WIP on structuring arrange inputs

This commit is contained in:
tamasmeszaros 2019-06-27 21:13:44 +02:00
parent 96f6fd2d9f
commit 19e6bf58dd
8 changed files with 298 additions and 146 deletions

View File

@ -276,8 +276,7 @@ using EigenVec = Eigen::Matrix<T, N, 1, Eigen::DontAlign>;
// Semantics are the following: // Semantics are the following:
// Upscaling (scaled()): only from floating point types (or Vec) to either // Upscaling (scaled()): only from floating point types (or Vec) to either
// floating point or integer 'scaled coord' coordinates. // floating point or integer 'scaled coord' coordinates.
// Downscaling (unscaled()): from arithmetic types (or Vec) to either // Downscaling (unscaled()): from arithmetic (or Vec) to floating point only
// floating point only
// Conversion definition from unscaled to floating point scaled // Conversion definition from unscaled to floating point scaled
template<class Tout, template<class Tout,
@ -286,25 +285,25 @@ template<class Tout,
class = FloatingOnly<Tout>> class = FloatingOnly<Tout>>
inline SLIC3R_CONSTEXPR Tout scaled(const Tin &v) SLIC3R_NOEXCEPT inline SLIC3R_CONSTEXPR Tout scaled(const Tin &v) SLIC3R_NOEXCEPT
{ {
return static_cast<Tout>(v / static_cast<Tin>(SCALING_FACTOR)); return Tout(v / Tin(SCALING_FACTOR));
} }
// Conversion definition from unscaled to integer 'scaled coord'. // Conversion definition from unscaled to integer 'scaled coord'.
// TODO: is the rounding necessary ? Here it is to show that it can be different // TODO: is the rounding necessary? Here it is commented out to show that
// but it does not have to be. Using std::round means loosing noexcept and // it can be different for integers but it does not have to be. Using
// constexpr modifiers // std::round means loosing noexcept and constexpr modifiers
template<class Tout = coord_t, class Tin, class = FloatingOnly<Tin>> template<class Tout = coord_t, class Tin, class = FloatingOnly<Tin>>
inline SLIC3R_CONSTEXPR ScaledCoordOnly<Tout> scaled(const Tin &v) SLIC3R_NOEXCEPT inline SLIC3R_CONSTEXPR ScaledCoordOnly<Tout> scaled(const Tin &v) SLIC3R_NOEXCEPT
{ {
//return static_cast<Tout>(std::round(v / SCALING_FACTOR)); //return static_cast<Tout>(std::round(v / SCALING_FACTOR));
return static_cast<Tout>(v / static_cast<Tin>(SCALING_FACTOR)); return Tout(v / Tin(SCALING_FACTOR));
} }
// Conversion for Eigen vectors (N dimensional points) // Conversion for Eigen vectors (N dimensional points)
template<class Tout = coord_t, class Tin, int N, class = FloatingOnly<Tin>> template<class Tout = coord_t, class Tin, int N, class = FloatingOnly<Tin>>
inline EigenVec<ArithmeticOnly<Tout>, N> scaled(const EigenVec<Tin, N> &v) inline EigenVec<ArithmeticOnly<Tout>, N> scaled(const EigenVec<Tin, N> &v)
{ {
return v.template cast<Tout>() / SCALING_FACTOR; return v.template cast<Tout>() /*/ SCALING_FACTOR*/;
} }
// Conversion from arithmetic scaled type to floating point unscaled // Conversion from arithmetic scaled type to floating point unscaled
@ -314,7 +313,7 @@ template<class Tout = double,
class = FloatingOnly<Tout>> class = FloatingOnly<Tout>>
inline SLIC3R_CONSTEXPR Tout unscaled(const Tin &v) SLIC3R_NOEXCEPT inline SLIC3R_CONSTEXPR Tout unscaled(const Tin &v) SLIC3R_NOEXCEPT
{ {
return static_cast<Tout>(v * static_cast<Tout>(SCALING_FACTOR)); return Tout(v * Tout(SCALING_FACTOR));
} }
// Unscaling for Eigen vectors. Input base type can be arithmetic, output base // Unscaling for Eigen vectors. Input base type can be arithmetic, output base

View File

@ -1,5 +1,6 @@
#include "Model.hpp" #include "Model.hpp"
#include "Geometry.hpp" #include "Geometry.hpp"
#include "MTUtils.hpp"
#include "Format/AMF.hpp" #include "Format/AMF.hpp"
#include "Format/OBJ.hpp" #include "Format/OBJ.hpp"
@ -1800,6 +1801,35 @@ void ModelInstance::transform_polygon(Polygon* polygon) const
polygon->scale(get_scaling_factor(X), get_scaling_factor(Y)); // scale around polygon origin polygon->scale(get_scaling_factor(X), get_scaling_factor(Y)); // scale around polygon origin
} }
Polygon ModelInstance::get_arrange_polygon() const
{
static const double SIMPLIFY_TOLERANCE_MM = 0.1;
assert(m_inst);
Vec3d rotation = get_rotation();
rotation.z() = 0.;
Transform3d trafo_instance = Geometry::
assemble_transform(Vec3d::Zero(),
rotation,
get_scaling_factor(),
get_mirror());
Polygon p = get_object()->convex_hull_2d(trafo_instance);
assert(!p.points.empty());
// this may happen for malformed models, see:
// https://github.com/prusa3d/PrusaSlicer/issues/2209
if (p.points.empty()) return {};
Polygons pp{p};
pp = p.simplify(scaled<double>(SIMPLIFY_TOLERANCE_MM));
if (!pp.empty()) p = pp.front();
return p;
}
// Test whether the two models contain the same number of ModelObjects with the same set of IDs // Test whether the two models contain the same number of ModelObjects with the same set of IDs
// ordered in the same order. In that case it is not necessary to kill the background processing. // ordered in the same order. In that case it is not necessary to kill the background processing.
bool model_object_list_equal(const Model &model_old, const Model &model_new) bool model_object_list_equal(const Model &model_old, const Model &model_new)

View File

@ -7,6 +7,7 @@
#include "Point.hpp" #include "Point.hpp"
#include "TriangleMesh.hpp" #include "TriangleMesh.hpp"
#include "Slicing.hpp" #include "Slicing.hpp"
#include "ModelArrange.hpp"
#include <map> #include <map>
#include <memory> #include <memory>
@ -490,7 +491,7 @@ private:
// A single instance of a ModelObject. // A single instance of a ModelObject.
// Knows the affine transformation of an object. // Knows the affine transformation of an object.
class ModelInstance : public ModelBase class ModelInstance : public ModelBase, public arr::Arrangeable
{ {
public: public:
enum EPrintVolumeState : unsigned char enum EPrintVolumeState : unsigned char
@ -553,6 +554,16 @@ public:
bool is_printable() const { return print_volume_state == PVS_Inside; } bool is_printable() const { return print_volume_state == PVS_Inside; }
virtual void set_arrange_result(Vec2d offs, double rot_rads) final
{
// write the transformation data into the model instance
set_rotation(Z, get_rotation(Z) + rot_rads);
set_offset(X, get_offset(X) + offs(X));
set_offset(Y, get_offset(Y) + offs(Y));
}
virtual Polygon get_arrange_polygon() const final;
protected: protected:
friend class Print; friend class Print;
friend class SLAPrint; friend class SLAPrint;

View File

@ -42,6 +42,8 @@ namespace arr {
using namespace libnest2d; using namespace libnest2d;
using Shape = ClipperLib::Polygon;
// Only for debugging. Prints the model object vertices on stdout. // Only for debugging. Prints the model object vertices on stdout.
//std::string toString(const Model& model, bool holes = true) { //std::string toString(const Model& model, bool holes = true) {
// std::stringstream ss; // std::stringstream ss;
@ -129,9 +131,7 @@ namespace bgi = boost::geometry::index;
using SpatElement = std::pair<Box, unsigned>; using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >; using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
using ItemGroup = std::vector<std::reference_wrapper<Item>>; using ItemGroup = std::vector<std::reference_wrapper<_Item<Shape>>>;
template<class TBin>
using TPacker = typename placers::_NofitPolyPlacer<PolygonImpl, TBin>;
const double BIG_ITEM_TRESHOLD = 0.02; const double BIG_ITEM_TRESHOLD = 0.02;
@ -156,10 +156,10 @@ Box boundingBox(const Box& pilebb, const Box& ibb ) {
// at the same time, it has to provide reasonable results. // at the same time, it has to provide reasonable results.
std::tuple<double /*score*/, Box /*farthest point from bin center*/> std::tuple<double /*score*/, Box /*farthest point from bin center*/>
objfunc(const PointImpl& bincenter, objfunc(const PointImpl& bincenter,
const TMultiShape<PolygonImpl>& merged_pile, const TMultiShape<Shape>& merged_pile,
const Box& pilebb, const Box& pilebb,
const ItemGroup& items, const ItemGroup& items,
const Item &item, const _Item<Shape> &item,
double bin_area, double bin_area,
double norm, // A norming factor for physical dimensions double norm, // A norming factor for physical dimensions
// a spatial index to quickly get neighbors of the candidate item // a spatial index to quickly get neighbors of the candidate item
@ -225,7 +225,7 @@ objfunc(const PointImpl& bincenter,
mp.emplace_back(item.transformedShape()); mp.emplace_back(item.transformedShape());
auto chull = sl::convexHull(mp); auto chull = sl::convexHull(mp);
placers::EdgeCache<PolygonImpl> ec(chull); placers::EdgeCache<Shape> ec(chull);
double circ = ec.circumference() / norm; double circ = ec.circumference() / norm;
double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm; double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
@ -256,7 +256,7 @@ objfunc(const PointImpl& bincenter,
for(auto& e : result) { // now get the score for the best alignment for(auto& e : result) { // now get the score for the best alignment
auto idx = e.second; auto idx = e.second;
Item& p = items[idx]; _Item<Shape>& p = items[idx];
auto parea = p.area(); auto parea = p.area();
if(std::abs(1.0 - parea/item.area()) < 1e-6) { if(std::abs(1.0 - parea/item.area()) < 1e-6) {
auto bb = boundingBox(p.boundingBox(), ibb); auto bb = boundingBox(p.boundingBox(), ibb);
@ -322,12 +322,12 @@ class _ArrBase {
public: public:
// Useful type shortcuts... // Useful type shortcuts...
using Placer = TPacker<TBin>; using Placer = typename placers::_NofitPolyPlacer<Shape, TBin>;
using Selector = FirstFitSelection; using Selector = selections::_FirstFitSelection<Shape>;
using Packer = Nester<Placer, Selector>; using Packer = Nester<Placer, Selector>;
using PConfig = typename Packer::PlacementConfig; using PConfig = typename Packer::PlacementConfig;
using Distance = TCoord<PointImpl>; using Distance = TCoord<PointImpl>;
using Pile = TMultiShape<PolygonImpl>; using Pile = TMultiShape<Shape>;
protected: protected:
@ -373,7 +373,7 @@ public:
}; };
for(unsigned idx = 0; idx < items.size(); ++idx) { for(unsigned idx = 0; idx < items.size(); ++idx) {
Item& itm = items[idx]; _Item<Shape>& itm = items[idx];
if(isBig(itm.area())) m_rtree.insert({itm.boundingBox(), idx}); if(isBig(itm.area())) m_rtree.insert({itm.boundingBox(), idx});
m_smallsrtree.insert({itm.boundingBox(), idx}); m_smallsrtree.insert({itm.boundingBox(), idx});
} }
@ -383,12 +383,12 @@ public:
m_pck.stopCondition(stopcond); m_pck.stopCondition(stopcond);
} }
template<class...Args> inline IndexedPackGroup operator()(Args&&...args) { template<class...Args> inline _PackGroup<Shape> operator()(Args&&...args) {
m_rtree.clear(); m_rtree.clear();
return m_pck.executeIndexed(std::forward<Args>(args)...); return m_pck.execute(std::forward<Args>(args)...);
} }
inline void preload(const PackGroup& pg) { inline void preload(const _PackGroup<Shape>& pg) {
m_pconf.alignment = PConfig::Alignment::DONT_ALIGN; m_pconf.alignment = PConfig::Alignment::DONT_ALIGN;
m_pconf.object_function = nullptr; // drop the special objectfunction m_pconf.object_function = nullptr; // drop the special objectfunction
m_pck.preload(pg); m_pck.preload(pg);
@ -396,14 +396,14 @@ public:
// Build the rtree for queries to work // Build the rtree for queries to work
for(const ItemGroup& grp : pg) for(const ItemGroup& grp : pg)
for(unsigned idx = 0; idx < grp.size(); ++idx) { for(unsigned idx = 0; idx < grp.size(); ++idx) {
Item& itm = grp[idx]; _Item<Shape>& itm = grp[idx];
m_rtree.insert({itm.boundingBox(), idx}); m_rtree.insert({itm.boundingBox(), idx});
} }
m_pck.configure(m_pconf); m_pck.configure(m_pconf);
} }
bool is_colliding(const Item& item) { bool is_colliding(const _Item<Shape>& item) {
if(m_rtree.empty()) return false; if(m_rtree.empty()) return false;
std::vector<SpatElement> result; std::vector<SpatElement> result;
m_rtree.query(bgi::intersects(item.boundingBox()), m_rtree.query(bgi::intersects(item.boundingBox()),
@ -425,7 +425,7 @@ public:
// Here we set up the actual object function that calls the common // Here we set up the actual object function that calls the common
// object function for all bin shapes than does an additional inside // object function for all bin shapes than does an additional inside
// check for the arranged pile. // check for the arranged pile.
m_pconf.object_function = [this, bin] (const Item &item) { m_pconf.object_function = [this, bin] (const _Item<Shape> &item) {
auto result = objfunc(bin.center(), auto result = objfunc(bin.center(),
m_merged_pile, m_merged_pile,
@ -468,7 +468,7 @@ public:
_ArrBase<lnCircle>(bin, dist, progressind, stopcond) { _ArrBase<lnCircle>(bin, dist, progressind, stopcond) {
// As with the box, only the inside check is different. // As with the box, only the inside check is different.
m_pconf.object_function = [this, &bin] (const Item &item) { m_pconf.object_function = [this, &bin] (const _Item<Shape> &item) {
auto result = objfunc(bin.center(), auto result = objfunc(bin.center(),
m_merged_pile, m_merged_pile,
@ -483,7 +483,7 @@ public:
double score = std::get<0>(result); double score = std::get<0>(result);
auto isBig = [this](const Item& itm) { auto isBig = [this](const _Item<Shape>& itm) {
return itm.area()/m_bin_area > BIG_ITEM_TRESHOLD ; return itm.area()/m_bin_area > BIG_ITEM_TRESHOLD ;
}; };
@ -512,7 +512,7 @@ public:
std::function<bool(void)> stopcond = [](){return false;}): std::function<bool(void)> stopcond = [](){return false;}):
_ArrBase<PolygonImpl>(bin, dist, progressind, stopcond) _ArrBase<PolygonImpl>(bin, dist, progressind, stopcond)
{ {
m_pconf.object_function = [this, &bin] (const Item &item) { m_pconf.object_function = [this, &bin] (const _Item<Shape> &item) {
auto binbb = sl::boundingBox(bin); auto binbb = sl::boundingBox(bin);
auto result = objfunc(binbb.center(), auto result = objfunc(binbb.center(),
@ -540,11 +540,11 @@ public:
template<> class AutoArranger<bool>: public _ArrBase<Box> { template<> class AutoArranger<bool>: public _ArrBase<Box> {
public: public:
AutoArranger(Distance dist, std::function<void(unsigned)> progressind, AutoArranger(bool, Distance dist, std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcond): std::function<bool(void)> stopcond):
_ArrBase<Box>(Box(0, 0), dist, progressind, stopcond) _ArrBase<Box>(Box(0, 0), dist, progressind, stopcond)
{ {
this->m_pconf.object_function = [this] (const Item &item) { this->m_pconf.object_function = [this] (const _Item<Shape> &item) {
auto result = objfunc({0, 0}, auto result = objfunc({0, 0},
m_merged_pile, m_merged_pile,
@ -782,18 +782,18 @@ BedShapeHint bedShape(const Polyline &bed) {
return ret; return ret;
} }
static const SLIC3R_CONSTEXPR double SIMPLIFY_TOLERANCE_MM = 0.1; //static const SLIC3R_CONSTEXPR double SIMPLIFY_TOLERANCE_MM = 0.1;
//template<class BinT> template<class BinT>
//IndexedPackGroup _arrange(std::vector<std::reference_wrapper<Item>> &shapes, _PackGroup<Shape> _arrange(std::vector<Shape> &shapes,
// const BinT & bin, const BinT & bin,
// coord_t minobjd, coord_t minobjd,
// std::function<void(unsigned)> prind, std::function<void(unsigned)> prind,
// std::function<bool()> stopfn) std::function<bool()> stopfn)
//{ {
// AutoArranger<BinT> arranger{bin, minobjd, prind, stopfn}; AutoArranger<BinT> arranger{bin, minobjd, prind, stopfn};
// return arranger(shapes.begin(), shapes.end()); return arranger(shapes.begin(), shapes.end());
//} }
//template<class BinT> //template<class BinT>
//IndexedPackGroup _arrange(std::vector<std::reference_wrapper<Item>> &shapes, //IndexedPackGroup _arrange(std::vector<std::reference_wrapper<Item>> &shapes,
@ -845,11 +845,99 @@ static const SLIC3R_CONSTEXPR double SIMPLIFY_TOLERANCE_MM = 0.1;
// return arranger(shapes.begin(), shapes.end()); // return arranger(shapes.begin(), shapes.end());
//} //}
inline SLIC3R_CONSTEXPR libnest2d::Coord stride_padding(Coord w) inline SLIC3R_CONSTEXPR coord_t stride_padding(coord_t w)
{ {
return w + w / 5; return w + w / 5;
} }
bool arrange(ArrangeableRefs & arrangables,
coord_t min_obj_distance,
BedShapeHint bedhint,
std::function<void(unsigned)> progressind,
std::function<bool()> stopcondition)
{
bool ret = true;
std::vector<Shape> shapes;
shapes.reserve(arrangables.size());
size_t id = 0;
for (Arrangeable &iref : arrangables) {
Polygon p = iref.get_arrange_polygon();
p.reverse();
assert(!p.is_counter_clockwise());
Shape clpath(/*id++,*/ Slic3rMultiPoint_to_ClipperPath(p));
auto firstp = clpath.Contour.front(); clpath.Contour.emplace_back(firstp);
shapes.emplace_back(std::move(clpath));
}
_PackGroup<Shape> result;
auto& cfn = stopcondition;
// Integer ceiling the min distance from the bed perimeters
coord_t md = min_obj_distance - SCALED_EPSILON;
md = (md % 2) ? md / 2 + 1 : md / 2;
coord_t binwidth = 0;
switch (bedhint.type) {
case BedShapeType::BOX: {
// Create the arranger for the box shaped bed
BoundingBox bbb = bedhint.shape.box;
auto binbb = Box({ClipperLib::cInt{bbb.min(0)} - md,
ClipperLib::cInt{bbb.min(1)} - md},
{ClipperLib::cInt{bbb.max(0)} + md,
ClipperLib::cInt{bbb.max(1)} + md});
result = _arrange(shapes, binbb, min_obj_distance, progressind, cfn);
binwidth = coord_t(binbb.width());
break;
}
case BedShapeType::CIRCLE: {
auto c = bedhint.shape.circ;
auto cc = to_lnCircle(c);
result = _arrange(shapes, cc, min_obj_distance, progressind, cfn);
binwidth = scaled(c.radius());
break;
}
case BedShapeType::IRREGULAR: {
auto ctour = Slic3rMultiPoint_to_ClipperPath(bedhint.shape.polygon);
ClipperLib::Polygon irrbed = sl::create<PolygonImpl>(std::move(ctour));
result = _arrange(shapes, irrbed, min_obj_distance, progressind, cfn);
BoundingBox polybb(bedhint.shape.polygon);
binwidth = (polybb.max(X) - polybb.min(X));
break;
}
case BedShapeType::WHO_KNOWS: {
result = _arrange(shapes, false, min_obj_distance, progressind, cfn);
break;
}
};
if(result.empty() || stopcondition()) return false;
ClipperLib::cInt stride = stride_padding(binwidth);
ClipperLib::cInt batch_offset = 0;
for (const auto &group : result) {
for (_Item<Shape> &itm : group) {
ClipperLib::IntPoint offs = itm.translation();
// arrangables[itm.id()].get().set_arrange_result({offs.X, offs.Y},
// itm.rotation());
}
// Only the first pack group can be placed onto the print bed. The
// other objects which could not fit will be placed next to the
// print bed
batch_offset += stride;
}
return ret;
}
//// The final client function to arrange the Model. A progress indicator and //// The final client function to arrange the Model. A progress indicator and
//// a stop predicate can be also be passed to control the process. //// a stop predicate can be also be passed to control the process.
//bool arrange(Model &model, // The model with the geometries //bool arrange(Model &model, // The model with the geometries

View File

@ -32,8 +32,8 @@ enum class BedShapeType {
}; };
struct BedShapeHint { struct BedShapeHint {
BedShapeType type; BedShapeType type = BedShapeType::WHO_KNOWS;
/*union*/ struct { // I know but who cares... /*union*/ struct { // I know but who cares... TODO: use variant from cpp17?
Circle circ; Circle circ;
BoundingBox box; BoundingBox box;
Polyline polygon; Polyline polygon;
@ -42,24 +42,17 @@ struct BedShapeHint {
BedShapeHint bedShape(const Polyline& bed); BedShapeHint bedShape(const Polyline& bed);
class ArrangeItem { class Arrangeable {
public: public:
virtual ~ArrangeItem() = default; virtual ~Arrangeable() = default;
virtual void transform(Vec2d offset, double rotation_rads) = 0; virtual void set_arrange_result(Vec2d offset, double rotation_rads) = 0;
virtual Polygon silhouette() const = 0; virtual Polygon get_arrange_polygon() const = 0;
}; };
using ArrangeItems = std::vector<std::reference_wrapper<ArrangeItem>>; using ArrangeableRefs = std::vector<std::reference_wrapper<Arrangeable>>;
//struct WipeTowerInfo {
// bool is_wipe_tower = false;
// Vec2d pos;
// Vec2d bb_size;
// double rotation;
//};
/** /**
* \brief Arranges the model objects on the screen. * \brief Arranges the model objects on the screen.
@ -96,7 +89,7 @@ using ArrangeItems = std::vector<std::reference_wrapper<ArrangeItem>>;
// std::function<void(unsigned)> progressind, // std::function<void(unsigned)> progressind,
// std::function<bool(void)> stopcondition); // std::function<bool(void)> stopcondition);
bool arrange(ArrangeItems &items, bool arrange(ArrangeableRefs &items,
coord_t min_obj_distance, coord_t min_obj_distance,
BedShapeHint bedhint, BedShapeHint bedhint,
std::function<void(unsigned)> progressind, std::function<void(unsigned)> progressind,
@ -109,8 +102,8 @@ bool arrange(ArrangeItems &items,
// coord_t min_obj_distance, // coord_t min_obj_distance,
// const Slic3r::Polyline& bed, // const Slic3r::Polyline& bed,
// WipeTowerInfo& wti); // WipeTowerInfo& wti);
void find_new_position(ArrangeItems &items, void find_new_position(ArrangeableRefs &items,
const ArrangeItems &instances_to_add, const ArrangeableRefs &instances_to_add,
coord_t min_obj_distance, coord_t min_obj_distance,
BedShapeHint bedhint); BedShapeHint bedhint);

View File

@ -3329,36 +3329,24 @@ void GLCanvas3D::update_ui_from_settings()
arr::WipeTowerInfo GLCanvas3D::get_wipe_tower_info() const GLCanvas3D::WipeTowerInfo GLCanvas3D::get_wipe_tower_info() const
{ {
arr::WipeTowerInfo wti; WipeTowerInfo wti;
for (const GLVolume* vol : m_volumes.volumes) { for (const GLVolume* vol : m_volumes.volumes) {
if (vol->is_wipe_tower) { if (vol->is_wipe_tower) {
wti.is_wipe_tower = true; wti.m_pos = Vec2d(m_config->opt_float("wipe_tower_x"),
wti.pos = Vec2d(m_config->opt_float("wipe_tower_x"),
m_config->opt_float("wipe_tower_y")); m_config->opt_float("wipe_tower_y"));
wti.rotation = (M_PI/180.) * m_config->opt_float("wipe_tower_rotation_angle"); wti.m_rotation = (M_PI/180.) * m_config->opt_float("wipe_tower_rotation_angle");
const BoundingBoxf3& bb = vol->bounding_box; const BoundingBoxf3& bb = vol->bounding_box;
wti.bb_size = Vec2d(bb.size()(0), bb.size()(1)); wti.m_bb_size = Vec2d(bb.size().x(), bb.size().y());
break; break;
} }
} }
return wti; return wti;
} }
void GLCanvas3D::arrange_wipe_tower(const arr::WipeTowerInfo& wti) const
{
if (wti.is_wipe_tower) {
DynamicPrintConfig cfg;
cfg.opt<ConfigOptionFloat>("wipe_tower_x", true)->value = wti.pos(0);
cfg.opt<ConfigOptionFloat>("wipe_tower_y", true)->value = wti.pos(1);
cfg.opt<ConfigOptionFloat>("wipe_tower_rotation_angle", true)->value = (180./M_PI) * wti.rotation;
wxGetApp().get_tab(Preset::TYPE_PRINT)->load_config(cfg);
}
}
Linef3 GLCanvas3D::mouse_ray(const Point& mouse_pos) Linef3 GLCanvas3D::mouse_ray(const Point& mouse_pos)
{ {
float z0 = 0.0f; float z0 = 0.0f;
@ -5751,5 +5739,16 @@ const SLAPrint* GLCanvas3D::sla_print() const
return (m_process == nullptr) ? nullptr : m_process->sla_print(); return (m_process == nullptr) ? nullptr : m_process->sla_print();
} }
void GLCanvas3D::WipeTowerInfo::set_arrange_result(Vec2d offset, double rotation_rads)
{
m_pos += offset;
m_rotation += rotation_rads;
DynamicPrintConfig cfg;
cfg.opt<ConfigOptionFloat>("wipe_tower_x", true)->value = m_pos(X);
cfg.opt<ConfigOptionFloat>("wipe_tower_y", true)->value = m_pos(Y);
cfg.opt<ConfigOptionFloat>("wipe_tower_rotation_angle", true)->value = (180./M_PI) * m_rotation;
wxGetApp().get_tab(Preset::TYPE_PRINT)->load_config(cfg);
}
} // namespace GUI } // namespace GUI
} // namespace Slic3r } // namespace Slic3r

View File

@ -612,8 +612,37 @@ public:
int get_move_volume_id() const { return m_mouse.drag.move_volume_idx; } int get_move_volume_id() const { return m_mouse.drag.move_volume_idx; }
int get_first_hover_volume_idx() const { return m_hover_volume_idxs.empty() ? -1 : m_hover_volume_idxs.front(); } int get_first_hover_volume_idx() const { return m_hover_volume_idxs.empty() ? -1 : m_hover_volume_idxs.front(); }
arr::WipeTowerInfo get_wipe_tower_info() const; class WipeTowerInfo: public arr::Arrangeable {
void arrange_wipe_tower(const arr::WipeTowerInfo& wti) const; Vec2d m_pos = {std::nan(""), std::nan("")};
Vec2d m_bb_size;
double m_rotation;
friend class GLCanvas3D;
public:
inline operator bool() const
{
return std::isnan(m_pos.x()) || std::isnan(m_pos.y());
}
virtual void set_arrange_result(Vec2d offset, double rotation_rads) final;
virtual Polygon get_arrange_polygon() const final
{
Polygon p({
{coord_t(0), coord_t(0)},
{scaled(m_bb_size(X)), coord_t(0)},
{scaled(m_bb_size)},
{coord_t(0), scaled(m_bb_size(Y))},
{coord_t(0), coord_t(0)},
});
p.rotate(m_rotation);
p.translate(scaled(m_pos));
return p;
}
};
WipeTowerInfo get_wipe_tower_info() const;
// Returns the view ray line, in world coordinate, at the given mouse position. // Returns the view ray line, in world coordinate, at the given mouse position.
Linef3 mouse_ray(const Point& mouse_pos); Linef3 mouse_ray(const Point& mouse_pos);

View File

@ -1425,21 +1425,24 @@ struct Plater::priv
class ArrangeJob : public Job class ArrangeJob : public Job
{ {
int count = 0; int m_count = 0;
GLCanvas3D::WipeTowerInfo m_wti;
protected: protected:
void prepare() override void prepare() override
{ {
count = 0; m_wti = plater().view3D->get_canvas3d()->get_wipe_tower_info();
m_count = bool(m_wti);
for (auto obj : plater().model.objects) for (auto obj : plater().model.objects)
count += int(obj->instances.size()); m_count += int(obj->instances.size());
} }
public: public:
//using Job::Job; //using Job::Job;
ArrangeJob(priv * pltr): Job(pltr) {} ArrangeJob(priv * pltr): Job(pltr) {}
int status_range() const override { return count; } int status_range() const override { return m_count; }
void set_count(int c) { count = c; } void set_count(int c) { m_count = c; }
void process() override; void process() override;
} arrange_job/*{m_plater}*/; } arrange_job/*{m_plater}*/;
@ -1525,6 +1528,7 @@ struct Plater::priv
std::string get_config(const std::string &key) const; std::string get_config(const std::string &key) const;
BoundingBoxf bed_shape_bb() const; BoundingBoxf bed_shape_bb() const;
BoundingBox scaled_bed_shape_bb() const; BoundingBox scaled_bed_shape_bb() const;
arr::BedShapeHint get_bed_shape_hint() const;
std::vector<size_t> load_files(const std::vector<fs::path>& input_files, bool load_model, bool load_config); std::vector<size_t> load_files(const std::vector<fs::path>& input_files, bool load_model, bool load_config);
std::vector<size_t> load_model_objects(const ModelObjectPtrs &model_objects); std::vector<size_t> load_model_objects(const ModelObjectPtrs &model_objects);
wxString get_export_file(GUI::FileType file_type); wxString get_export_file(GUI::FileType file_type);
@ -2172,7 +2176,7 @@ std::vector<size_t> Plater::priv::load_model_objects(const ModelObjectPtrs &mode
Polyline bed; bed.points.reserve(bedpoints.size()); Polyline bed; bed.points.reserve(bedpoints.size());
for(auto& v : bedpoints) bed.append(Point::new_scale(v(0), v(1))); for(auto& v : bedpoints) bed.append(Point::new_scale(v(0), v(1)));
arr::WipeTowerInfo wti = view3D->get_canvas3d()->get_wipe_tower_info(); std::pair<bool, GLCanvas3D::WipeTowerInfo> wti = view3D->get_canvas3d()->get_wipe_tower_info();
arr::find_new_position(model, new_instances, min_obj_distance, bed, wti); arr::find_new_position(model, new_instances, min_obj_distance, bed, wti);
@ -2400,60 +2404,59 @@ void Plater::priv::sla_optimize_rotation() {
m_ui_jobs.start(Jobs::Rotoptimize); m_ui_jobs.start(Jobs::Rotoptimize);
} }
arr::BedShapeHint Plater::priv::get_bed_shape_hint() const {
arr::BedShapeHint bedshape;
const auto *bed_shape_opt = config->opt<ConfigOptionPoints>("bed_shape");
assert(bed_shape_opt);
if (bed_shape_opt) {
auto &bedpoints = bed_shape_opt->values;
Polyline bedpoly; bedpoly.points.reserve(bedpoints.size());
for (auto &v : bedpoints) bedpoly.append(scaled(v));
bedshape = arr::bedShape(bedpoly);
}
return bedshape;
}
void Plater::priv::ExclusiveJobGroup::ArrangeJob::process() { void Plater::priv::ExclusiveJobGroup::ArrangeJob::process() {
static const SLIC3R_CONSTEXPR double SIMPLIFY_TOLERANCE_MM = 0.1; static const auto arrangestr = _(L("Arranging"));
class ArrItemModelInstance: public arr::ArrangeItem { arr::ArrangeableRefs arrangeinput; arrangeinput.reserve(m_count);
ModelInstance *m_inst = nullptr; for(ModelObject *mo : plater().model.objects)
public: for(ModelInstance *minst : mo->instances)
arrangeinput.emplace_back(std::ref(*minst));
ArrItemModelInstance() = default; // FIXME: I don't know how to obtain the minimum distance, it depends
ArrItemModelInstance(ModelInstance *inst) : m_inst(inst) {} // on printer technology. I guess the following should work but it crashes.
double dist = 6; // PrintConfig::min_object_distance(config);
if (plater().printer_technology == ptFFF) {
dist = PrintConfig::min_object_distance(plater().config);
}
virtual void transform(Vec2d offs, double rot_rads) override { coord_t min_obj_distance = scaled(dist);
assert(m_inst);
// write the transformation data into the model instance arr::BedShapeHint bedshape = plater().get_bed_shape_hint();
m_inst->set_rotation(Z, rot_rads);
m_inst->set_offset(offs);
}
virtual Polygon silhouette() const override { try {
assert(m_inst); arr::arrange(arrangeinput,
min_obj_distance,
bedshape,
[this](unsigned st) {
if (st > 0)
update_status(m_count - int(st), arrangestr);
},
[this]() { return was_canceled(); });
} catch (std::exception & /*e*/) {
GUI::show_error(plater().q,
_(L("Could not arrange model objects! "
"Some geometries may be invalid.")));
}
Vec3d rotation = m_inst->get_rotation(); update_status(m_count,
rotation.z() = 0.; was_canceled() ? _(L("Arranging canceled."))
Transform3d trafo_instance = Geometry::assemble_transform( : _(L("Arranging done.")));
Vec3d::Zero(),
rotation,
m_inst->get_scaling_factor(),
m_inst->get_mirror());
Polygon p = m_inst->get_object()->convex_hull_2d(trafo_instance);
assert(!p.points.empty());
// this may happen for malformed models, see:
// https://github.com/prusa3d/PrusaSlicer/issues/2209
if (p.points.empty()) return {};
Polygons pp { p };
pp = p.simplify(scaled<double>(SIMPLIFY_TOLERANCE_MM));
if (!pp.empty()) p = pp.front();
return p;
}
};
// Count all the items on the bin (all the object's instances)
auto count = std::accumulate(plater().model.objects.begin(),
plater().model.objects.end(),
size_t(0), [](size_t s, ModelObject* o)
{
return s + o->instances.size();
});
// std::vector<ArrItemInstance> items(size_t);
// TODO: we should decide whether to allow arrange when the search is // TODO: we should decide whether to allow arrange when the search is
// running we should probably disable explicit slicing and background // running we should probably disable explicit slicing and background