TriangleMesh.cpp/h:
New methods: has_multiple_patches(), number_of_patches() Improved constness of file access methods. Reduced some memory allocations costs. Fixed some crashes of the cut() method on invalid meshes, Slic3r crashes on the unstable triangulation now. Documented.
This commit is contained in:
parent
5b98f1a068
commit
1b89c08bfc
@ -7,9 +7,17 @@
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
#include <algorithm>
|
||||
#include <math.h>
|
||||
|
||||
#if 0
|
||||
#define DEBUG
|
||||
#define _DEBUG
|
||||
#undef NDEBUG
|
||||
#endif
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
@ -91,12 +99,25 @@ TriangleMesh::TriangleMesh(const TriangleMesh &other)
|
||||
}
|
||||
}
|
||||
|
||||
TriangleMesh::TriangleMesh(TriangleMesh &&other) :
|
||||
repaired(false)
|
||||
{
|
||||
stl_initialize(&this->stl);
|
||||
this->swap(other);
|
||||
}
|
||||
|
||||
TriangleMesh& TriangleMesh::operator= (TriangleMesh other)
|
||||
{
|
||||
this->swap(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
TriangleMesh& TriangleMesh::operator=(TriangleMesh &&other)
|
||||
{
|
||||
this->swap(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::swap(TriangleMesh &other)
|
||||
{
|
||||
@ -109,18 +130,18 @@ TriangleMesh::~TriangleMesh() {
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::ReadSTLFile(char* input_file) {
|
||||
TriangleMesh::ReadSTLFile(const char* input_file) {
|
||||
stl_open(&stl, input_file);
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::write_ascii(char* output_file)
|
||||
TriangleMesh::write_ascii(const char* output_file)
|
||||
{
|
||||
stl_write_ascii(&this->stl, output_file, "");
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::write_binary(char* output_file)
|
||||
TriangleMesh::write_binary(const char* output_file)
|
||||
{
|
||||
stl_write_binary(&this->stl, output_file, "");
|
||||
}
|
||||
@ -314,9 +335,79 @@ void TriangleMesh::rotate(double angle, Point* center)
|
||||
{
|
||||
if (angle == 0.)
|
||||
return;
|
||||
this->translate(-center->x, -center->y, 0);
|
||||
this->translate(float(-center->x), float(-center->y), 0);
|
||||
stl_rotate_z(&(this->stl), (float)angle);
|
||||
this->translate(+center->x, +center->y, 0);
|
||||
this->translate(float(+center->x), float(+center->y), 0);
|
||||
}
|
||||
|
||||
bool TriangleMesh::has_multiple_patches() const
|
||||
{
|
||||
// we need neighbors
|
||||
if (!this->repaired) CONFESS("split() requires repair()");
|
||||
|
||||
if (this->stl.stats.number_of_facets == 0)
|
||||
return false;
|
||||
|
||||
std::vector<int> facet_queue(this->stl.stats.number_of_facets, 0);
|
||||
std::vector<char> facet_visited(this->stl.stats.number_of_facets, false);
|
||||
int facet_queue_cnt = 1;
|
||||
facet_queue[0] = 0;
|
||||
facet_visited[0] = true;
|
||||
while (facet_queue_cnt > 0) {
|
||||
int facet_idx = facet_queue[-- facet_queue_cnt];
|
||||
facet_visited[facet_idx] = true;
|
||||
for (int j = 0; j < 3; ++ j) {
|
||||
int neighbor_idx = this->stl.neighbors_start[facet_idx].neighbor[j];
|
||||
if (! facet_visited[neighbor_idx])
|
||||
facet_queue[facet_queue_cnt ++] = neighbor_idx;
|
||||
}
|
||||
}
|
||||
|
||||
// If any of the face was not visited at the first time, return "multiple bodies".
|
||||
for (int facet_idx = 0; facet_idx < this->stl.stats.number_of_facets; ++ facet_idx)
|
||||
if (! facet_visited[facet_idx])
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
size_t TriangleMesh::number_of_patches() const
|
||||
{
|
||||
// we need neighbors
|
||||
if (!this->repaired) CONFESS("split() requires repair()");
|
||||
|
||||
if (this->stl.stats.number_of_facets == 0)
|
||||
return false;
|
||||
|
||||
std::vector<int> facet_queue(this->stl.stats.number_of_facets, 0);
|
||||
std::vector<char> facet_visited(this->stl.stats.number_of_facets, false);
|
||||
int facet_queue_cnt = 0;
|
||||
size_t num_bodies = 0;
|
||||
for (;;) {
|
||||
// Find a seeding triangle for a new body.
|
||||
int facet_idx = 0;
|
||||
for (; facet_idx < this->stl.stats.number_of_facets; ++ facet_idx)
|
||||
if (! facet_visited[facet_idx]) {
|
||||
// A seed triangle was found.
|
||||
facet_queue[facet_queue_cnt ++] = facet_idx;
|
||||
facet_visited[facet_idx] = true;
|
||||
break;
|
||||
}
|
||||
if (facet_idx == this->stl.stats.number_of_facets)
|
||||
// No seed found.
|
||||
break;
|
||||
++ num_bodies;
|
||||
while (facet_queue_cnt > 0) {
|
||||
int facet_idx = facet_queue[-- facet_queue_cnt];
|
||||
facet_visited[facet_idx] = true;
|
||||
for (int j = 0; j < 3; ++ j) {
|
||||
int neighbor_idx = this->stl.neighbors_start[facet_idx].neighbor[j];
|
||||
if (! facet_visited[neighbor_idx])
|
||||
facet_queue[facet_queue_cnt ++] = neighbor_idx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return num_bodies;
|
||||
}
|
||||
|
||||
TriangleMeshPtrs
|
||||
@ -448,6 +539,57 @@ TriangleMesh::require_shared_vertices()
|
||||
if (this->stl.v_shared == NULL) stl_generate_shared_vertices(&(this->stl));
|
||||
}
|
||||
|
||||
|
||||
TriangleMeshSlicer::TriangleMeshSlicer(TriangleMesh* _mesh) :
|
||||
mesh(_mesh)
|
||||
{
|
||||
_mesh->require_shared_vertices();
|
||||
facets_edges.assign(_mesh->stl.stats.number_of_facets * 3, -1);
|
||||
v_scaled_shared.assign(_mesh->stl.v_shared, _mesh->stl.v_shared + _mesh->stl.stats.shared_vertices);
|
||||
// Scale the copied vertices.
|
||||
for (int i = 0; i < this->mesh->stl.stats.shared_vertices; ++ i) {
|
||||
this->v_scaled_shared[i].x /= float(SCALING_FACTOR);
|
||||
this->v_scaled_shared[i].y /= float(SCALING_FACTOR);
|
||||
this->v_scaled_shared[i].z /= float(SCALING_FACTOR);
|
||||
}
|
||||
|
||||
// build a table to map a facet_idx to its three edge indices
|
||||
// a_id,b_id => edge_idx
|
||||
struct pairhash {
|
||||
std::size_t operator()(const std::pair<int, int> &x) const
|
||||
{ return std::hash<int>()(x.first) ^ std::hash<int>()(x.second); }
|
||||
};
|
||||
std::unordered_map<std::pair<int, int>, int, pairhash> edges_map;
|
||||
int num_edges = 0;
|
||||
for (int facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; ++ facet_idx) {
|
||||
for (int i = 0; i < 3; ++ i) {
|
||||
// Vertex indices of th ith edge of facet_idx.
|
||||
int a_id = this->mesh->stl.v_indices[facet_idx].vertex[i];
|
||||
int b_id = this->mesh->stl.v_indices[facet_idx].vertex[(i + 1) % 3];
|
||||
int edge_idx;
|
||||
auto my_edge = edges_map.find(std::make_pair(b_id, a_id));
|
||||
if (my_edge == edges_map.end()) {
|
||||
/* admesh can assign the same edge ID to more than two facets (which is
|
||||
still topologically correct), so we have to search for a duplicate of
|
||||
this edge too in case it was already seen in this orientation */
|
||||
my_edge = edges_map.find(std::make_pair(a_id, b_id));
|
||||
if (my_edge != edges_map.end()) {
|
||||
edge_idx = my_edge->second;
|
||||
} else {
|
||||
// edge isn't listed in table, so we insert it
|
||||
edges_map[std::make_pair(a_id, b_id)] = edge_idx = num_edges ++;
|
||||
}
|
||||
} else
|
||||
edge_idx = my_edge->second;
|
||||
this->facets_edges[facet_idx * 3 + i] = edge_idx;
|
||||
|
||||
#ifdef SLIC3R_TRIANGLEMESH_DEBUG
|
||||
printf(" [facet %d, edge %d] a_id = %d, b_id = %d --> edge %d\n", facet_idx, i, a_id, b_id, edge_idx);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<Polygons>* layers) const
|
||||
{
|
||||
@ -499,8 +641,7 @@ TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<Polygons>* la
|
||||
);
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLines>* lines, boost::mutex* lines_mutex,
|
||||
void TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLines>* lines, boost::mutex* lines_mutex,
|
||||
const std::vector<float> &z) const
|
||||
{
|
||||
const stl_facet &facet = this->mesh->stl.facet_start[facet_idx];
|
||||
@ -527,7 +668,31 @@ TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLines>*
|
||||
|
||||
for (std::vector<float>::const_iterator it = min_layer; it != max_layer + 1; ++it) {
|
||||
std::vector<float>::size_type layer_idx = it - z.begin();
|
||||
this->slice_facet(*it / SCALING_FACTOR, facet, facet_idx, min_z, max_z, &(*lines)[layer_idx], lines_mutex);
|
||||
IntersectionLine il;
|
||||
if (this->slice_facet(*it / SCALING_FACTOR, facet, facet_idx, min_z, max_z, &il)) {
|
||||
boost::lock_guard<boost::mutex> l(*lines_mutex);
|
||||
if (il.edge_type == feHorizontal) {
|
||||
// Insert all three edges of the face.
|
||||
const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
|
||||
const bool reverse = this->mesh->stl.facet_start[facet_idx].normal.z < 0;
|
||||
for (int j = 0; j < 3; ++ j) {
|
||||
int a_id = vertices[j % 3];
|
||||
int b_id = vertices[(j+1) % 3];
|
||||
if (reverse)
|
||||
std::swap(a_id, b_id);
|
||||
const stl_vertex *a = &this->v_scaled_shared[a_id];
|
||||
const stl_vertex *b = &this->v_scaled_shared[b_id];
|
||||
il.a.x = a->x;
|
||||
il.a.y = a->y;
|
||||
il.b.x = b->x;
|
||||
il.b.y = b->y;
|
||||
il.a_id = a_id;
|
||||
il.b_id = b_id;
|
||||
(*lines)[layer_idx].push_back(il);
|
||||
}
|
||||
} else
|
||||
(*lines)[layer_idx].push_back(il);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -548,127 +713,113 @@ TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<ExPolygons>*
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMeshSlicer::slice_facet(float slice_z, const stl_facet &facet, const int &facet_idx,
|
||||
const float &min_z, const float &max_z, std::vector<IntersectionLine>* lines,
|
||||
boost::mutex* lines_mutex) const
|
||||
// Return true, if the facet has been sliced and line_out has been filled.
|
||||
bool TriangleMeshSlicer::slice_facet(
|
||||
float slice_z, const stl_facet &facet, const int facet_idx,
|
||||
const float min_z, const float max_z,
|
||||
IntersectionLine *line_out) const
|
||||
{
|
||||
std::vector<IntersectionPoint> points;
|
||||
std::vector< std::vector<IntersectionPoint>::size_type > points_on_layer;
|
||||
bool found_horizontal_edge = false;
|
||||
IntersectionPoint points[3];
|
||||
size_t num_points = 0;
|
||||
size_t points_on_layer[3];
|
||||
size_t num_points_on_layer = 0;
|
||||
|
||||
/* reorder vertices so that the first one is the one with lowest Z
|
||||
this is needed to get all intersection lines in a consistent order
|
||||
(external on the right of the line) */
|
||||
int i = 0;
|
||||
if (facet.vertex[1].z == min_z) {
|
||||
// vertex 1 has lowest Z
|
||||
i = 1;
|
||||
} else if (facet.vertex[2].z == min_z) {
|
||||
// vertex 2 has lowest Z
|
||||
i = 2;
|
||||
}
|
||||
for (int j = i; (j-i) < 3; j++) { // loop through facet edges
|
||||
int edge_id = this->facets_edges[facet_idx][j % 3];
|
||||
int a_id = this->mesh->stl.v_indices[facet_idx].vertex[j % 3];
|
||||
int b_id = this->mesh->stl.v_indices[facet_idx].vertex[(j+1) % 3];
|
||||
stl_vertex* a = &this->v_scaled_shared[a_id];
|
||||
stl_vertex* b = &this->v_scaled_shared[b_id];
|
||||
// Reorder vertices so that the first one is the one with lowest Z.
|
||||
// This is needed to get all intersection lines in a consistent order
|
||||
// (external on the right of the line)
|
||||
int i = (facet.vertex[1].z == min_z) ? 1 : ((facet.vertex[2].z == min_z) ? 2 : 0);
|
||||
for (int j = i; j - i < 3; ++ j) { // loop through facet edges
|
||||
int edge_id = this->facets_edges[facet_idx * 3 + (j % 3)];
|
||||
const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
|
||||
int a_id = vertices[j % 3];
|
||||
int b_id = vertices[(j+1) % 3];
|
||||
const stl_vertex *a = &this->v_scaled_shared[a_id];
|
||||
const stl_vertex *b = &this->v_scaled_shared[b_id];
|
||||
|
||||
if (a->z == b->z && a->z == slice_z) {
|
||||
// edge is horizontal and belongs to the current layer
|
||||
|
||||
stl_vertex &v0 = this->v_scaled_shared[ this->mesh->stl.v_indices[facet_idx].vertex[0] ];
|
||||
stl_vertex &v1 = this->v_scaled_shared[ this->mesh->stl.v_indices[facet_idx].vertex[1] ];
|
||||
stl_vertex &v2 = this->v_scaled_shared[ this->mesh->stl.v_indices[facet_idx].vertex[2] ];
|
||||
IntersectionLine line;
|
||||
// Is edge or face aligned with the cutting plane?
|
||||
if (a->z == slice_z && b->z == slice_z) {
|
||||
// Edge is horizontal and belongs to the current layer.
|
||||
const stl_vertex &v0 = this->v_scaled_shared[vertices[0]];
|
||||
const stl_vertex &v1 = this->v_scaled_shared[vertices[1]];
|
||||
const stl_vertex &v2 = this->v_scaled_shared[vertices[2]];
|
||||
if (min_z == max_z) {
|
||||
line.edge_type = feHorizontal;
|
||||
// All three vertices are aligned with slice_z.
|
||||
line_out->edge_type = feHorizontal;
|
||||
if (this->mesh->stl.facet_start[facet_idx].normal.z < 0) {
|
||||
/* if normal points downwards this is a bottom horizontal facet so we reverse
|
||||
its point order */
|
||||
// If normal points downwards this is a bottom horizontal facet so we reverse its point order.
|
||||
std::swap(a, b);
|
||||
std::swap(a_id, b_id);
|
||||
}
|
||||
} else if (v0.z < slice_z || v1.z < slice_z || v2.z < slice_z) {
|
||||
line.edge_type = feTop;
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is below the cutting plane.
|
||||
line_out->edge_type = feTop;
|
||||
std::swap(a, b);
|
||||
std::swap(a_id, b_id);
|
||||
} else {
|
||||
line.edge_type = feBottom;
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane.
|
||||
line_out->edge_type = feBottom;
|
||||
}
|
||||
line.a.x = a->x;
|
||||
line.a.y = a->y;
|
||||
line.b.x = b->x;
|
||||
line.b.y = b->y;
|
||||
line.a_id = a_id;
|
||||
line.b_id = b_id;
|
||||
if (lines_mutex != NULL) {
|
||||
boost::lock_guard<boost::mutex> l(*lines_mutex);
|
||||
lines->push_back(line);
|
||||
} else {
|
||||
lines->push_back(line);
|
||||
line_out->a.x = a->x;
|
||||
line_out->a.y = a->y;
|
||||
line_out->b.x = b->x;
|
||||
line_out->b.y = b->y;
|
||||
line_out->a_id = a_id;
|
||||
line_out->b_id = b_id;
|
||||
return true;
|
||||
}
|
||||
|
||||
found_horizontal_edge = true;
|
||||
|
||||
// if this is a top or bottom edge, we can stop looping through edges
|
||||
// because we won't find anything interesting
|
||||
|
||||
if (line.edge_type != feHorizontal) return;
|
||||
} else if (a->z == slice_z) {
|
||||
IntersectionPoint point;
|
||||
if (a->z == slice_z) {
|
||||
// Only point a alings with the cutting plane.
|
||||
points_on_layer[num_points_on_layer ++] = num_points;
|
||||
IntersectionPoint &point = points[num_points ++];
|
||||
point.x = a->x;
|
||||
point.y = a->y;
|
||||
point.point_id = a_id;
|
||||
points.push_back(point);
|
||||
points_on_layer.push_back(points.size()-1);
|
||||
} else if (b->z == slice_z) {
|
||||
IntersectionPoint point;
|
||||
// Only point b alings with the cutting plane.
|
||||
points_on_layer[num_points_on_layer ++] = num_points;
|
||||
IntersectionPoint &point = points[num_points ++];
|
||||
point.x = b->x;
|
||||
point.y = b->y;
|
||||
point.point_id = b_id;
|
||||
points.push_back(point);
|
||||
points_on_layer.push_back(points.size()-1);
|
||||
} else if ((a->z < slice_z && b->z > slice_z) || (b->z < slice_z && a->z > slice_z)) {
|
||||
// edge intersects the current layer; calculate intersection
|
||||
|
||||
IntersectionPoint point;
|
||||
// A general case. The face edge intersects the cutting plane. Calculate the intersection point.
|
||||
IntersectionPoint &point = points[num_points ++];
|
||||
point.x = b->x + (a->x - b->x) * (slice_z - b->z) / (a->z - b->z);
|
||||
point.y = b->y + (a->y - b->y) * (slice_z - b->z) / (a->z - b->z);
|
||||
point.edge_id = edge_id;
|
||||
points.push_back(point);
|
||||
}
|
||||
}
|
||||
if (found_horizontal_edge) return;
|
||||
|
||||
if (!points_on_layer.empty()) {
|
||||
// we can't have only one point on layer because each vertex gets detected
|
||||
// twice (once for each edge), and we can't have three points on layer because
|
||||
// we assume this code is not getting called for horizontal facets
|
||||
assert(points_on_layer.size() == 2);
|
||||
// We can't have only one point on layer because each vertex gets detected
|
||||
// twice (once for each edge), and we can't have three points on layer,
|
||||
// because we assume this code is not getting called for horizontal facets.
|
||||
assert(num_points_on_layer == 0 || num_points_on_layer == 2);
|
||||
if (num_points_on_layer > 0) {
|
||||
assert(points[points_on_layer[0]].point_id == points[points_on_layer[1]].point_id);
|
||||
if (points.size() < 3) return; // no intersection point, this is a V-shaped facet tangent to plane
|
||||
points.erase( points.begin() + points_on_layer[1] );
|
||||
assert(num_points == 2 || num_points == 3);
|
||||
if (num_points < 3)
|
||||
// This triangle touches the cutting plane with a single vertex. Ignore it.
|
||||
return false;
|
||||
// Erase one of the duplicate points.
|
||||
-- num_points;
|
||||
for (int i = points_on_layer[1]; i < num_points; ++ i)
|
||||
points[i] = points[i + 1];
|
||||
}
|
||||
|
||||
if (!points.empty()) {
|
||||
assert(points.size() == 2); // facets must intersect each plane 0 or 2 times
|
||||
IntersectionLine line;
|
||||
line.a = (Point)points[1];
|
||||
line.b = (Point)points[0];
|
||||
line.a_id = points[1].point_id;
|
||||
line.b_id = points[0].point_id;
|
||||
line.edge_a_id = points[1].edge_id;
|
||||
line.edge_b_id = points[0].edge_id;
|
||||
if (lines_mutex != NULL) {
|
||||
boost::lock_guard<boost::mutex> l(*lines_mutex);
|
||||
lines->push_back(line);
|
||||
} else {
|
||||
lines->push_back(line);
|
||||
}
|
||||
return;
|
||||
// Facets must intersect each plane 0 or 2 times.
|
||||
assert(num_points == 0 || num_points == 2);
|
||||
if (num_points == 2) {
|
||||
line_out->edge_type = feNone;
|
||||
line_out->a = (Point)points[1];
|
||||
line_out->b = (Point)points[0];
|
||||
line_out->a_id = points[1].point_id;
|
||||
line_out->b_id = points[0].point_id;
|
||||
line_out->edge_a_id = points[1].edge_id;
|
||||
line_out->edge_b_id = points[0].edge_id;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void
|
||||
@ -677,28 +828,20 @@ TriangleMeshSlicer::_make_loops_do(size_t i, std::vector<IntersectionLines>* lin
|
||||
this->make_loops((*lines)[i], &(*layers)[i]);
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygons* loops) const
|
||||
void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygons* loops) const
|
||||
{
|
||||
/*
|
||||
SVG svg("lines.svg");
|
||||
svg.draw(lines);
|
||||
svg.Close();
|
||||
*/
|
||||
|
||||
// remove tangent edges
|
||||
for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++line) {
|
||||
if (line->skip || line->edge_type == feNone) continue;
|
||||
|
||||
/* if the line is a facet edge, find another facet edge
|
||||
having the same endpoints but in reverse order */
|
||||
for (IntersectionLines::iterator line2 = line + 1; line2 != lines.end(); ++line2) {
|
||||
if (line2->skip || line2->edge_type == feNone) continue;
|
||||
|
||||
// are these facets adjacent? (sharing a common edge on this layer)
|
||||
// Remove tangent edges.
|
||||
//FIXME This is O(n^2) in rare cases when many faces intersect the cutting plane.
|
||||
for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++ line)
|
||||
if (! line->skip && line->edge_type != feNone) {
|
||||
// This line is af facet edge. There may be a duplicate line with the same end vertices.
|
||||
// If the line is is an edge connecting two facets, find another facet edge
|
||||
// having the same endpoints but in reverse order.
|
||||
for (IntersectionLines::iterator line2 = line + 1; line2 != lines.end(); ++ line2)
|
||||
if (! line2->skip && line2->edge_type != feNone) {
|
||||
// Are these facets adjacent? (sharing a common edge on this layer)
|
||||
if (line->a_id == line2->a_id && line->b_id == line2->b_id) {
|
||||
line2->skip = true;
|
||||
|
||||
/* if they are both oriented upwards or downwards (like a 'V')
|
||||
then we can remove both edges from this layer since it won't
|
||||
affect the sliced shape */
|
||||
@ -721,27 +864,33 @@ TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygons* l
|
||||
}
|
||||
|
||||
// build a map of lines by edge_a_id and a_id
|
||||
std::vector<IntersectionLinePtrs> by_edge_a_id, by_a_id;
|
||||
by_edge_a_id.resize(this->mesh->stl.stats.number_of_facets * 3);
|
||||
by_a_id.resize(this->mesh->stl.stats.shared_vertices);
|
||||
//FIXME replace the vectors of vectors by vectors of indices to a continuous memory.
|
||||
std::vector<IntersectionLinePtrs> by_edge_a_id(this->mesh->stl.stats.number_of_facets * 3);
|
||||
std::vector<IntersectionLinePtrs> by_a_id(this->mesh->stl.stats.shared_vertices);
|
||||
for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++ line) {
|
||||
if (line->skip) continue;
|
||||
if (line->edge_a_id != -1) by_edge_a_id[line->edge_a_id].push_back(&(*line));
|
||||
if (line->a_id != -1) by_a_id[line->a_id].push_back(&(*line));
|
||||
if (! line->skip) {
|
||||
if (line->edge_a_id != -1)
|
||||
by_edge_a_id[line->edge_a_id].push_back(&(*line));
|
||||
if (line->a_id != -1)
|
||||
by_a_id[line->a_id].push_back(&(*line));
|
||||
}
|
||||
}
|
||||
|
||||
IntersectionLines::iterator it_line_seed = lines.begin();
|
||||
CYCLE: while (1) {
|
||||
// take first spare line and start a new loop
|
||||
IntersectionLine* first_line = NULL;
|
||||
for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++line) {
|
||||
if (line->skip) continue;
|
||||
first_line = &(*line);
|
||||
IntersectionLine *first_line = nullptr;
|
||||
for (; it_line_seed != lines.end(); ++ it_line_seed)
|
||||
if (! it_line_seed->skip) {
|
||||
first_line = &(*it_line_seed ++);
|
||||
break;
|
||||
}
|
||||
if (first_line == NULL) break;
|
||||
if (first_line == nullptr)
|
||||
break;
|
||||
first_line->skip = true;
|
||||
IntersectionLinePtrs loop;
|
||||
loop.push_back(first_line);
|
||||
Points loop_pts;
|
||||
loop_pts.push_back(first_line->a);
|
||||
IntersectionLine *last_line = first_line;
|
||||
|
||||
/*
|
||||
printf("first_line edge_a_id = %d, edge_b_id = %d, a_id = %d, b_id = %d, a = %d,%d, b = %d,%d\n",
|
||||
@ -749,50 +898,40 @@ TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygons* l
|
||||
first_line->a.x, first_line->a.y, first_line->b.x, first_line->b.y);
|
||||
*/
|
||||
|
||||
while (1) {
|
||||
for (;;) {
|
||||
// find a line starting where last one finishes
|
||||
IntersectionLine* next_line = NULL;
|
||||
if (loop.back()->edge_b_id != -1) {
|
||||
IntersectionLinePtrs &candidates = by_edge_a_id[loop.back()->edge_b_id];
|
||||
for (IntersectionLinePtrs::iterator lineptr = candidates.begin(); lineptr != candidates.end(); ++lineptr) {
|
||||
if ((*lineptr)->skip) continue;
|
||||
IntersectionLine* next_line = nullptr;
|
||||
if (last_line->edge_b_id != -1) {
|
||||
IntersectionLinePtrs &candidates = by_edge_a_id[last_line->edge_b_id];
|
||||
for (IntersectionLinePtrs::iterator lineptr = candidates.begin(); lineptr != candidates.end(); ++ lineptr)
|
||||
if (! (*lineptr)->skip) {
|
||||
next_line = *lineptr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (next_line == NULL && loop.back()->b_id != -1) {
|
||||
IntersectionLinePtrs &candidates = by_a_id[loop.back()->b_id];
|
||||
for (IntersectionLinePtrs::iterator lineptr = candidates.begin(); lineptr != candidates.end(); ++lineptr) {
|
||||
if ((*lineptr)->skip) continue;
|
||||
if (next_line == nullptr && last_line->b_id != -1) {
|
||||
IntersectionLinePtrs &candidates = by_a_id[last_line->b_id];
|
||||
for (IntersectionLinePtrs::iterator lineptr = candidates.begin(); lineptr != candidates.end(); ++ lineptr)
|
||||
if (! (*lineptr)->skip) {
|
||||
next_line = *lineptr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (next_line == NULL) {
|
||||
if (next_line == nullptr) {
|
||||
// check whether we closed this loop
|
||||
if ((loop.front()->edge_a_id != -1 && loop.front()->edge_a_id == loop.back()->edge_b_id)
|
||||
|| (loop.front()->a_id != -1 && loop.front()->a_id == loop.back()->b_id)) {
|
||||
if ((first_line->edge_a_id != -1 && first_line->edge_a_id == last_line->edge_b_id) ||
|
||||
(first_line->a_id != -1 && first_line->a_id == last_line->b_id)) {
|
||||
// loop is complete
|
||||
Polygon p;
|
||||
p.points.reserve(loop.size());
|
||||
for (IntersectionLinePtrs::const_iterator lineptr = loop.begin(); lineptr != loop.end(); ++lineptr) {
|
||||
p.points.push_back((*lineptr)->a);
|
||||
}
|
||||
|
||||
loops->push_back(p);
|
||||
|
||||
loops->emplace_back(std::move(loop_pts));
|
||||
#ifdef SLIC3R_TRIANGLEMESH_DEBUG
|
||||
printf(" Discovered %s polygon of %d points\n", (p.is_counter_clockwise() ? "ccw" : "cw"), (int)p.points.size());
|
||||
#endif
|
||||
|
||||
goto CYCLE;
|
||||
}
|
||||
|
||||
// we can't close this loop!
|
||||
//// push @failed_loops, [@loop];
|
||||
//#ifdef SLIC3R_TRIANGLEMESH_DEBUG
|
||||
printf(" Unable to close this loop having %d points\n", (int)loop.size());
|
||||
printf(" Unable to close this loop having %d points\n", (int)loop_pts.size());
|
||||
//#endif
|
||||
goto CYCLE;
|
||||
}
|
||||
@ -801,59 +940,95 @@ TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygons* l
|
||||
next_line->edge_a_id, next_line->edge_b_id, next_line->a_id, next_line->b_id,
|
||||
next_line->a.x, next_line->a.y, next_line->b.x, next_line->b.y);
|
||||
*/
|
||||
loop.push_back(next_line);
|
||||
loop_pts.push_back(next_line->a);
|
||||
last_line = next_line;
|
||||
next_line->skip = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class _area_comp {
|
||||
public:
|
||||
_area_comp(std::vector<double>* _aa) : abs_area(_aa) {};
|
||||
bool operator() (const size_t &a, const size_t &b) {
|
||||
return (*this->abs_area)[a] > (*this->abs_area)[b];
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<double>* abs_area;
|
||||
};
|
||||
|
||||
void
|
||||
TriangleMeshSlicer::make_expolygons_simple(std::vector<IntersectionLine> &lines, ExPolygons* slices) const
|
||||
// Only used to cut the mesh into two halves.
|
||||
void TriangleMeshSlicer::make_expolygons_simple(std::vector<IntersectionLine> &lines, ExPolygons* slices) const
|
||||
{
|
||||
assert(slices->empty());
|
||||
|
||||
Polygons loops;
|
||||
this->make_loops(lines, &loops);
|
||||
|
||||
Polygons cw;
|
||||
Polygons holes;
|
||||
for (Polygons::const_iterator loop = loops.begin(); loop != loops.end(); ++ loop) {
|
||||
if (loop->area() >= 0) {
|
||||
if (loop->area() >= 0.) {
|
||||
ExPolygon ex;
|
||||
ex.contour = *loop;
|
||||
slices->push_back(ex);
|
||||
} else {
|
||||
cw.push_back(*loop);
|
||||
holes.push_back(*loop);
|
||||
}
|
||||
}
|
||||
|
||||
// assign holes to contours
|
||||
for (Polygons::const_iterator loop = cw.begin(); loop != cw.end(); ++loop) {
|
||||
// If there are holes, then there should also be outer contours.
|
||||
assert(holes.empty() || ! slices->empty());
|
||||
if (slices->empty())
|
||||
return;
|
||||
|
||||
// Assign holes to outer contours.
|
||||
for (Polygons::const_iterator hole = holes.begin(); hole != holes.end(); ++ hole) {
|
||||
// Find an outer contour to a hole.
|
||||
int slice_idx = -1;
|
||||
double current_contour_area = -1;
|
||||
double current_contour_area = std::numeric_limits<double>::max();
|
||||
for (ExPolygons::iterator slice = slices->begin(); slice != slices->end(); ++ slice) {
|
||||
if (slice->contour.contains(loop->points.front())) {
|
||||
if (slice->contour.contains(hole->points.front())) {
|
||||
double area = slice->contour.area();
|
||||
if (area < current_contour_area || current_contour_area == -1) {
|
||||
if (area < current_contour_area) {
|
||||
slice_idx = slice - slices->begin();
|
||||
current_contour_area = area;
|
||||
}
|
||||
}
|
||||
}
|
||||
(*slices)[slice_idx].holes.push_back(*loop);
|
||||
}
|
||||
// assert(slice_idx != -1);
|
||||
if (slice_idx == -1)
|
||||
// Ignore this hole.
|
||||
continue;
|
||||
assert(current_contour_area < std::numeric_limits<double>::max() && current_contour_area >= -hole->area());
|
||||
(*slices)[slice_idx].holes.emplace_back(std::move(*hole));
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) const
|
||||
#if 0
|
||||
// If the input mesh is not valid, the holes may intersect with the external contour.
|
||||
// Rather subtract them from the outer contour.
|
||||
Polygons poly;
|
||||
for (auto it_slice = slices->begin(); it_slice != slices->end(); ++ it_slice) {
|
||||
if (it_slice->holes.empty()) {
|
||||
poly.emplace_back(std::move(it_slice->contour));
|
||||
} else {
|
||||
Polygons contours;
|
||||
contours.emplace_back(std::move(it_slice->contour));
|
||||
for (auto it = it_slice->holes.begin(); it != it_slice->holes.end(); ++ it)
|
||||
it->reverse();
|
||||
polygons_append(poly, diff(contours, it_slice->holes));
|
||||
}
|
||||
}
|
||||
// If the input mesh is not valid, the input contours may intersect.
|
||||
*slices = union_ex(poly);
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
// If the input mesh is not valid, the holes may intersect with the external contour.
|
||||
// Rather subtract them from the outer contour.
|
||||
ExPolygons poly;
|
||||
for (auto it_slice = slices->begin(); it_slice != slices->end(); ++ it_slice) {
|
||||
Polygons contours;
|
||||
contours.emplace_back(std::move(it_slice->contour));
|
||||
for (auto it = it_slice->holes.begin(); it != it_slice->holes.end(); ++ it)
|
||||
it->reverse();
|
||||
expolygons_append(poly, diff_ex(contours, it_slice->holes));
|
||||
}
|
||||
// If the input mesh is not valid, the input contours may intersect.
|
||||
*slices = std::move(poly);
|
||||
#endif
|
||||
}
|
||||
|
||||
void TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) const
|
||||
{
|
||||
/*
|
||||
Input loops are not suitable for evenodd nor nonzero fill types, as we might get
|
||||
@ -873,16 +1048,15 @@ TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) c
|
||||
*/
|
||||
|
||||
std::vector<double> area;
|
||||
std::vector<double> abs_area;
|
||||
std::vector<size_t> sorted_area; // vector of indices
|
||||
for (Polygons::const_iterator loop = loops.begin(); loop != loops.end(); ++ loop) {
|
||||
double a = loop->area();
|
||||
area.push_back(a);
|
||||
abs_area.push_back(std::fabs(a));
|
||||
area.push_back(loop->area());
|
||||
sorted_area.push_back(loop - loops.begin());
|
||||
}
|
||||
|
||||
std::sort(sorted_area.begin(), sorted_area.end(), _area_comp(&abs_area)); // outer first
|
||||
// outer first
|
||||
std::sort(sorted_area.begin(), sorted_area.end(),
|
||||
[&area](size_t a, size_t b) { return std::abs(area[a]) > std::abs(area[b]); });
|
||||
|
||||
// we don't perform a safety offset now because it might reverse cw loops
|
||||
Polygons p_slices;
|
||||
@ -894,6 +1068,11 @@ TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) c
|
||||
if (area[*loop_idx] > +EPSILON)
|
||||
p_slices.push_back(*loop);
|
||||
else if (area[*loop_idx] < -EPSILON)
|
||||
//FIXME This is arbitrary and possibly very slow.
|
||||
// If the hole is inside a polygon, then there is no need to diff.
|
||||
// If the hole intersects a polygon boundary, then diff it, but then
|
||||
// there is no guarantee of an ordering of the loops.
|
||||
// Maybe we can test for the intersection before running the expensive diff algorithm?
|
||||
p_slices = diff(p_slices, *loop);
|
||||
}
|
||||
|
||||
@ -903,9 +1082,8 @@ TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) c
|
||||
|
||||
#ifdef SLIC3R_TRIANGLEMESH_DEBUG
|
||||
size_t holes_count = 0;
|
||||
for (ExPolygons::const_iterator e = ex_slices.begin(); e != ex_slices.end(); ++e) {
|
||||
for (ExPolygons::const_iterator e = ex_slices.begin(); e != ex_slices.end(); ++ e)
|
||||
holes_count += e->holes.size();
|
||||
}
|
||||
printf(PRINTF_ZU " surface(s) having " PRINTF_ZU " holes detected from " PRINTF_ZU " polylines\n",
|
||||
ex_slices.size(), holes_count, loops.size());
|
||||
#endif
|
||||
@ -914,51 +1092,47 @@ TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) c
|
||||
expolygons_append(*slices, ex_slices);
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMeshSlicer::make_expolygons(std::vector<IntersectionLine> &lines, ExPolygons* slices) const
|
||||
void TriangleMeshSlicer::make_expolygons(std::vector<IntersectionLine> &lines, ExPolygons* slices) const
|
||||
{
|
||||
Polygons pp;
|
||||
this->make_loops(lines, &pp);
|
||||
this->make_expolygons(pp, slices);
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower) const
|
||||
void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower) const
|
||||
{
|
||||
IntersectionLines upper_lines, lower_lines;
|
||||
|
||||
float scaled_z = scale_(z);
|
||||
for (int facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; facet_idx++) {
|
||||
for (int facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; ++ facet_idx) {
|
||||
stl_facet* facet = &this->mesh->stl.facet_start[facet_idx];
|
||||
|
||||
// find facet extents
|
||||
float min_z = fminf(facet->vertex[0].z, fminf(facet->vertex[1].z, facet->vertex[2].z));
|
||||
float max_z = fmaxf(facet->vertex[0].z, fmaxf(facet->vertex[1].z, facet->vertex[2].z));
|
||||
float min_z = std::min(facet->vertex[0].z, std::min(facet->vertex[1].z, facet->vertex[2].z));
|
||||
float max_z = std::max(facet->vertex[0].z, std::max(facet->vertex[1].z, facet->vertex[2].z));
|
||||
|
||||
// intersect facet with cutting plane
|
||||
IntersectionLines lines;
|
||||
this->slice_facet(scaled_z, *facet, facet_idx, min_z, max_z, &lines);
|
||||
|
||||
// save intersection lines for generating correct triangulations
|
||||
for (IntersectionLines::const_iterator it = lines.begin(); it != lines.end(); ++it) {
|
||||
if (it->edge_type == feTop) {
|
||||
lower_lines.push_back(*it);
|
||||
} else if (it->edge_type == feBottom) {
|
||||
upper_lines.push_back(*it);
|
||||
} else if (it->edge_type != feHorizontal) {
|
||||
lower_lines.push_back(*it);
|
||||
upper_lines.push_back(*it);
|
||||
IntersectionLine line;
|
||||
if (this->slice_facet(scaled_z, *facet, facet_idx, min_z, max_z, &line)) {
|
||||
// Save intersection lines for generating correct triangulations.
|
||||
if (line.edge_type == feTop) {
|
||||
lower_lines.push_back(line);
|
||||
} else if (line.edge_type == feBottom) {
|
||||
upper_lines.push_back(line);
|
||||
} else if (line.edge_type != feHorizontal) {
|
||||
lower_lines.push_back(line);
|
||||
upper_lines.push_back(line);
|
||||
}
|
||||
}
|
||||
|
||||
if (min_z > z || (min_z == z && max_z > min_z)) {
|
||||
if (min_z > z || (min_z == z && max_z > z)) {
|
||||
// facet is above the cut plane and does not belong to it
|
||||
if (upper != NULL) stl_add_facet(&upper->stl, facet);
|
||||
} else if (max_z < z || (max_z == z && max_z > min_z)) {
|
||||
} else if (max_z < z || (max_z == z && min_z < z)) {
|
||||
// facet is below the cut plane and does not belong to it
|
||||
if (lower != NULL) stl_add_facet(&lower->stl, facet);
|
||||
} else if (min_z < z && max_z > z) {
|
||||
// facet is cut by the slicing plane
|
||||
// Facet is cut by the slicing plane.
|
||||
|
||||
// look for the vertex on whose side of the slicing plane there are no other vertices
|
||||
int isolated_vertex;
|
||||
@ -1072,74 +1246,11 @@ TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower) const
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
stl_get_size(&(upper->stl));
|
||||
stl_get_size(&(lower->stl));
|
||||
// Update the bounding box / sphere of the new meshes.
|
||||
stl_get_size(&upper->stl);
|
||||
stl_get_size(&lower->stl);
|
||||
}
|
||||
|
||||
TriangleMeshSlicer::TriangleMeshSlicer(TriangleMesh* _mesh) : mesh(_mesh), v_scaled_shared(NULL)
|
||||
{
|
||||
// build a table to map a facet_idx to its three edge indices
|
||||
this->mesh->require_shared_vertices();
|
||||
typedef std::pair<int,int> t_edge;
|
||||
typedef std::vector<t_edge> t_edges; // edge_idx => a_id,b_id
|
||||
typedef std::map<t_edge,int> t_edges_map; // a_id,b_id => edge_idx
|
||||
|
||||
this->facets_edges.resize(this->mesh->stl.stats.number_of_facets);
|
||||
|
||||
{
|
||||
t_edges edges;
|
||||
// reserve() instad of resize() because otherwise we couldn't read .size() below to assign edge_idx
|
||||
edges.reserve(this->mesh->stl.stats.number_of_facets * 3); // number of edges = number of facets * 3
|
||||
t_edges_map edges_map;
|
||||
for (int facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; facet_idx++) {
|
||||
this->facets_edges[facet_idx].resize(3);
|
||||
for (int i = 0; i <= 2; i++) {
|
||||
int a_id = this->mesh->stl.v_indices[facet_idx].vertex[i];
|
||||
int b_id = this->mesh->stl.v_indices[facet_idx].vertex[(i+1) % 3];
|
||||
|
||||
int edge_idx;
|
||||
t_edges_map::const_iterator my_edge = edges_map.find(std::make_pair(b_id,a_id));
|
||||
if (my_edge != edges_map.end()) {
|
||||
edge_idx = my_edge->second;
|
||||
} else {
|
||||
/* admesh can assign the same edge ID to more than two facets (which is
|
||||
still topologically correct), so we have to search for a duplicate of
|
||||
this edge too in case it was already seen in this orientation */
|
||||
my_edge = edges_map.find(std::make_pair(a_id,b_id));
|
||||
|
||||
if (my_edge != edges_map.end()) {
|
||||
edge_idx = my_edge->second;
|
||||
} else {
|
||||
// edge isn't listed in table, so we insert it
|
||||
edge_idx = edges.size();
|
||||
edges.push_back(std::make_pair(a_id,b_id));
|
||||
edges_map[ edges[edge_idx] ] = edge_idx;
|
||||
}
|
||||
}
|
||||
this->facets_edges[facet_idx][i] = edge_idx;
|
||||
|
||||
#ifdef SLIC3R_TRIANGLEMESH_DEBUG
|
||||
printf(" [facet %d, edge %d] a_id = %d, b_id = %d --> edge %d\n", facet_idx, i, a_id, b_id, edge_idx);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// clone shared vertices coordinates and scale them
|
||||
this->v_scaled_shared = (stl_vertex*)calloc(this->mesh->stl.stats.shared_vertices, sizeof(stl_vertex));
|
||||
std::copy(this->mesh->stl.v_shared, this->mesh->stl.v_shared + this->mesh->stl.stats.shared_vertices, this->v_scaled_shared);
|
||||
for (int i = 0; i < this->mesh->stl.stats.shared_vertices; i++) {
|
||||
this->v_scaled_shared[i].x /= SCALING_FACTOR;
|
||||
this->v_scaled_shared[i].y /= SCALING_FACTOR;
|
||||
this->v_scaled_shared[i].z /= SCALING_FACTOR;
|
||||
}
|
||||
}
|
||||
|
||||
TriangleMeshSlicer::~TriangleMeshSlicer()
|
||||
{
|
||||
if (this->v_scaled_shared != NULL) free(this->v_scaled_shared);
|
||||
}
|
||||
// Generate the vertex list for a cube solid of arbitrary size in X/Y/Z.
|
||||
TriangleMesh make_cube(double x, double y, double z) {
|
||||
Pointf3 pv[8] = {
|
||||
|
@ -23,12 +23,14 @@ class TriangleMesh
|
||||
TriangleMesh();
|
||||
TriangleMesh(const Pointf3s &points, const std::vector<Point3> &facets);
|
||||
TriangleMesh(const TriangleMesh &other);
|
||||
TriangleMesh(TriangleMesh &&other);
|
||||
TriangleMesh& operator= (TriangleMesh other);
|
||||
TriangleMesh& operator= (TriangleMesh &&other);
|
||||
void swap(TriangleMesh &other);
|
||||
~TriangleMesh();
|
||||
void ReadSTLFile(char* input_file);
|
||||
void write_ascii(char* output_file);
|
||||
void write_binary(char* output_file);
|
||||
void ReadSTLFile(const char* input_file);
|
||||
void write_ascii(const char* output_file);
|
||||
void write_binary(const char* output_file);
|
||||
void repair();
|
||||
void WriteOBJFile(char* output_file);
|
||||
void scale(float factor);
|
||||
@ -52,6 +54,14 @@ class TriangleMesh
|
||||
void reset_repair_stats();
|
||||
bool needed_repair() const;
|
||||
size_t facets_count() const;
|
||||
|
||||
// Returns true, if there are two and more connected patches in the mesh.
|
||||
// Returns false, if one or zero connected patch is in the mesh.
|
||||
bool has_multiple_patches() const;
|
||||
|
||||
// Count disconnected triangle patches.
|
||||
size_t number_of_patches() const;
|
||||
|
||||
stl_file stl;
|
||||
bool repaired;
|
||||
|
||||
@ -60,24 +70,44 @@ class TriangleMesh
|
||||
friend class TriangleMeshSlicer;
|
||||
};
|
||||
|
||||
enum FacetEdgeType { feNone, feTop, feBottom, feHorizontal };
|
||||
enum FacetEdgeType {
|
||||
// A general case, the cutting plane intersect a face at two different edges.
|
||||
feNone,
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is below the cutting plane.
|
||||
feTop,
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane.
|
||||
feBottom,
|
||||
// All three vertices of a face are aligned with the cutting plane.
|
||||
feHorizontal
|
||||
};
|
||||
|
||||
class IntersectionPoint : public Point
|
||||
{
|
||||
public:
|
||||
int point_id;
|
||||
int edge_id;
|
||||
IntersectionPoint() : point_id(-1), edge_id(-1) {};
|
||||
// Inherits coord_t x, y
|
||||
// Where is this intersection point located? On mesh vertex or mesh edge?
|
||||
// Only one of the following will be set, the other will remain set to -1.
|
||||
// Index of the mesh vertex.
|
||||
int point_id;
|
||||
// Index of the mesh edge.
|
||||
int edge_id;
|
||||
};
|
||||
|
||||
class IntersectionLine : public Line
|
||||
{
|
||||
public:
|
||||
// Inherits Point a, b
|
||||
// For each line end point, either {a,b}_id or {a,b}edge_a_id is set, the other is left to -1.
|
||||
// Vertex indices of the line end points.
|
||||
int a_id;
|
||||
int b_id;
|
||||
// Source mesh edges of the line end points.
|
||||
int edge_a_id;
|
||||
int edge_b_id;
|
||||
// feNone, feTop, feBottom, feHorizontal
|
||||
FacetEdgeType edge_type;
|
||||
// Used by TriangleMeshSlicer::make_loops() to skip duplicate edges.
|
||||
bool skip;
|
||||
IntersectionLine() : a_id(-1), b_id(-1), edge_a_id(-1), edge_b_id(-1), edge_type(feNone), skip(false) {};
|
||||
};
|
||||
@ -87,20 +117,20 @@ typedef std::vector<IntersectionLine*> IntersectionLinePtrs;
|
||||
class TriangleMeshSlicer
|
||||
{
|
||||
public:
|
||||
TriangleMesh* mesh;
|
||||
TriangleMeshSlicer(TriangleMesh* _mesh);
|
||||
~TriangleMeshSlicer();
|
||||
void slice(const std::vector<float> &z, std::vector<Polygons>* layers) const;
|
||||
void slice(const std::vector<float> &z, std::vector<ExPolygons>* layers) const;
|
||||
void slice_facet(float slice_z, const stl_facet &facet, const int &facet_idx,
|
||||
const float &min_z, const float &max_z, std::vector<IntersectionLine>* lines,
|
||||
boost::mutex* lines_mutex = NULL) const;
|
||||
bool slice_facet(float slice_z, const stl_facet &facet, const int facet_idx,
|
||||
const float min_z, const float max_z, IntersectionLine *line_out) const;
|
||||
void cut(float z, TriangleMesh* upper, TriangleMesh* lower) const;
|
||||
|
||||
private:
|
||||
typedef std::vector< std::vector<int> > t_facets_edges;
|
||||
t_facets_edges facets_edges;
|
||||
stl_vertex* v_scaled_shared;
|
||||
const TriangleMesh *mesh;
|
||||
// Map from a facet to an edge index.
|
||||
std::vector<int> facets_edges;
|
||||
// Scaled copy of this->mesh->stl.v_shared
|
||||
std::vector<stl_vertex> v_scaled_shared;
|
||||
|
||||
void _slice_do(size_t facet_idx, std::vector<IntersectionLines>* lines, boost::mutex* lines_mutex, const std::vector<float> &z) const;
|
||||
void _make_loops_do(size_t i, std::vector<IntersectionLines>* lines, std::vector<Polygons>* layers) const;
|
||||
void make_loops(std::vector<IntersectionLine> &lines, Polygons* loops) const;
|
||||
|
Loading…
Reference in New Issue
Block a user