TriangleMesh.cpp/h:

New methods: has_multiple_patches(), number_of_patches()
Improved constness of file access methods.
Reduced some memory allocations costs.
Fixed some crashes of the cut() method on invalid meshes, Slic3r crashes on the unstable triangulation now.
Documented.
This commit is contained in:
bubnikv 2017-02-26 22:17:39 +01:00
parent 5b98f1a068
commit 1b89c08bfc
2 changed files with 476 additions and 335 deletions

View file

@ -7,9 +7,17 @@
#include <set>
#include <vector>
#include <map>
#include <unordered_map>
#include <utility>
#include <algorithm>
#include <math.h>
#if 0
#define DEBUG
#define _DEBUG
#undef NDEBUG
#endif
#include <assert.h>
#ifdef SLIC3R_DEBUG
@ -91,12 +99,25 @@ TriangleMesh::TriangleMesh(const TriangleMesh &other)
}
}
TriangleMesh::TriangleMesh(TriangleMesh &&other) :
repaired(false)
{
stl_initialize(&this->stl);
this->swap(other);
}
TriangleMesh& TriangleMesh::operator= (TriangleMesh other)
{
this->swap(other);
return *this;
}
TriangleMesh& TriangleMesh::operator=(TriangleMesh &&other)
{
this->swap(other);
return *this;
}
void
TriangleMesh::swap(TriangleMesh &other)
{
@ -109,18 +130,18 @@ TriangleMesh::~TriangleMesh() {
}
void
TriangleMesh::ReadSTLFile(char* input_file) {
TriangleMesh::ReadSTLFile(const char* input_file) {
stl_open(&stl, input_file);
}
void
TriangleMesh::write_ascii(char* output_file)
TriangleMesh::write_ascii(const char* output_file)
{
stl_write_ascii(&this->stl, output_file, "");
}
void
TriangleMesh::write_binary(char* output_file)
TriangleMesh::write_binary(const char* output_file)
{
stl_write_binary(&this->stl, output_file, "");
}
@ -314,9 +335,79 @@ void TriangleMesh::rotate(double angle, Point* center)
{
if (angle == 0.)
return;
this->translate(-center->x, -center->y, 0);
this->translate(float(-center->x), float(-center->y), 0);
stl_rotate_z(&(this->stl), (float)angle);
this->translate(+center->x, +center->y, 0);
this->translate(float(+center->x), float(+center->y), 0);
}
bool TriangleMesh::has_multiple_patches() const
{
// we need neighbors
if (!this->repaired) CONFESS("split() requires repair()");
if (this->stl.stats.number_of_facets == 0)
return false;
std::vector<int> facet_queue(this->stl.stats.number_of_facets, 0);
std::vector<char> facet_visited(this->stl.stats.number_of_facets, false);
int facet_queue_cnt = 1;
facet_queue[0] = 0;
facet_visited[0] = true;
while (facet_queue_cnt > 0) {
int facet_idx = facet_queue[-- facet_queue_cnt];
facet_visited[facet_idx] = true;
for (int j = 0; j < 3; ++ j) {
int neighbor_idx = this->stl.neighbors_start[facet_idx].neighbor[j];
if (! facet_visited[neighbor_idx])
facet_queue[facet_queue_cnt ++] = neighbor_idx;
}
}
// If any of the face was not visited at the first time, return "multiple bodies".
for (int facet_idx = 0; facet_idx < this->stl.stats.number_of_facets; ++ facet_idx)
if (! facet_visited[facet_idx])
return true;
return false;
}
size_t TriangleMesh::number_of_patches() const
{
// we need neighbors
if (!this->repaired) CONFESS("split() requires repair()");
if (this->stl.stats.number_of_facets == 0)
return false;
std::vector<int> facet_queue(this->stl.stats.number_of_facets, 0);
std::vector<char> facet_visited(this->stl.stats.number_of_facets, false);
int facet_queue_cnt = 0;
size_t num_bodies = 0;
for (;;) {
// Find a seeding triangle for a new body.
int facet_idx = 0;
for (; facet_idx < this->stl.stats.number_of_facets; ++ facet_idx)
if (! facet_visited[facet_idx]) {
// A seed triangle was found.
facet_queue[facet_queue_cnt ++] = facet_idx;
facet_visited[facet_idx] = true;
break;
}
if (facet_idx == this->stl.stats.number_of_facets)
// No seed found.
break;
++ num_bodies;
while (facet_queue_cnt > 0) {
int facet_idx = facet_queue[-- facet_queue_cnt];
facet_visited[facet_idx] = true;
for (int j = 0; j < 3; ++ j) {
int neighbor_idx = this->stl.neighbors_start[facet_idx].neighbor[j];
if (! facet_visited[neighbor_idx])
facet_queue[facet_queue_cnt ++] = neighbor_idx;
}
}
}
return num_bodies;
}
TriangleMeshPtrs
@ -448,6 +539,57 @@ TriangleMesh::require_shared_vertices()
if (this->stl.v_shared == NULL) stl_generate_shared_vertices(&(this->stl));
}
TriangleMeshSlicer::TriangleMeshSlicer(TriangleMesh* _mesh) :
mesh(_mesh)
{
_mesh->require_shared_vertices();
facets_edges.assign(_mesh->stl.stats.number_of_facets * 3, -1);
v_scaled_shared.assign(_mesh->stl.v_shared, _mesh->stl.v_shared + _mesh->stl.stats.shared_vertices);
// Scale the copied vertices.
for (int i = 0; i < this->mesh->stl.stats.shared_vertices; ++ i) {
this->v_scaled_shared[i].x /= float(SCALING_FACTOR);
this->v_scaled_shared[i].y /= float(SCALING_FACTOR);
this->v_scaled_shared[i].z /= float(SCALING_FACTOR);
}
// build a table to map a facet_idx to its three edge indices
// a_id,b_id => edge_idx
struct pairhash {
std::size_t operator()(const std::pair<int, int> &x) const
{ return std::hash<int>()(x.first) ^ std::hash<int>()(x.second); }
};
std::unordered_map<std::pair<int, int>, int, pairhash> edges_map;
int num_edges = 0;
for (int facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; ++ facet_idx) {
for (int i = 0; i < 3; ++ i) {
// Vertex indices of th ith edge of facet_idx.
int a_id = this->mesh->stl.v_indices[facet_idx].vertex[i];
int b_id = this->mesh->stl.v_indices[facet_idx].vertex[(i + 1) % 3];
int edge_idx;
auto my_edge = edges_map.find(std::make_pair(b_id, a_id));
if (my_edge == edges_map.end()) {
/* admesh can assign the same edge ID to more than two facets (which is
still topologically correct), so we have to search for a duplicate of
this edge too in case it was already seen in this orientation */
my_edge = edges_map.find(std::make_pair(a_id, b_id));
if (my_edge != edges_map.end()) {
edge_idx = my_edge->second;
} else {
// edge isn't listed in table, so we insert it
edges_map[std::make_pair(a_id, b_id)] = edge_idx = num_edges ++;
}
} else
edge_idx = my_edge->second;
this->facets_edges[facet_idx * 3 + i] = edge_idx;
#ifdef SLIC3R_TRIANGLEMESH_DEBUG
printf(" [facet %d, edge %d] a_id = %d, b_id = %d --> edge %d\n", facet_idx, i, a_id, b_id, edge_idx);
#endif
}
}
}
void
TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<Polygons>* layers) const
{
@ -499,8 +641,7 @@ TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<Polygons>* la
);
}
void
TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLines>* lines, boost::mutex* lines_mutex,
void TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLines>* lines, boost::mutex* lines_mutex,
const std::vector<float> &z) const
{
const stl_facet &facet = this->mesh->stl.facet_start[facet_idx];
@ -527,7 +668,31 @@ TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLines>*
for (std::vector<float>::const_iterator it = min_layer; it != max_layer + 1; ++it) {
std::vector<float>::size_type layer_idx = it - z.begin();
this->slice_facet(*it / SCALING_FACTOR, facet, facet_idx, min_z, max_z, &(*lines)[layer_idx], lines_mutex);
IntersectionLine il;
if (this->slice_facet(*it / SCALING_FACTOR, facet, facet_idx, min_z, max_z, &il)) {
boost::lock_guard<boost::mutex> l(*lines_mutex);
if (il.edge_type == feHorizontal) {
// Insert all three edges of the face.
const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
const bool reverse = this->mesh->stl.facet_start[facet_idx].normal.z < 0;
for (int j = 0; j < 3; ++ j) {
int a_id = vertices[j % 3];
int b_id = vertices[(j+1) % 3];
if (reverse)
std::swap(a_id, b_id);
const stl_vertex *a = &this->v_scaled_shared[a_id];
const stl_vertex *b = &this->v_scaled_shared[b_id];
il.a.x = a->x;
il.a.y = a->y;
il.b.x = b->x;
il.b.y = b->y;
il.a_id = a_id;
il.b_id = b_id;
(*lines)[layer_idx].push_back(il);
}
} else
(*lines)[layer_idx].push_back(il);
}
}
}
@ -548,127 +713,113 @@ TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<ExPolygons>*
}
}
void
TriangleMeshSlicer::slice_facet(float slice_z, const stl_facet &facet, const int &facet_idx,
const float &min_z, const float &max_z, std::vector<IntersectionLine>* lines,
boost::mutex* lines_mutex) const
// Return true, if the facet has been sliced and line_out has been filled.
bool TriangleMeshSlicer::slice_facet(
float slice_z, const stl_facet &facet, const int facet_idx,
const float min_z, const float max_z,
IntersectionLine *line_out) const
{
std::vector<IntersectionPoint> points;
std::vector< std::vector<IntersectionPoint>::size_type > points_on_layer;
bool found_horizontal_edge = false;
IntersectionPoint points[3];
size_t num_points = 0;
size_t points_on_layer[3];
size_t num_points_on_layer = 0;
/* reorder vertices so that the first one is the one with lowest Z
this is needed to get all intersection lines in a consistent order
(external on the right of the line) */
int i = 0;
if (facet.vertex[1].z == min_z) {
// vertex 1 has lowest Z
i = 1;
} else if (facet.vertex[2].z == min_z) {
// vertex 2 has lowest Z
i = 2;
}
for (int j = i; (j-i) < 3; j++) { // loop through facet edges
int edge_id = this->facets_edges[facet_idx][j % 3];
int a_id = this->mesh->stl.v_indices[facet_idx].vertex[j % 3];
int b_id = this->mesh->stl.v_indices[facet_idx].vertex[(j+1) % 3];
stl_vertex* a = &this->v_scaled_shared[a_id];
stl_vertex* b = &this->v_scaled_shared[b_id];
// Reorder vertices so that the first one is the one with lowest Z.
// This is needed to get all intersection lines in a consistent order
// (external on the right of the line)
int i = (facet.vertex[1].z == min_z) ? 1 : ((facet.vertex[2].z == min_z) ? 2 : 0);
for (int j = i; j - i < 3; ++ j) { // loop through facet edges
int edge_id = this->facets_edges[facet_idx * 3 + (j % 3)];
const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
int a_id = vertices[j % 3];
int b_id = vertices[(j+1) % 3];
const stl_vertex *a = &this->v_scaled_shared[a_id];
const stl_vertex *b = &this->v_scaled_shared[b_id];
if (a->z == b->z && a->z == slice_z) {
// edge is horizontal and belongs to the current layer
stl_vertex &v0 = this->v_scaled_shared[ this->mesh->stl.v_indices[facet_idx].vertex[0] ];
stl_vertex &v1 = this->v_scaled_shared[ this->mesh->stl.v_indices[facet_idx].vertex[1] ];
stl_vertex &v2 = this->v_scaled_shared[ this->mesh->stl.v_indices[facet_idx].vertex[2] ];
IntersectionLine line;
// Is edge or face aligned with the cutting plane?
if (a->z == slice_z && b->z == slice_z) {
// Edge is horizontal and belongs to the current layer.
const stl_vertex &v0 = this->v_scaled_shared[vertices[0]];
const stl_vertex &v1 = this->v_scaled_shared[vertices[1]];
const stl_vertex &v2 = this->v_scaled_shared[vertices[2]];
if (min_z == max_z) {
line.edge_type = feHorizontal;
// All three vertices are aligned with slice_z.
line_out->edge_type = feHorizontal;
if (this->mesh->stl.facet_start[facet_idx].normal.z < 0) {
/* if normal points downwards this is a bottom horizontal facet so we reverse
its point order */
// If normal points downwards this is a bottom horizontal facet so we reverse its point order.
std::swap(a, b);
std::swap(a_id, b_id);
}
} else if (v0.z < slice_z || v1.z < slice_z || v2.z < slice_z) {
line.edge_type = feTop;
// Two vertices are aligned with the cutting plane, the third vertex is below the cutting plane.
line_out->edge_type = feTop;
std::swap(a, b);
std::swap(a_id, b_id);
} else {
line.edge_type = feBottom;
// Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane.
line_out->edge_type = feBottom;
}
line.a.x = a->x;
line.a.y = a->y;
line.b.x = b->x;
line.b.y = b->y;
line.a_id = a_id;
line.b_id = b_id;
if (lines_mutex != NULL) {
boost::lock_guard<boost::mutex> l(*lines_mutex);
lines->push_back(line);
} else {
lines->push_back(line);
}
found_horizontal_edge = true;
// if this is a top or bottom edge, we can stop looping through edges
// because we won't find anything interesting
if (line.edge_type != feHorizontal) return;
} else if (a->z == slice_z) {
IntersectionPoint point;
line_out->a.x = a->x;
line_out->a.y = a->y;
line_out->b.x = b->x;
line_out->b.y = b->y;
line_out->a_id = a_id;
line_out->b_id = b_id;
return true;
}
if (a->z == slice_z) {
// Only point a alings with the cutting plane.
points_on_layer[num_points_on_layer ++] = num_points;
IntersectionPoint &point = points[num_points ++];
point.x = a->x;
point.y = a->y;
point.point_id = a_id;
points.push_back(point);
points_on_layer.push_back(points.size()-1);
} else if (b->z == slice_z) {
IntersectionPoint point;
// Only point b alings with the cutting plane.
points_on_layer[num_points_on_layer ++] = num_points;
IntersectionPoint &point = points[num_points ++];
point.x = b->x;
point.y = b->y;
point.point_id = b_id;
points.push_back(point);
points_on_layer.push_back(points.size()-1);
} else if ((a->z < slice_z && b->z > slice_z) || (b->z < slice_z && a->z > slice_z)) {
// edge intersects the current layer; calculate intersection
IntersectionPoint point;
// A general case. The face edge intersects the cutting plane. Calculate the intersection point.
IntersectionPoint &point = points[num_points ++];
point.x = b->x + (a->x - b->x) * (slice_z - b->z) / (a->z - b->z);
point.y = b->y + (a->y - b->y) * (slice_z - b->z) / (a->z - b->z);
point.edge_id = edge_id;
points.push_back(point);
}
}
if (found_horizontal_edge) return;
if (!points_on_layer.empty()) {
// we can't have only one point on layer because each vertex gets detected
// twice (once for each edge), and we can't have three points on layer because
// we assume this code is not getting called for horizontal facets
assert(points_on_layer.size() == 2);
assert( points[ points_on_layer[0] ].point_id == points[ points_on_layer[1] ].point_id );
if (points.size() < 3) return; // no intersection point, this is a V-shaped facet tangent to plane
points.erase( points.begin() + points_on_layer[1] );
// We can't have only one point on layer because each vertex gets detected
// twice (once for each edge), and we can't have three points on layer,
// because we assume this code is not getting called for horizontal facets.
assert(num_points_on_layer == 0 || num_points_on_layer == 2);
if (num_points_on_layer > 0) {
assert(points[points_on_layer[0]].point_id == points[points_on_layer[1]].point_id);
assert(num_points == 2 || num_points == 3);
if (num_points < 3)
// This triangle touches the cutting plane with a single vertex. Ignore it.
return false;
// Erase one of the duplicate points.
-- num_points;
for (int i = points_on_layer[1]; i < num_points; ++ i)
points[i] = points[i + 1];
}
if (!points.empty()) {
assert(points.size() == 2); // facets must intersect each plane 0 or 2 times
IntersectionLine line;
line.a = (Point)points[1];
line.b = (Point)points[0];
line.a_id = points[1].point_id;
line.b_id = points[0].point_id;
line.edge_a_id = points[1].edge_id;
line.edge_b_id = points[0].edge_id;
if (lines_mutex != NULL) {
boost::lock_guard<boost::mutex> l(*lines_mutex);
lines->push_back(line);
} else {
lines->push_back(line);
}
return;
// Facets must intersect each plane 0 or 2 times.
assert(num_points == 0 || num_points == 2);
if (num_points == 2) {
line_out->edge_type = feNone;
line_out->a = (Point)points[1];
line_out->b = (Point)points[0];
line_out->a_id = points[1].point_id;
line_out->b_id = points[0].point_id;
line_out->edge_a_id = points[1].edge_id;
line_out->edge_b_id = points[0].edge_id;
return true;
}
return false;
}
void
@ -677,71 +828,69 @@ TriangleMeshSlicer::_make_loops_do(size_t i, std::vector<IntersectionLines>* lin
this->make_loops((*lines)[i], &(*layers)[i]);
}
void
TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygons* loops) const
void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygons* loops) const
{
/*
SVG svg("lines.svg");
svg.draw(lines);
svg.Close();
*/
// remove tangent edges
for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++line) {
if (line->skip || line->edge_type == feNone) continue;
/* if the line is a facet edge, find another facet edge
having the same endpoints but in reverse order */
for (IntersectionLines::iterator line2 = line + 1; line2 != lines.end(); ++line2) {
if (line2->skip || line2->edge_type == feNone) continue;
// are these facets adjacent? (sharing a common edge on this layer)
if (line->a_id == line2->a_id && line->b_id == line2->b_id) {
line2->skip = true;
/* if they are both oriented upwards or downwards (like a 'V')
then we can remove both edges from this layer since it won't
affect the sliced shape */
/* if one of them is oriented upwards and the other is oriented
downwards, let's only keep one of them (it doesn't matter which
one since all 'top' lines were reversed at slicing) */
if (line->edge_type == line2->edge_type) {
line->skip = true;
break;
// Remove tangent edges.
//FIXME This is O(n^2) in rare cases when many faces intersect the cutting plane.
for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++ line)
if (! line->skip && line->edge_type != feNone) {
// This line is af facet edge. There may be a duplicate line with the same end vertices.
// If the line is is an edge connecting two facets, find another facet edge
// having the same endpoints but in reverse order.
for (IntersectionLines::iterator line2 = line + 1; line2 != lines.end(); ++ line2)
if (! line2->skip && line2->edge_type != feNone) {
// Are these facets adjacent? (sharing a common edge on this layer)
if (line->a_id == line2->a_id && line->b_id == line2->b_id) {
line2->skip = true;
/* if they are both oriented upwards or downwards (like a 'V')
then we can remove both edges from this layer since it won't
affect the sliced shape */
/* if one of them is oriented upwards and the other is oriented
downwards, let's only keep one of them (it doesn't matter which
one since all 'top' lines were reversed at slicing) */
if (line->edge_type == line2->edge_type) {
line->skip = true;
break;
}
} else if (line->a_id == line2->b_id && line->b_id == line2->a_id) {
/* if this edge joins two horizontal facets, remove both of them */
if (line->edge_type == feHorizontal && line2->edge_type == feHorizontal) {
line->skip = true;
line2->skip = true;
break;
}
}
}
} else if (line->a_id == line2->b_id && line->b_id == line2->a_id) {
/* if this edge joins two horizontal facets, remove both of them */
if (line->edge_type == feHorizontal && line2->edge_type == feHorizontal) {
line->skip = true;
line2->skip = true;
break;
}
}
}
}
// build a map of lines by edge_a_id and a_id
std::vector<IntersectionLinePtrs> by_edge_a_id, by_a_id;
by_edge_a_id.resize(this->mesh->stl.stats.number_of_facets * 3);
by_a_id.resize(this->mesh->stl.stats.shared_vertices);
for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++line) {
if (line->skip) continue;
if (line->edge_a_id != -1) by_edge_a_id[line->edge_a_id].push_back(&(*line));
if (line->a_id != -1) by_a_id[line->a_id].push_back(&(*line));
//FIXME replace the vectors of vectors by vectors of indices to a continuous memory.
std::vector<IntersectionLinePtrs> by_edge_a_id(this->mesh->stl.stats.number_of_facets * 3);
std::vector<IntersectionLinePtrs> by_a_id(this->mesh->stl.stats.shared_vertices);
for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++ line) {
if (! line->skip) {
if (line->edge_a_id != -1)
by_edge_a_id[line->edge_a_id].push_back(&(*line));
if (line->a_id != -1)
by_a_id[line->a_id].push_back(&(*line));
}
}
IntersectionLines::iterator it_line_seed = lines.begin();
CYCLE: while (1) {
// take first spare line and start a new loop
IntersectionLine* first_line = NULL;
for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++line) {
if (line->skip) continue;
first_line = &(*line);
IntersectionLine *first_line = nullptr;
for (; it_line_seed != lines.end(); ++ it_line_seed)
if (! it_line_seed->skip) {
first_line = &(*it_line_seed ++);
break;
}
if (first_line == nullptr)
break;
}
if (first_line == NULL) break;
first_line->skip = true;
IntersectionLinePtrs loop;
loop.push_back(first_line);
Points loop_pts;
loop_pts.push_back(first_line->a);
IntersectionLine *last_line = first_line;
/*
printf("first_line edge_a_id = %d, edge_b_id = %d, a_id = %d, b_id = %d, a = %d,%d, b = %d,%d\n",
@ -749,50 +898,40 @@ TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygons* l
first_line->a.x, first_line->a.y, first_line->b.x, first_line->b.y);
*/
while (1) {
for (;;) {
// find a line starting where last one finishes
IntersectionLine* next_line = NULL;
if (loop.back()->edge_b_id != -1) {
IntersectionLinePtrs &candidates = by_edge_a_id[loop.back()->edge_b_id];
for (IntersectionLinePtrs::iterator lineptr = candidates.begin(); lineptr != candidates.end(); ++lineptr) {
if ((*lineptr)->skip) continue;
next_line = *lineptr;
break;
}
}
if (next_line == NULL && loop.back()->b_id != -1) {
IntersectionLinePtrs &candidates = by_a_id[loop.back()->b_id];
for (IntersectionLinePtrs::iterator lineptr = candidates.begin(); lineptr != candidates.end(); ++lineptr) {
if ((*lineptr)->skip) continue;
next_line = *lineptr;
break;
}
}
if (next_line == NULL) {
// check whether we closed this loop
if ((loop.front()->edge_a_id != -1 && loop.front()->edge_a_id == loop.back()->edge_b_id)
|| (loop.front()->a_id != -1 && loop.front()->a_id == loop.back()->b_id)) {
// loop is complete
Polygon p;
p.points.reserve(loop.size());
for (IntersectionLinePtrs::const_iterator lineptr = loop.begin(); lineptr != loop.end(); ++lineptr) {
p.points.push_back((*lineptr)->a);
IntersectionLine* next_line = nullptr;
if (last_line->edge_b_id != -1) {
IntersectionLinePtrs &candidates = by_edge_a_id[last_line->edge_b_id];
for (IntersectionLinePtrs::iterator lineptr = candidates.begin(); lineptr != candidates.end(); ++ lineptr)
if (! (*lineptr)->skip) {
next_line = *lineptr;
break;
}
loops->push_back(p);
}
if (next_line == nullptr && last_line->b_id != -1) {
IntersectionLinePtrs &candidates = by_a_id[last_line->b_id];
for (IntersectionLinePtrs::iterator lineptr = candidates.begin(); lineptr != candidates.end(); ++ lineptr)
if (! (*lineptr)->skip) {
next_line = *lineptr;
break;
}
}
if (next_line == nullptr) {
// check whether we closed this loop
if ((first_line->edge_a_id != -1 && first_line->edge_a_id == last_line->edge_b_id) ||
(first_line->a_id != -1 && first_line->a_id == last_line->b_id)) {
// loop is complete
loops->emplace_back(std::move(loop_pts));
#ifdef SLIC3R_TRIANGLEMESH_DEBUG
printf(" Discovered %s polygon of %d points\n", (p.is_counter_clockwise() ? "ccw" : "cw"), (int)p.points.size());
#endif
goto CYCLE;
}
// we can't close this loop!
//// push @failed_loops, [@loop];
//#ifdef SLIC3R_TRIANGLEMESH_DEBUG
printf(" Unable to close this loop having %d points\n", (int)loop.size());
printf(" Unable to close this loop having %d points\n", (int)loop_pts.size());
//#endif
goto CYCLE;
}
@ -801,59 +940,95 @@ TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygons* l
next_line->edge_a_id, next_line->edge_b_id, next_line->a_id, next_line->b_id,
next_line->a.x, next_line->a.y, next_line->b.x, next_line->b.y);
*/
loop.push_back(next_line);
loop_pts.push_back(next_line->a);
last_line = next_line;
next_line->skip = true;
}
}
}
class _area_comp {
public:
_area_comp(std::vector<double>* _aa) : abs_area(_aa) {};
bool operator() (const size_t &a, const size_t &b) {
return (*this->abs_area)[a] > (*this->abs_area)[b];
}
private:
std::vector<double>* abs_area;
};
void
TriangleMeshSlicer::make_expolygons_simple(std::vector<IntersectionLine> &lines, ExPolygons* slices) const
// Only used to cut the mesh into two halves.
void TriangleMeshSlicer::make_expolygons_simple(std::vector<IntersectionLine> &lines, ExPolygons* slices) const
{
assert(slices->empty());
Polygons loops;
this->make_loops(lines, &loops);
Polygons cw;
for (Polygons::const_iterator loop = loops.begin(); loop != loops.end(); ++loop) {
if (loop->area() >= 0) {
Polygons holes;
for (Polygons::const_iterator loop = loops.begin(); loop != loops.end(); ++ loop) {
if (loop->area() >= 0.) {
ExPolygon ex;
ex.contour = *loop;
slices->push_back(ex);
} else {
cw.push_back(*loop);
holes.push_back(*loop);
}
}
// If there are holes, then there should also be outer contours.
assert(holes.empty() || ! slices->empty());
if (slices->empty())
return;
// assign holes to contours
for (Polygons::const_iterator loop = cw.begin(); loop != cw.end(); ++loop) {
int slice_idx = -1;
double current_contour_area = -1;
for (ExPolygons::iterator slice = slices->begin(); slice != slices->end(); ++slice) {
if (slice->contour.contains(loop->points.front())) {
// Assign holes to outer contours.
for (Polygons::const_iterator hole = holes.begin(); hole != holes.end(); ++ hole) {
// Find an outer contour to a hole.
int slice_idx = -1;
double current_contour_area = std::numeric_limits<double>::max();
for (ExPolygons::iterator slice = slices->begin(); slice != slices->end(); ++ slice) {
if (slice->contour.contains(hole->points.front())) {
double area = slice->contour.area();
if (area < current_contour_area || current_contour_area == -1) {
if (area < current_contour_area) {
slice_idx = slice - slices->begin();
current_contour_area = area;
}
}
}
(*slices)[slice_idx].holes.push_back(*loop);
// assert(slice_idx != -1);
if (slice_idx == -1)
// Ignore this hole.
continue;
assert(current_contour_area < std::numeric_limits<double>::max() && current_contour_area >= -hole->area());
(*slices)[slice_idx].holes.emplace_back(std::move(*hole));
}
#if 0
// If the input mesh is not valid, the holes may intersect with the external contour.
// Rather subtract them from the outer contour.
Polygons poly;
for (auto it_slice = slices->begin(); it_slice != slices->end(); ++ it_slice) {
if (it_slice->holes.empty()) {
poly.emplace_back(std::move(it_slice->contour));
} else {
Polygons contours;
contours.emplace_back(std::move(it_slice->contour));
for (auto it = it_slice->holes.begin(); it != it_slice->holes.end(); ++ it)
it->reverse();
polygons_append(poly, diff(contours, it_slice->holes));
}
}
// If the input mesh is not valid, the input contours may intersect.
*slices = union_ex(poly);
#endif
#if 0
// If the input mesh is not valid, the holes may intersect with the external contour.
// Rather subtract them from the outer contour.
ExPolygons poly;
for (auto it_slice = slices->begin(); it_slice != slices->end(); ++ it_slice) {
Polygons contours;
contours.emplace_back(std::move(it_slice->contour));
for (auto it = it_slice->holes.begin(); it != it_slice->holes.end(); ++ it)
it->reverse();
expolygons_append(poly, diff_ex(contours, it_slice->holes));
}
// If the input mesh is not valid, the input contours may intersect.
*slices = std::move(poly);
#endif
}
void
TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) const
void TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) const
{
/*
Input loops are not suitable for evenodd nor nonzero fill types, as we might get
@ -873,20 +1048,19 @@ TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) c
*/
std::vector<double> area;
std::vector<double> abs_area;
std::vector<size_t> sorted_area; // vector of indices
for (Polygons::const_iterator loop = loops.begin(); loop != loops.end(); ++loop) {
double a = loop->area();
area.push_back(a);
abs_area.push_back(std::fabs(a));
for (Polygons::const_iterator loop = loops.begin(); loop != loops.end(); ++ loop) {
area.push_back(loop->area());
sorted_area.push_back(loop - loops.begin());
}
std::sort(sorted_area.begin(), sorted_area.end(), _area_comp(&abs_area)); // outer first
// outer first
std::sort(sorted_area.begin(), sorted_area.end(),
[&area](size_t a, size_t b) { return std::abs(area[a]) > std::abs(area[b]); });
// we don't perform a safety offset now because it might reverse cw loops
Polygons p_slices;
for (std::vector<size_t>::const_iterator loop_idx = sorted_area.begin(); loop_idx != sorted_area.end(); ++loop_idx) {
for (std::vector<size_t>::const_iterator loop_idx = sorted_area.begin(); loop_idx != sorted_area.end(); ++ loop_idx) {
/* we rely on the already computed area to determine the winding order
of the loops, since the Orientation() function provided by Clipper
would do the same, thus repeating the calculation */
@ -894,6 +1068,11 @@ TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) c
if (area[*loop_idx] > +EPSILON)
p_slices.push_back(*loop);
else if (area[*loop_idx] < -EPSILON)
//FIXME This is arbitrary and possibly very slow.
// If the hole is inside a polygon, then there is no need to diff.
// If the hole intersects a polygon boundary, then diff it, but then
// there is no guarantee of an ordering of the loops.
// Maybe we can test for the intersection before running the expensive diff algorithm?
p_slices = diff(p_slices, *loop);
}
@ -903,9 +1082,8 @@ TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) c
#ifdef SLIC3R_TRIANGLEMESH_DEBUG
size_t holes_count = 0;
for (ExPolygons::const_iterator e = ex_slices.begin(); e != ex_slices.end(); ++e) {
for (ExPolygons::const_iterator e = ex_slices.begin(); e != ex_slices.end(); ++ e)
holes_count += e->holes.size();
}
printf(PRINTF_ZU " surface(s) having " PRINTF_ZU " holes detected from " PRINTF_ZU " polylines\n",
ex_slices.size(), holes_count, loops.size());
#endif
@ -914,52 +1092,48 @@ TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) c
expolygons_append(*slices, ex_slices);
}
void
TriangleMeshSlicer::make_expolygons(std::vector<IntersectionLine> &lines, ExPolygons* slices) const
void TriangleMeshSlicer::make_expolygons(std::vector<IntersectionLine> &lines, ExPolygons* slices) const
{
Polygons pp;
this->make_loops(lines, &pp);
this->make_expolygons(pp, slices);
}
void
TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower) const
void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower) const
{
IntersectionLines upper_lines, lower_lines;
float scaled_z = scale_(z);
for (int facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; facet_idx++) {
for (int facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; ++ facet_idx) {
stl_facet* facet = &this->mesh->stl.facet_start[facet_idx];
// find facet extents
float min_z = fminf(facet->vertex[0].z, fminf(facet->vertex[1].z, facet->vertex[2].z));
float max_z = fmaxf(facet->vertex[0].z, fmaxf(facet->vertex[1].z, facet->vertex[2].z));
float min_z = std::min(facet->vertex[0].z, std::min(facet->vertex[1].z, facet->vertex[2].z));
float max_z = std::max(facet->vertex[0].z, std::max(facet->vertex[1].z, facet->vertex[2].z));
// intersect facet with cutting plane
IntersectionLines lines;
this->slice_facet(scaled_z, *facet, facet_idx, min_z, max_z, &lines);
// save intersection lines for generating correct triangulations
for (IntersectionLines::const_iterator it = lines.begin(); it != lines.end(); ++it) {
if (it->edge_type == feTop) {
lower_lines.push_back(*it);
} else if (it->edge_type == feBottom) {
upper_lines.push_back(*it);
} else if (it->edge_type != feHorizontal) {
lower_lines.push_back(*it);
upper_lines.push_back(*it);
IntersectionLine line;
if (this->slice_facet(scaled_z, *facet, facet_idx, min_z, max_z, &line)) {
// Save intersection lines for generating correct triangulations.
if (line.edge_type == feTop) {
lower_lines.push_back(line);
} else if (line.edge_type == feBottom) {
upper_lines.push_back(line);
} else if (line.edge_type != feHorizontal) {
lower_lines.push_back(line);
upper_lines.push_back(line);
}
}
if (min_z > z || (min_z == z && max_z > min_z)) {
if (min_z > z || (min_z == z && max_z > z)) {
// facet is above the cut plane and does not belong to it
if (upper != NULL) stl_add_facet(&upper->stl, facet);
} else if (max_z < z || (max_z == z && max_z > min_z)) {
} else if (max_z < z || (max_z == z && min_z < z)) {
// facet is below the cut plane and does not belong to it
if (lower != NULL) stl_add_facet(&lower->stl, facet);
} else if (min_z < z && max_z > z) {
// facet is cut by the slicing plane
// Facet is cut by the slicing plane.
// look for the vertex on whose side of the slicing plane there are no other vertices
int isolated_vertex;
if ( (facet->vertex[0].z > z) == (facet->vertex[1].z > z) ) {
@ -1072,74 +1246,11 @@ TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower) const
}
}
stl_get_size(&(upper->stl));
stl_get_size(&(lower->stl));
// Update the bounding box / sphere of the new meshes.
stl_get_size(&upper->stl);
stl_get_size(&lower->stl);
}
TriangleMeshSlicer::TriangleMeshSlicer(TriangleMesh* _mesh) : mesh(_mesh), v_scaled_shared(NULL)
{
// build a table to map a facet_idx to its three edge indices
this->mesh->require_shared_vertices();
typedef std::pair<int,int> t_edge;
typedef std::vector<t_edge> t_edges; // edge_idx => a_id,b_id
typedef std::map<t_edge,int> t_edges_map; // a_id,b_id => edge_idx
this->facets_edges.resize(this->mesh->stl.stats.number_of_facets);
{
t_edges edges;
// reserve() instad of resize() because otherwise we couldn't read .size() below to assign edge_idx
edges.reserve(this->mesh->stl.stats.number_of_facets * 3); // number of edges = number of facets * 3
t_edges_map edges_map;
for (int facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; facet_idx++) {
this->facets_edges[facet_idx].resize(3);
for (int i = 0; i <= 2; i++) {
int a_id = this->mesh->stl.v_indices[facet_idx].vertex[i];
int b_id = this->mesh->stl.v_indices[facet_idx].vertex[(i+1) % 3];
int edge_idx;
t_edges_map::const_iterator my_edge = edges_map.find(std::make_pair(b_id,a_id));
if (my_edge != edges_map.end()) {
edge_idx = my_edge->second;
} else {
/* admesh can assign the same edge ID to more than two facets (which is
still topologically correct), so we have to search for a duplicate of
this edge too in case it was already seen in this orientation */
my_edge = edges_map.find(std::make_pair(a_id,b_id));
if (my_edge != edges_map.end()) {
edge_idx = my_edge->second;
} else {
// edge isn't listed in table, so we insert it
edge_idx = edges.size();
edges.push_back(std::make_pair(a_id,b_id));
edges_map[ edges[edge_idx] ] = edge_idx;
}
}
this->facets_edges[facet_idx][i] = edge_idx;
#ifdef SLIC3R_TRIANGLEMESH_DEBUG
printf(" [facet %d, edge %d] a_id = %d, b_id = %d --> edge %d\n", facet_idx, i, a_id, b_id, edge_idx);
#endif
}
}
}
// clone shared vertices coordinates and scale them
this->v_scaled_shared = (stl_vertex*)calloc(this->mesh->stl.stats.shared_vertices, sizeof(stl_vertex));
std::copy(this->mesh->stl.v_shared, this->mesh->stl.v_shared + this->mesh->stl.stats.shared_vertices, this->v_scaled_shared);
for (int i = 0; i < this->mesh->stl.stats.shared_vertices; i++) {
this->v_scaled_shared[i].x /= SCALING_FACTOR;
this->v_scaled_shared[i].y /= SCALING_FACTOR;
this->v_scaled_shared[i].z /= SCALING_FACTOR;
}
}
TriangleMeshSlicer::~TriangleMeshSlicer()
{
if (this->v_scaled_shared != NULL) free(this->v_scaled_shared);
}
// Generate the vertex list for a cube solid of arbitrary size in X/Y/Z.
TriangleMesh make_cube(double x, double y, double z) {
Pointf3 pv[8] = {

View file

@ -19,16 +19,18 @@ typedef std::vector<TriangleMesh*> TriangleMeshPtrs;
class TriangleMesh
{
public:
public:
TriangleMesh();
TriangleMesh(const Pointf3s &points, const std::vector<Point3> &facets);
TriangleMesh(const TriangleMesh &other);
TriangleMesh(TriangleMesh &&other);
TriangleMesh& operator= (TriangleMesh other);
TriangleMesh& operator= (TriangleMesh &&other);
void swap(TriangleMesh &other);
~TriangleMesh();
void ReadSTLFile(char* input_file);
void write_ascii(char* output_file);
void write_binary(char* output_file);
void ReadSTLFile(const char* input_file);
void write_ascii(const char* output_file);
void write_binary(const char* output_file);
void repair();
void WriteOBJFile(char* output_file);
void scale(float factor);
@ -52,32 +54,60 @@ class TriangleMesh
void reset_repair_stats();
bool needed_repair() const;
size_t facets_count() const;
// Returns true, if there are two and more connected patches in the mesh.
// Returns false, if one or zero connected patch is in the mesh.
bool has_multiple_patches() const;
// Count disconnected triangle patches.
size_t number_of_patches() const;
stl_file stl;
bool repaired;
private:
private:
void require_shared_vertices();
friend class TriangleMeshSlicer;
};
enum FacetEdgeType { feNone, feTop, feBottom, feHorizontal };
enum FacetEdgeType {
// A general case, the cutting plane intersect a face at two different edges.
feNone,
// Two vertices are aligned with the cutting plane, the third vertex is below the cutting plane.
feTop,
// Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane.
feBottom,
// All three vertices of a face are aligned with the cutting plane.
feHorizontal
};
class IntersectionPoint : public Point
{
public:
int point_id;
int edge_id;
public:
IntersectionPoint() : point_id(-1), edge_id(-1) {};
// Inherits coord_t x, y
// Where is this intersection point located? On mesh vertex or mesh edge?
// Only one of the following will be set, the other will remain set to -1.
// Index of the mesh vertex.
int point_id;
// Index of the mesh edge.
int edge_id;
};
class IntersectionLine : public Line
{
public:
public:
// Inherits Point a, b
// For each line end point, either {a,b}_id or {a,b}edge_a_id is set, the other is left to -1.
// Vertex indices of the line end points.
int a_id;
int b_id;
// Source mesh edges of the line end points.
int edge_a_id;
int edge_b_id;
// feNone, feTop, feBottom, feHorizontal
FacetEdgeType edge_type;
// Used by TriangleMeshSlicer::make_loops() to skip duplicate edges.
bool skip;
IntersectionLine() : a_id(-1), b_id(-1), edge_a_id(-1), edge_b_id(-1), edge_type(feNone), skip(false) {};
};
@ -86,21 +116,21 @@ typedef std::vector<IntersectionLine*> IntersectionLinePtrs;
class TriangleMeshSlicer
{
public:
TriangleMesh* mesh;
public:
TriangleMeshSlicer(TriangleMesh* _mesh);
~TriangleMeshSlicer();
void slice(const std::vector<float> &z, std::vector<Polygons>* layers) const;
void slice(const std::vector<float> &z, std::vector<ExPolygons>* layers) const;
void slice_facet(float slice_z, const stl_facet &facet, const int &facet_idx,
const float &min_z, const float &max_z, std::vector<IntersectionLine>* lines,
boost::mutex* lines_mutex = NULL) const;
bool slice_facet(float slice_z, const stl_facet &facet, const int facet_idx,
const float min_z, const float max_z, IntersectionLine *line_out) const;
void cut(float z, TriangleMesh* upper, TriangleMesh* lower) const;
private:
typedef std::vector< std::vector<int> > t_facets_edges;
t_facets_edges facets_edges;
stl_vertex* v_scaled_shared;
private:
const TriangleMesh *mesh;
// Map from a facet to an edge index.
std::vector<int> facets_edges;
// Scaled copy of this->mesh->stl.v_shared
std::vector<stl_vertex> v_scaled_shared;
void _slice_do(size_t facet_idx, std::vector<IntersectionLines>* lines, boost::mutex* lines_mutex, const std::vector<float> &z) const;
void _make_loops_do(size_t i, std::vector<IntersectionLines>* lines, std::vector<Polygons>* layers) const;
void make_loops(std::vector<IntersectionLine> &lines, Polygons* loops) const;