr.indices.size()), 3);
for (int i = 0; i < V.rows(); ++i) { for (int i = 0; i < V.rows(); ++i) {
V.row(i) = cntr.points[i]; V.row(i) = cntr.points[size_t(i)];
F.row(i) = cntr.indices[i]; F.row(i) = cntr.indices[size_t(i)];
} }
return emesh; return emesh;
@ -569,18 +571,23 @@ EigenMesh3D to_eigenmesh(const TriangleMesh& tmesh) {
V.resize(3*stl.stats.number_of_facets, 3); V.resize(3*stl.stats.number_of_facets, 3);
F.resize(stl.stats.number_of_facets, 3); F.resize(stl.stats.number_of_facets, 3);
for (unsigned int i=0; i<stl.stats.number_of_facets; ++i) { for (unsigned int i = 0; i < stl.stats.number_of_facets; ++i) {
const stl_facet* facet = stl.facet_start+i; const stl_facet* facet = stl.facet_start+i;
V(3*i+0, 0) = facet->vertex[0](0); V(3*i+0, 1) = V(3*i+0, 0) = double(facet->vertex[0](0));
facet->vertex[0](1); V(3*i+0, 2) = facet->vertex[0](2); V(3*i+0, 1) = double(facet->vertex[0](1));
V(3*i+1, 0) = facet->vertex[1](0); V(3*i+1, 1) = V(3*i+0, 2) = double(facet->vertex[0](2));
facet->vertex[1](1); V(3*i+1, 2) = facet->vertex[1](2);
V(3*i+2, 0) = facet->vertex[2](0); V(3*i+2, 1) =
facet->vertex[2](1); V(3*i+2, 2) = facet->vertex[2](2);
F(i, 0) = 3*i+0; V(3*i+1, 0) = double(facet->vertex[1](0));
F(i, 1) = 3*i+1; V(3*i+1, 1) = double(facet->vertex[1](1));
F(i, 2) = 3*i+2; V(3*i+1, 2) = double(facet->vertex[1](2));
V(3*i+2, 0) = double(facet->vertex[2](0));
V(3*i+2, 1) = double(facet->vertex[2](1));
V(3*i+2, 2) = double(facet->vertex[2](2));
F(i, 0) = int(3*i+0);
F(i, 1) = int(3*i+1);
F(i, 2) = int(3*i+2);
} }
return outmesh; return outmesh;
@ -630,7 +637,7 @@ class SLASupportTree::Impl {
Controller m_ctl; Controller m_ctl;
Pad m_pad; Pad m_pad;
mutable TriangleMesh meshcache; mutable bool meshcache_valid; mutable TriangleMesh meshcache; mutable bool meshcache_valid = false;
mutable double model_height = 0; // the full height of the model mutable double model_height = 0; // the full height of the model
public: public:
double ground_level = 0; double ground_level = 0;
@ -649,7 +656,7 @@ public:
template<class...Args> Pillar& add_pillar(long headid, Args&&... args) { template<class...Args> Pillar& add_pillar(long headid, Args&&... args) {
assert(headid >= 0 && headid < m_heads.size()); assert(headid >= 0 && headid < m_heads.size());
Head& head = m_heads[headid]; Head& head = m_heads[size_t(headid)];
m_pillars.emplace_back(head, std::forward<Args>(args)...); m_pillars.emplace_back(head, std::forward<Args>(args)...);
Pillar& pillar = m_pillars.back(); Pillar& pillar = m_pillars.back();
pillar.id = long(m_pillars.size() - 1); pillar.id = long(m_pillars.size() - 1);
@ -662,17 +669,17 @@ public:
const Head& pillar_head(long pillar_id) const { const Head& pillar_head(long pillar_id) const {
assert(pillar_id >= 0 && pillar_id < m_pillars.size()); assert(pillar_id >= 0 && pillar_id < m_pillars.size());
const Pillar& p = m_pillars[pillar_id]; const Pillar& p = m_pillars[size_t(pillar_id)];
assert(p.starts_from_head && p.start_junction_id >= 0 && assert(p.starts_from_head && p.start_junction_id >= 0 &&
p.start_junction_id < m_heads.size() ); p.start_junction_id < m_heads.size() );
return m_heads[p.start_junction_id]; return m_heads[size_t(p.start_junction_id)];
} }
const Pillar& head_pillar(long headid) const { const Pillar& head_pillar(long headid) const {
assert(headid >= 0 && headid < m_heads.size()); assert(headid >= 0 && headid < m_heads.size());
const Head& h = m_heads[headid]; const Head& h = m_heads[size_t(headid)];
assert(h.pillar_id >= 0 && h.pillar_id < m_pillars.size()); assert(h.pillar_id >= 0 && h.pillar_id < m_pillars.size());
return m_pillars[h.pillar_id]; return m_pillars[size_t(h.pillar_id)];
} }
template<class...Args> const Junction& add_junction(Args&&... args) { template<class...Args> const Junction& add_junction(Args&&... args) {
@ -882,8 +889,8 @@ ClusterEl pts_convex_hull(const ClusterEl& inpts,
} }
// Find the leftmost (bottom) point // Find the leftmost (bottom) point
int l = 0; size_t l = 0;
for (int i = 1; i < n; i++) { for (size_t i = 1; i < n; i++) {
if(std::abs(points[i](X) - points[l](X)) < ERR) { if(std::abs(points[i](X) - points[l](X)) < ERR) {
if(points[i](Y) < points[l](Y)) l = i; if(points[i](Y) < points[l](Y)) l = i;
} }
@ -894,7 +901,6 @@ ClusterEl pts_convex_hull(const ClusterEl& inpts,
// fill the output with the spatially ordered set of points. // fill the output with the spatially ordered set of points.
// find the direction // find the direction
Vec2d dir = (points[l] - points[(l+1)%n]).normalized();
hull = inpts; hull = inpts;
auto& lp = points[l]; auto& lp = points[l];
std::sort(hull.begin(), hull.end(), std::sort(hull.begin(), hull.end(),
@ -912,7 +918,7 @@ ClusterEl pts_convex_hull(const ClusterEl& inpts,
// Start from leftmost point, keep moving counterclockwise // Start from leftmost point, keep moving counterclockwise
// until reach the start point again. This loop runs O(h) // until reach the start point again. This loop runs O(h)
// times where h is number of points in result or output. // times where h is number of points in result or output.
int p = l; size_t p = l;
do do
{ {
// Add current point to result // Add current point to result
@ -923,8 +929,8 @@ ClusterEl pts_convex_hull(const ClusterEl& inpts,
// is to keep track of last visited most counterclock- // is to keep track of last visited most counterclock-
// wise point in q. If any point 'i' is more counterclock- // wise point in q. If any point 'i' is more counterclock-
// wise than q, then update q. // wise than q, then update q.
int q = (p+1)%n; size_t q = (p + 1) % n;
for (int i = 0; i < n; i++) for (size_t i = 0; i < n; i++)
{ {
// If i is more counterclockwise than current q, then // If i is more counterclockwise than current q, then
// update q // update q
@ -1006,7 +1012,10 @@ bool SLASupportTree::generate(const PointSet &points,
// std::cout << "p " << pn << " " << points.row(pn) << std::endl; // std::cout << "p " << pn << " " << points.row(pn) << std::endl;
// } // }
auto filterfn = [] (
auto& tifcl = ctl.cancelfn;
auto filterfn = [tifcl] (
const SupportConfig& cfg, const SupportConfig& cfg,
const PointSet& points, const PointSet& points,
const EigenMesh3D& mesh, const EigenMesh3D& mesh,
@ -1016,26 +1025,29 @@ bool SLASupportTree::generate(const PointSet &points,
PointSet& headless_pos, PointSet& headless_pos,
PointSet& headless_norm) PointSet& headless_norm)
{ {
/* ******************************************************** */ /* ******************************************************** */
/* Filtering step */ /* Filtering step */
/* ******************************************************** */ /* ******************************************************** */
// Get the points that are too close to each other and keep only the // Get the points that are too close to each other and keep only the
// first one // first one
auto aliases = cluster(points, auto aliases =
[cfg](const SpatElement& p, cluster(points,
const SpatElement& se){ [tifcl](const SpatElement& p, const SpatElement& se)
{
tifcl();
return distance(p.first, se.first) < D_SP; return distance(p.first, se.first) < D_SP;
}, 2); }, 2);
filt_pts.resize(aliases.size(), 3); filt_pts.resize(Eigen::Index(aliases.size()), 3);
int count = 0; int count = 0;
for(auto& a : aliases) { for(auto& a : aliases) {
// Here we keep only the front point of the cluster. TODO: centroid // Here we keep only the front point of the cluster.
filt_pts.row(count++) = points.row(a.front()); filt_pts.row(count++) = points.row(a.front());
} }
tifcl();
// calculate the normals to the triangles belonging to filtered points // calculate the normals to the triangles belonging to filtered points
auto nmls = sla::normals(filt_pts, mesh); auto nmls = sla::normals(filt_pts, mesh);
@ -1051,6 +1063,7 @@ bool SLASupportTree::generate(const PointSet &points,
int pcount = 0, hlcount = 0; int pcount = 0, hlcount = 0;
for(int i = 0; i < count; i++) { for(int i = 0; i < count; i++) {
tifcl();
auto n = nmls.row(i); auto n = nmls.row(i);
// for all normals we generate the spherical coordinates and // for all normals we generate the spherical coordinates and
@ -1110,7 +1123,7 @@ bool SLASupportTree::generate(const PointSet &points,
}; };
// Function to write the pinheads into the result // Function to write the pinheads into the result
auto pinheadfn = [] ( auto pinheadfn = [tifcl] (
const SupportConfig& cfg, const SupportConfig& cfg,
PointSet& head_pos, PointSet& head_pos,
PointSet& nmls, PointSet& nmls,
@ -1123,6 +1136,7 @@ bool SLASupportTree::generate(const PointSet &points,
/* ******************************************************** */ /* ******************************************************** */
for (int i = 0; i < head_pos.rows(); ++i) { for (int i = 0; i < head_pos.rows(); ++i) {
tifcl();
result.add_head( result.add_head(
cfg.head_back_radius_mm, cfg.head_back_radius_mm,
cfg.head_front_radius_mm, cfg.head_front_radius_mm,
@ -1136,7 +1150,7 @@ bool SLASupportTree::generate(const PointSet &points,
// &filtered_points, &head_positions, &result, &mesh, // &filtered_points, &head_positions, &result, &mesh,
// &gndidx, &gndheight, &nogndidx, cfg // &gndidx, &gndheight, &nogndidx, cfg
auto classifyfn = [] ( auto classifyfn = [tifcl] (
const SupportConfig& cfg, const SupportConfig& cfg,
const EigenMesh3D& mesh, const EigenMesh3D& mesh,
PointSet& head_pos, PointSet& head_pos,
@ -1152,11 +1166,12 @@ bool SLASupportTree::generate(const PointSet &points,
/* ******************************************************** */ /* ******************************************************** */
// We should first get the heads that reach the ground directly // We should first get the heads that reach the ground directly
gndheight.reserve(head_pos.rows()); gndheight.reserve(size_t(head_pos.rows()));
gndidx.reserve(head_pos.rows()); gndidx.reserve(size_t(head_pos.rows()));
nogndidx.reserve(head_pos.rows()); nogndidx.reserve(size_t(head_pos.rows()));
for(unsigned i = 0; i < head_pos.rows(); i++) { for(unsigned i = 0; i < head_pos.rows(); i++) {
tifcl();
auto& head = result.heads()[i]; auto& head = result.heads()[i];
Vec3d dir(0, 0, -1); Vec3d dir(0, 0, -1);
@ -1173,18 +1188,22 @@ bool SLASupportTree::generate(const PointSet &points,
PointSet gnd(gndidx.size(), 3); PointSet gnd(gndidx.size(), 3);
for(size_t i = 0; i < gndidx.size(); i++) for(size_t i = 0; i < gndidx.size(); i++)
gnd.row(i) = head_pos.row(gndidx[i]); gnd.row(long(i)) = head_pos.row(gndidx[i]);
// We want to search for clusters of points that are far enough from // We want to search for clusters of points that are far enough from
// each other in the XY plane to not cross their pillar bases // each other in the XY plane to not cross their pillar bases
// These clusters of support points will join in one pillar, possibly in // These clusters of support points will join in one pillar, possibly in
// their centroid support point. // their centroid support point.
auto d_base = 2*cfg.base_radius_mm; auto d_base = 2*cfg.base_radius_mm;
ground_clusters = cluster(gnd, ground_clusters =
[d_base, &cfg](const SpatElement& p, const SpatElement& s){ cluster(
return distance(Vec2d(p.first(X), p.first(Y)), gnd,
Vec2d(s.first(X), s.first(Y))) < d_base; [d_base, tifcl](const SpatElement& p, const SpatElement& s)
}, 3); // max 3 heads to connect to one centroid {
tifcl();
return distance(Vec2d(p.first(X), p.first(Y)),
Vec2d(s.first(X), s.first(Y))) < d_base;
}, 3); // max 3 heads to connect to one centroid
}; };
// Helper function for interconnecting two pillars with zig-zag bridges // Helper function for interconnecting two pillars with zig-zag bridges
@ -1197,9 +1216,6 @@ bool SLASupportTree::generate(const PointSet &points,
const Head& phead = result.pillar_head(pillar.id); const Head& phead = result.pillar_head(pillar.id);
const Head& nextphead = result.pillar_head(nextpillar.id); const Head& nextphead = result.pillar_head(nextpillar.id);
// double d = 2*pillar.r;
// const Vec3d& pp = pillar.endpoint.cwiseProduct(Vec3d{1, 1, 0});
Vec3d sj = phead.junction_point(); Vec3d sj = phead.junction_point();
sj(Z) = std::min(sj(Z), nextphead.junction_point()(Z)); sj(Z) = std::min(sj(Z), nextphead.junction_point()(Z));
Vec3d ej = nextpillar.endpoint; Vec3d ej = nextpillar.endpoint;
@ -1244,7 +1260,7 @@ bool SLASupportTree::generate(const PointSet &points,
} }
}; };
auto routing_ground_fn = [gnd_head_pt, interconnect]( auto routing_ground_fn = [gnd_head_pt, interconnect, tifcl](
const SupportConfig& cfg, const SupportConfig& cfg,
const ClusteredPoints& gnd_clusters, const ClusteredPoints& gnd_clusters,
const IndexSet& gndidx, const IndexSet& gndidx,
@ -1260,22 +1276,27 @@ bool SLASupportTree::generate(const PointSet &points,
cl_centroids.reserve(gnd_clusters.size()); cl_centroids.reserve(gnd_clusters.size());
SpatIndex pheadindex; // spatial index for the junctions SpatIndex pheadindex; // spatial index for the junctions
for(auto cl : gnd_clusters) { for(auto& cl : gnd_clusters) { tifcl();
// place all the centroid head positions into the index. We will // place all the centroid head positions into the index. We will
// query for alternative pillar positions. If a sidehead cannot // query for alternative pillar positions. If a sidehead cannot
// connect to the cluster centroid, we have to search for another // connect to the cluster centroid, we have to search for another
// head with a full pillar. Also when there are two elements in the // head with a full pillar. Also when there are two elements in the
// cluster, the centroid is arbitrary and the sidehead is allowed to // cluster, the centroid is arbitrary and the sidehead is allowed to
// connect to a nearby pillar to increase structural stability. // connect to a nearby pillar to increase structural stability.
if(cl.empty()) continue;
// get the current cluster centroid // get the current cluster centroid
unsigned cid = cluster_centroid(cl, gnd_head_pt, long lcid = cluster_centroid(cl, gnd_head_pt,
[](const Vec3d& p1, const Vec3d& p2) [tifcl](const Vec3d& p1, const Vec3d& p2)
{ {
tifcl();
return distance(Vec2d(p1(X), p1(Y)), Vec2d(p2(X), p2(Y))); return distance(Vec2d(p1(X), p1(Y)), Vec2d(p2(X), p2(Y)));
}); });
cl_centroids.push_back(cid); assert(lcid > 0);
auto cid = unsigned(lcid);
cl_centroids.push_back(unsigned(cid));
unsigned hid = gndidx[cl[cid]]; // Head index unsigned hid = gndidx[cl[cid]]; // Head index
Head& h = result.head(hid); Head& h = result.head(hid);
@ -1288,12 +1309,13 @@ bool SLASupportTree::generate(const PointSet &points,
// now we will go through the clusters ones again and connect the // now we will go through the clusters ones again and connect the
// sidepoints with the cluster centroid (which is a ground pillar) // sidepoints with the cluster centroid (which is a ground pillar)
// or a nearby pillar if the centroid is unreachable. // or a nearby pillar if the centroid is unreachable.
long ci = 0; size_t ci = 0;
for(auto cl : gnd_clusters) { for(auto cl : gnd_clusters) { tifcl();
auto cidx = cl_centroids[ci]; auto cidx = cl_centroids[ci];
cl_centroids[ci++] = cl[cidx]; cl_centroids[ci++] = cl[cidx];
long index_to_heads = gndidx[cl[cidx]]; size_t index_to_heads = gndidx[cl[cidx]];
auto& head = result.head(index_to_heads); auto& head = result.head(index_to_heads);
Vec3d startpoint = head.junction_point(); Vec3d startpoint = head.junction_point();
@ -1301,7 +1323,7 @@ bool SLASupportTree::generate(const PointSet &points,
// Create the central pillar of the cluster with its base on the // Create the central pillar of the cluster with its base on the
// ground // ground
result.add_pillar(index_to_heads, endpoint, pradius) result.add_pillar(long(index_to_heads), endpoint, pradius)
.add_base(cfg.base_height_mm, cfg.base_radius_mm); .add_base(cfg.base_height_mm, cfg.base_radius_mm);
// Process side point in current cluster // Process side point in current cluster
@ -1352,12 +1374,11 @@ bool SLASupportTree::generate(const PointSet &points,
return nearest_id; return nearest_id;
}; };
for(auto c : cl) { for(auto c : cl) { tifcl();
auto& sidehead = result.head(gndidx[c]); auto& sidehead = result.head(gndidx[c]);
sidehead.transform(); sidehead.transform();
Vec3d jsh = sidehead.junction_point(); Vec3d jsh = sidehead.junction_point();
// Vec3d jp2d = {jsh(X), jsh(Y), gndlvl};
SpatIndex spindex = pheadindex; SpatIndex spindex = pheadindex;
long nearest_id = search_nearest(spindex, jsh); long nearest_id = search_nearest(spindex, jsh);
@ -1374,7 +1395,7 @@ bool SLASupportTree::generate(const PointSet &points,
} else { } else {
// Creating the bridge to the nearest pillar // Creating the bridge to the nearest pillar
const Head& nearhead = result.heads()[nearest_id]; const Head& nearhead = result.heads()[size_t(nearest_id)];
Vec3d jp = jsh; Vec3d jp = jsh;
Vec3d jh = nearhead.junction_point(); Vec3d jh = nearhead.junction_point();
@ -1419,6 +1440,7 @@ bool SLASupportTree::generate(const PointSet &points,
ClusterEl ring; ClusterEl ring;
while(!rem.empty()) { // loop until all the points belong to some ring while(!rem.empty()) { // loop until all the points belong to some ring
tifcl();
std::sort(rem.begin(), rem.end()); std::sort(rem.begin(), rem.end());
auto newring = pts_convex_hull(rem, auto newring = pts_convex_hull(rem,
@ -1432,7 +1454,8 @@ bool SLASupportTree::generate(const PointSet &points,
SpatIndex innerring; SpatIndex innerring;
for(unsigned i : newring) { for(unsigned i : newring) {
const Pillar& pill = result.head_pillar(gndidx[i]); const Pillar& pill = result.head_pillar(gndidx[i]);
innerring.insert(pill.endpoint, pill.id); assert(pill.id > 0);
innerring.insert(pill.endpoint, unsigned(pill.id));
} }
// For all pillars in the outer ring find the closest in the // For all pillars in the outer ring find the closest in the
@ -1478,14 +1501,14 @@ bool SLASupportTree::generate(const PointSet &points,
} }
}; };
auto routing_nongnd_fn = []( auto routing_nongnd_fn = [tifcl](
const SupportConfig& cfg, const SupportConfig& cfg,
const std::vector<double>& gndheight, const std::vector<double>& gndheight,
const IndexSet& nogndidx, const IndexSet& nogndidx,
Result& result) Result& result)
{ {
// TODO: connect these to the ground pillars if possible // TODO: connect these to the ground pillars if possible
for(auto idx : nogndidx) { for(auto idx : nogndidx) { tifcl();
auto& head = result.head(idx); auto& head = result.head(idx);
head.transform(); head.transform();
@ -1510,7 +1533,7 @@ bool SLASupportTree::generate(const PointSet &points,
} }
}; };
auto process_headless = []( auto process_headless = [tifcl](
const SupportConfig& cfg, const SupportConfig& cfg,
const PointSet& headless_pts, const PointSet& headless_pts,
const PointSet& headless_norm, const PointSet& headless_norm,
@ -1525,7 +1548,7 @@ bool SLASupportTree::generate(const PointSet &points,
// We will sink the pins into the model surface for a distance of 1/3 of // We will sink the pins into the model surface for a distance of 1/3 of
// HWIDTH_MM // HWIDTH_MM
for(int i = 0; i < headless_pts.rows(); i++) { for(int i = 0; i < headless_pts.rows(); i++) { tifcl();
Vec3d sp = headless_pts.row(i); Vec3d sp = headless_pts.row(i);
Vec3d n = headless_norm.row(i); Vec3d n = headless_norm.row(i);
@ -1634,6 +1657,7 @@ bool SLASupportTree::generate(const PointSet &points,
case HALT: pc = pc_prev; break; case HALT: pc = pc_prev; break;
case DONE: case DONE:
case ABORT: break; case ABORT: break;
default: ;
} }
ctl.statuscb(stepstate[pc], stepstr[pc]); ctl.statuscb(stepstate[pc], stepstr[pc]);
}; };
@ -1724,5 +1748,8 @@ SLASupportTree &SLASupportTree::operator=(const SLASupportTree &c)
SLASupportTree::~SLASupportTree() {} SLASupportTree::~SLASupportTree() {}
SLASupportsStoppedException::SLASupportsStoppedException():
std::runtime_error("") {}
} }
} }

View File

@ -114,7 +114,7 @@ PointSet to_point_set(const std::vector<Vec3d>&);
class SLASupportsStoppedException: public std::runtime_error { class SLASupportsStoppedException: public std::runtime_error {
public: public:
using std::runtime_error::runtime_error; using std::runtime_error::runtime_error;
SLASupportsStoppedException(): std::runtime_error("") {} SLASupportsStoppedException();
}; };
/// The class containing mesh data for the generated supports. /// The class containing mesh data for the generated supports.

View File

@ -89,8 +89,6 @@ PointSet normals(const PointSet& points, const EigenMesh3D& mesh) {
#ifdef IGL_COMPATIBLE #ifdef IGL_COMPATIBLE
Eigen::VectorXd dists; Eigen::VectorXd dists;
Eigen::VectorXi I; Eigen::VectorXi I;
// Eigen::Matrix<double, Eigen::Dynamic, 1, Eigen::DontAlign> dists;
// Eigen::Matrix<int, Eigen::Dynamic, 1, Eigen::DontAlign> I;
PointSet C; PointSet C;
igl::point_mesh_squared_distance( points, mesh.V, mesh.F, dists, I, C); igl::point_mesh_squared_distance( points, mesh.V, mesh.F, dists, I, C);
@ -122,7 +120,7 @@ double ray_mesh_intersect(const Vec3d& s,
igl::Hit hit; igl::Hit hit;
hit.t = std::numeric_limits<float>::infinity(); hit.t = std::numeric_limits<float>::infinity();
igl::ray_mesh_intersect(s, dir, m.V, m.F, hit); igl::ray_mesh_intersect(s, dir, m.V, m.F, hit);
return hit.t; return double(hit.t);
} }
// Clustering a set of points by the given criteria // Clustering a set of points by the given criteria
@ -208,7 +206,7 @@ Segments model_boundary(const EigenMesh3D& emesh, double offs)
{ {
Segments ret; Segments ret;
Polygons pp; Polygons pp;
pp.reserve(emesh.F.rows()); pp.reserve(size_t(emesh.F.rows()));
for (int i = 0; i < emesh.F.rows(); i++) { for (int i = 0; i < emesh.F.rows(); i++) {
auto trindex = emesh.F.row(i); auto trindex = emesh.F.row(i);

View File

@ -469,7 +469,7 @@ void SLAPrint::process()
for(float h = minZ + ilh; h < maxZ; h += flh) for(float h = minZ + ilh; h < maxZ; h += flh)
if(h >= gnd) heights.emplace_back(h); if(h >= gnd) heights.emplace_back(h);
auto& layers = po.m_model_slices; auto& layers = po.m_model_slices; layers.clear();
slicer.slice(heights, &layers, [this](){ throw_if_canceled(); }); slicer.slice(heights, &layers, [this](){ throw_if_canceled(); });
}; };

View File

@ -446,6 +446,7 @@ const std::vector<std::string>& Preset::sla_printer_options()
"printer_technology", "printer_technology",
"bed_shape", "max_print_height", "bed_shape", "max_print_height",
"display_width", "display_height", "display_pixels_x", "display_pixels_y", "display_width", "display_height", "display_pixels_x", "display_pixels_y",
"display_flip_xy",
"printer_correction", "printer_correction",
"printer_notes", "printer_notes",
"inherits" "inherits"

View File

@ -1883,6 +1883,7 @@ void TabPrinter::build_sla()
line.append_option(option); line.append_option(option);
line.append_option(optgroup->get_option("display_pixels_y")); line.append_option(optgroup->get_option("display_pixels_y"));
optgroup->append_line(line); optgroup->append_line(line);
optgroup->append_single_option_line("display_flip_xy");
optgroup = page->new_optgroup(_(L("Corrections"))); optgroup = page->new_optgroup(_(L("Corrections")));
line = Line{ m_config->def()->get("printer_correction")->full_label, "" }; line = Line{ m_config->def()->get("printer_correction")->full_label, "" };