Add ModelArrange.hpp as extension to Model.hpp, use it for duplicating

Refactored Arrange interface: remove the union based BedShapeHint, replace it with proper function overloads

WARN: this commit is only intermediate, it does not compile.
This commit is contained in:
tamasmeszaros 2020-04-23 18:19:03 +02:00
parent 44ca0a6c3d
commit 1bffc2b99b
13 changed files with 389 additions and 481 deletions

View File

@ -34,6 +34,7 @@
#include "libslic3r/Config.hpp" #include "libslic3r/Config.hpp"
#include "libslic3r/Geometry.hpp" #include "libslic3r/Geometry.hpp"
#include "libslic3r/Model.hpp" #include "libslic3r/Model.hpp"
#include "libslic3r/ModelArrange.hpp"
#include "libslic3r/Print.hpp" #include "libslic3r/Print.hpp"
#include "libslic3r/SLAPrint.hpp" #include "libslic3r/SLAPrint.hpp"
#include "libslic3r/TriangleMesh.hpp" #include "libslic3r/TriangleMesh.hpp"
@ -53,12 +54,6 @@
using namespace Slic3r; using namespace Slic3r;
PrinterTechnology get_printer_technology(const DynamicConfig &config)
{
const ConfigOptionEnum<PrinterTechnology> *opt = config.option<ConfigOptionEnum<PrinterTechnology>>("printer_technology");
return (opt == nullptr) ? ptUnknown : opt->value;
}
int CLI::run(int argc, char **argv) int CLI::run(int argc, char **argv)
{ {
// Switch boost::filesystem to utf8. // Switch boost::filesystem to utf8.
@ -87,12 +82,14 @@ int CLI::run(int argc, char **argv)
m_extra_config.apply(m_config, true); m_extra_config.apply(m_config, true);
m_extra_config.normalize(); m_extra_config.normalize();
PrinterTechnology printer_technology = Slic3r::printer_technology(m_config);
bool start_gui = m_actions.empty() && bool start_gui = m_actions.empty() &&
// cutting transformations are setting an "export" action. // cutting transformations are setting an "export" action.
std::find(m_transforms.begin(), m_transforms.end(), "cut") == m_transforms.end() && std::find(m_transforms.begin(), m_transforms.end(), "cut") == m_transforms.end() &&
std::find(m_transforms.begin(), m_transforms.end(), "cut_x") == m_transforms.end() && std::find(m_transforms.begin(), m_transforms.end(), "cut_x") == m_transforms.end() &&
std::find(m_transforms.begin(), m_transforms.end(), "cut_y") == m_transforms.end(); std::find(m_transforms.begin(), m_transforms.end(), "cut_y") == m_transforms.end();
PrinterTechnology printer_technology = get_printer_technology(m_extra_config);
const std::vector<std::string> &load_configs = m_config.option<ConfigOptionStrings>("load", true)->values; const std::vector<std::string> &load_configs = m_config.option<ConfigOptionStrings>("load", true)->values;
// load config files supplied via --load // load config files supplied via --load
@ -113,7 +110,7 @@ int CLI::run(int argc, char **argv)
return 1; return 1;
} }
config.normalize(); config.normalize();
PrinterTechnology other_printer_technology = get_printer_technology(config); PrinterTechnology other_printer_technology = Slic3r::printer_technology(config);
if (printer_technology == ptUnknown) { if (printer_technology == ptUnknown) {
printer_technology = other_printer_technology; printer_technology = other_printer_technology;
} else if (printer_technology != other_printer_technology && other_printer_technology != ptUnknown) { } else if (printer_technology != other_printer_technology && other_printer_technology != ptUnknown) {
@ -134,7 +131,7 @@ int CLI::run(int argc, char **argv)
// When loading an AMF or 3MF, config is imported as well, including the printer technology. // When loading an AMF or 3MF, config is imported as well, including the printer technology.
DynamicPrintConfig config; DynamicPrintConfig config;
model = Model::read_from_file(file, &config, true); model = Model::read_from_file(file, &config, true);
PrinterTechnology other_printer_technology = get_printer_technology(config); PrinterTechnology other_printer_technology = Slic3r::printer_technology(config);
if (printer_technology == ptUnknown) { if (printer_technology == ptUnknown) {
printer_technology = other_printer_technology; printer_technology = other_printer_technology;
} else if (printer_technology != other_printer_technology && other_printer_technology != ptUnknown) { } else if (printer_technology != other_printer_technology && other_printer_technology != ptUnknown) {
@ -161,9 +158,6 @@ int CLI::run(int argc, char **argv)
// Normalizing after importing the 3MFs / AMFs // Normalizing after importing the 3MFs / AMFs
m_print_config.normalize(); m_print_config.normalize();
if (printer_technology == ptUnknown)
printer_technology = std::find(m_actions.begin(), m_actions.end(), "export_sla") == m_actions.end() ? ptFFF : ptSLA;
// Initialize full print configs for both the FFF and SLA technologies. // Initialize full print configs for both the FFF and SLA technologies.
FullPrintConfig fff_print_config; FullPrintConfig fff_print_config;
SLAFullPrintConfig sla_print_config; SLAFullPrintConfig sla_print_config;
@ -187,10 +181,18 @@ int CLI::run(int argc, char **argv)
m_print_config.apply(sla_print_config, true); m_print_config.apply(sla_print_config, true);
} }
double min_obj_dist = min_object_distance(m_print_config); std::string validity = m_print_config.validate();
if (!validity.empty()) {
boost::nowide::cerr << "error: " << validity << std::endl;
return 1;
}
// Loop through transform options. // Loop through transform options.
bool user_center_specified = false; bool user_center_specified = false;
Points bed = get_bed_shape(m_print_config);
ArrangeParams arrange_cfg;
arrange_cfg.min_obj_distance = scaled(min_object_distance(m_print_config));
for (auto const &opt_key : m_transforms) { for (auto const &opt_key : m_transforms) {
if (opt_key == "merge") { if (opt_key == "merge") {
Model m; Model m;
@ -200,29 +202,33 @@ int CLI::run(int argc, char **argv)
// Rearrange instances unless --dont-arrange is supplied // Rearrange instances unless --dont-arrange is supplied
if (! m_config.opt_bool("dont_arrange")) { if (! m_config.opt_bool("dont_arrange")) {
m.add_default_instances(); m.add_default_instances();
const BoundingBoxf &bb = fff_print_config.bed_shape.values; if (this->has_print_action())
m.arrange_objects( arrange_objects(m, bed, arrange_cfg);
min_obj_dist, else
// If we are going to use the merged model for printing, honor arrange_objects(m, InfiniteBed{}, arrange_cfg);
// the configured print bed for arranging, otherwise do it freely.
this->has_print_action() ? &bb : nullptr
);
} }
m_models.clear(); m_models.clear();
m_models.emplace_back(std::move(m)); m_models.emplace_back(std::move(m));
} else if (opt_key == "duplicate") { } else if (opt_key == "duplicate") {
const BoundingBoxf &bb = fff_print_config.bed_shape.values;
for (auto &model : m_models) { for (auto &model : m_models) {
const bool all_objects_have_instances = std::none_of( const bool all_objects_have_instances = std::none_of(
model.objects.begin(), model.objects.end(), model.objects.begin(), model.objects.end(),
[](ModelObject* o){ return o->instances.empty(); } [](ModelObject* o){ return o->instances.empty(); }
); );
if (all_objects_have_instances) {
// if all input objects have defined position(s) apply duplication to the whole model int dups = m_config.opt_int("duplicate");
model.duplicate(m_config.opt_int("duplicate"), min_obj_dist, &bb); if (!all_objects_have_instances) model.add_default_instances();
} else {
model.add_default_instances(); try {
model.duplicate_objects(m_config.opt_int("duplicate"), min_obj_dist, &bb); if (dups > 1) {
// if all input objects have defined position(s) apply duplication to the whole model
duplicate(model, size_t(dups), bed, arrange_cfg);
} else {
arrange_objects(model, bed, arrange_cfg);
}
} catch (std::exception &ex) {
boost::nowide::cerr << "error: " << ex.what() << std::endl;
return 1;
} }
} }
} else if (opt_key == "duplicate_grid") { } else if (opt_key == "duplicate_grid") {
@ -426,11 +432,11 @@ int CLI::run(int argc, char **argv)
PrintBase *print = (printer_technology == ptFFF) ? static_cast<PrintBase*>(&fff_print) : static_cast<PrintBase*>(&sla_print); PrintBase *print = (printer_technology == ptFFF) ? static_cast<PrintBase*>(&fff_print) : static_cast<PrintBase*>(&sla_print);
if (! m_config.opt_bool("dont_arrange")) { if (! m_config.opt_bool("dont_arrange")) {
//FIXME make the min_object_distance configurable. if (user_center_specified) {
model.arrange_objects(min_obj_dist); Vec2d c = m_config.option<ConfigOptionPoint>("center")->value;
model.center_instances_around_point((! user_center_specified && m_print_config.has("bed_shape")) ? arrange_objects(model, InfiniteBed{scaled(c)}, arrange_cfg);
BoundingBoxf(m_print_config.opt<ConfigOptionPoints>("bed_shape")->values).center() : } else
m_config.option<ConfigOptionPoint>("center")->value); arrange_objects(model, bed, arrange_cfg);
} }
if (printer_technology == ptFFF) { if (printer_technology == ptFFF) {
for (auto* mo : model.objects) for (auto* mo : model.objects)
@ -613,6 +619,8 @@ bool CLI::setup(int argc, char **argv)
set_logging_level(opt_loglevel->value); set_logging_level(opt_loglevel->value);
} }
std::string validity = m_config.validate();
// Initialize with defaults. // Initialize with defaults.
for (const t_optiondef_map *options : { &cli_actions_config_def.options, &cli_transform_config_def.options, &cli_misc_config_def.options }) for (const t_optiondef_map *options : { &cli_actions_config_def.options, &cli_transform_config_def.options, &cli_misc_config_def.options })
for (const std::pair<t_config_option_key, ConfigOptionDef> &optdef : *options) for (const std::pair<t_config_option_key, ConfigOptionDef> &optdef : *options)
@ -620,6 +628,11 @@ bool CLI::setup(int argc, char **argv)
set_data_dir(m_config.opt_string("datadir")); set_data_dir(m_config.opt_string("datadir"));
if (!validity.empty()) {
boost::nowide::cerr << "error: " << validity << std::endl;
return false;
}
return true; return true;
} }

View File

@ -1,7 +1,6 @@
#include "Arrange.hpp" #include "Arrange.hpp"
#include "Geometry.hpp" //#include "Geometry.hpp"
#include "SVG.hpp" #include "SVG.hpp"
#include "MTUtils.hpp"
#include <libnest2d/backends/clipper/geometries.hpp> #include <libnest2d/backends/clipper/geometries.hpp>
#include <libnest2d/optimizers/nlopt/subplex.hpp> #include <libnest2d/optimizers/nlopt/subplex.hpp>
@ -83,7 +82,7 @@ const double BIG_ITEM_TRESHOLD = 0.02;
// Fill in the placer algorithm configuration with values carefully chosen for // Fill in the placer algorithm configuration with values carefully chosen for
// Slic3r. // Slic3r.
template<class PConf> template<class PConf>
void fillConfig(PConf& pcfg) { void fill_config(PConf& pcfg) {
// Align the arranged pile into the center of the bin // Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER; pcfg.alignment = PConf::Alignment::CENTER;
@ -105,7 +104,7 @@ void fillConfig(PConf& pcfg) {
// Apply penalty to object function result. This is used only when alignment // Apply penalty to object function result. This is used only when alignment
// after arrange is explicitly disabled (PConfig::Alignment::DONT_ALIGN) // after arrange is explicitly disabled (PConfig::Alignment::DONT_ALIGN)
double fixed_overfit(const std::tuple<double, Box>& result, const Box &binbb) static double fixed_overfit(const std::tuple<double, Box>& result, const Box &binbb)
{ {
double score = std::get<0>(result); double score = std::get<0>(result);
Box pilebb = std::get<1>(result); Box pilebb = std::get<1>(result);
@ -312,7 +311,7 @@ public:
, m_bin_area(sl::area(bin)) , m_bin_area(sl::area(bin))
, m_norm(std::sqrt(m_bin_area)) , m_norm(std::sqrt(m_bin_area))
{ {
fillConfig(m_pconf); fill_config(m_pconf);
// Set up a callback that is called just before arranging starts // Set up a callback that is called just before arranging starts
// This functionality is provided by the Nester class (m_pack). // This functionality is provided by the Nester class (m_pack).
@ -363,6 +362,9 @@ public:
m_item_count = 0; m_item_count = 0;
} }
PConfig& config() { return m_pconf; }
const PConfig& config() const { return m_pconf; }
inline void preload(std::vector<Item>& fixeditems) { inline void preload(std::vector<Item>& fixeditems) {
m_pconf.alignment = PConfig::Alignment::DONT_ALIGN; m_pconf.alignment = PConfig::Alignment::DONT_ALIGN;
auto bb = sl::boundingBox(m_bin); auto bb = sl::boundingBox(m_bin);
@ -438,127 +440,6 @@ std::function<double(const Item &)> AutoArranger<clppr::Polygon>::get_objfn()
}; };
} }
inline Circle to_lnCircle(const CircleBed& circ) {
return Circle({circ.center()(0), circ.center()(1)}, circ.radius());
}
// Get the type of bed geometry from a simple vector of points.
void BedShapeHint::reset(BedShapes type)
{
if (m_type != type) {
if (m_type == bsIrregular)
m_bed.polygon.Slic3r::Polyline::~Polyline();
else if (type == bsIrregular)
::new (&m_bed.polygon) Polyline();
}
m_type = type;
}
BedShapeHint::BedShapeHint(const Polyline &bed) {
auto x = [](const Point& p) { return p(X); };
auto y = [](const Point& p) { return p(Y); };
auto width = [x](const BoundingBox& box) {
return x(box.max) - x(box.min);
};
auto height = [y](const BoundingBox& box) {
return y(box.max) - y(box.min);
};
auto area = [&width, &height](const BoundingBox& box) {
double w = width(box);
double h = height(box);
return w * h;
};
auto poly_area = [](Polyline p) {
Polygon pp; pp.points.reserve(p.points.size() + 1);
pp.points = std::move(p.points);
pp.points.emplace_back(pp.points.front());
return std::abs(pp.area());
};
auto distance_to = [x, y](const Point& p1, const Point& p2) {
double dx = x(p2) - x(p1);
double dy = y(p2) - y(p1);
return std::sqrt(dx*dx + dy*dy);
};
auto bb = bed.bounding_box();
auto isCircle = [bb, distance_to](const Polyline& polygon) {
auto center = bb.center();
std::vector<double> vertex_distances;
double avg_dist = 0;
for (auto pt: polygon.points)
{
double distance = distance_to(center, pt);
vertex_distances.push_back(distance);
avg_dist += distance;
}
avg_dist /= vertex_distances.size();
CircleBed ret(center, avg_dist);
for(auto el : vertex_distances)
{
if (std::abs(el - avg_dist) > 10 * SCALED_EPSILON) {
ret = CircleBed();
break;
}
}
return ret;
};
auto parea = poly_area(bed);
if( (1.0 - parea/area(bb)) < 1e-3 ) {
m_type = BedShapes::bsBox;
m_bed.box = bb;
}
else if(auto c = isCircle(bed)) {
m_type = BedShapes::bsCircle;
m_bed.circ = c;
} else {
assert(m_type != BedShapes::bsIrregular);
m_type = BedShapes::bsIrregular;
::new (&m_bed.polygon) Polyline(bed);
}
}
BedShapeHint &BedShapeHint::operator=(BedShapeHint &&cpy)
{
reset(cpy.m_type);
switch(m_type) {
case bsBox: m_bed.box = std::move(cpy.m_bed.box); break;
case bsCircle: m_bed.circ = std::move(cpy.m_bed.circ); break;
case bsIrregular: m_bed.polygon = std::move(cpy.m_bed.polygon); break;
case bsInfinite: m_bed.infbed = std::move(cpy.m_bed.infbed); break;
case bsUnknown: break;
}
return *this;
}
BedShapeHint &BedShapeHint::operator=(const BedShapeHint &cpy)
{
reset(cpy.m_type);
switch(m_type) {
case bsBox: m_bed.box = cpy.m_bed.box; break;
case bsCircle: m_bed.circ = cpy.m_bed.circ; break;
case bsIrregular: m_bed.polygon = cpy.m_bed.polygon; break;
case bsInfinite: m_bed.infbed = cpy.m_bed.infbed; break;
case bsUnknown: break;
}
return *this;
}
template<class Bin> void remove_large_items(std::vector<Item> &items, Bin &&bin) template<class Bin> void remove_large_items(std::vector<Item> &items, Bin &&bin)
{ {
auto it = items.begin(); auto it = items.begin();
@ -572,12 +453,12 @@ void _arrange(
std::vector<Item> & shapes, std::vector<Item> & shapes,
std::vector<Item> & excludes, std::vector<Item> & excludes,
const BinT & bin, const BinT & bin,
coord_t minobjd, const ArrangeParams & params,
std::function<void(unsigned)> progressfn, std::function<void(unsigned)> progressfn,
std::function<bool()> stopfn) std::function<bool()> stopfn)
{ {
// Integer ceiling the min distance from the bed perimeters // Integer ceiling the min distance from the bed perimeters
coord_t md = minobjd; coord_t md = params.min_obj_distance;
md = (md % 2) ? md / 2 + 1 : md / 2; md = (md % 2) ? md / 2 + 1 : md / 2;
auto corrected_bin = bin; auto corrected_bin = bin;
@ -585,7 +466,10 @@ void _arrange(
AutoArranger<BinT> arranger{corrected_bin, progressfn, stopfn}; AutoArranger<BinT> arranger{corrected_bin, progressfn, stopfn};
auto infl = coord_t(std::ceil(minobjd / 2.0)); arranger.config().accuracy = params.accuracy;
arranger.config().parallel = params.parallel;
auto infl = coord_t(std::ceil(params.min_obj_distance / 2.0));
for (Item& itm : shapes) itm.inflate(infl); for (Item& itm : shapes) itm.inflate(infl);
for (Item& itm : excludes) itm.inflate(infl); for (Item& itm : excludes) itm.inflate(infl);
@ -603,44 +487,106 @@ void _arrange(
for (Item &itm : inp) itm.inflate(-infl); for (Item &itm : inp) itm.inflate(-infl);
} }
// The final client function for arrangement. A progress indicator and inline Box to_nestbin(const BoundingBox &bb) { return Box{{bb.min(X), bb.min(Y)}, {bb.max(X), bb.max(Y)}};}
// a stop predicate can be also be passed to control the process. inline Circle to_nestbin(const CircleBed &c) { return Circle({c.center()(0), c.center()(1)}, c.radius()); }
void arrange(ArrangePolygons & arrangables, inline clppr::Polygon to_nestbin(const Polygon &p) { return sl::create<clppr::Polygon>(Slic3rMultiPoint_to_ClipperPath(p)); }
const ArrangePolygons & excludes, inline Box to_nestbin(const InfiniteBed &bed) { return Box::infinite({bed.center.x(), bed.center.y()}); }
coord_t min_obj_dist,
const BedShapeHint & bedhint, inline coord_t width(const BoundingBox& box) { return box.max.x() - box.min.x(); }
std::function<void(unsigned)> progressind, inline coord_t height(const BoundingBox& box) { return box.max.y() - box.min.y(); }
std::function<bool()> stopcondition) inline double area(const BoundingBox& box) { return double(width(box)) * height(box); }
inline double poly_area(const Points &pts) { return std::abs(Polygon::area(pts)); }
inline double distance_to(const Point& p1, const Point& p2)
{
double dx = p2.x() - p1.x();
double dy = p2.y() - p1.y();
return std::sqrt(dx*dx + dy*dy);
}
static CircleBed to_circle(const Point &center, const Points& points) {
std::vector<double> vertex_distances;
double avg_dist = 0;
for (auto pt : points)
{
double distance = distance_to(center, pt);
vertex_distances.push_back(distance);
avg_dist += distance;
}
avg_dist /= vertex_distances.size();
CircleBed ret(center, avg_dist);
for(auto el : vertex_distances)
{
if (std::abs(el - avg_dist) > 10 * SCALED_EPSILON) {
ret = {};
break;
}
}
return ret;
}
// Create Item from Arrangeable
static void process_arrangeable(const ArrangePolygon &arrpoly,
std::vector<Item> & outp)
{
Polygon p = arrpoly.poly.contour;
const Vec2crd &offs = arrpoly.translation;
double rotation = arrpoly.rotation;
if (p.is_counter_clockwise()) p.reverse();
clppr::Polygon clpath(Slic3rMultiPoint_to_ClipperPath(p));
if (!clpath.Contour.empty()) {
auto firstp = clpath.Contour.front();
clpath.Contour.emplace_back(firstp);
}
outp.emplace_back(std::move(clpath));
outp.back().rotation(rotation);
outp.back().translation({offs.x(), offs.y()});
outp.back().binId(arrpoly.bed_idx);
outp.back().priority(arrpoly.priority);
}
template<>
void arrange(ArrangePolygons & items,
const ArrangePolygons &excludes,
const Points & bed,
const ArrangeParams & params)
{
if (bed.empty())
arrange(items, excludes, InfiniteBed{}, params);
else if (bed.size() == 1)
arrange(items, excludes, InfiniteBed{bed.front()}, params);
else {
auto bb = BoundingBox(bed);
CircleBed circ = to_circle(bb.center(), bed);
auto parea = poly_area(bed);
if ((1.0 - parea / area(bb)) < 1e-3)
arrange(items, excludes, bb, params);
else if (!std::isnan(circ.radius()))
arrange(items, excludes, circ, params);
else
arrange(items, excludes, Polygon(bed), params);
}
}
template<class BedT>
void arrange(ArrangePolygons & arrangables,
const ArrangePolygons &excludes,
const BedT & bed,
const ArrangeParams & params)
{ {
namespace clppr = ClipperLib; namespace clppr = ClipperLib;
std::vector<Item> items, fixeditems; std::vector<Item> items, fixeditems;
items.reserve(arrangables.size()); items.reserve(arrangables.size());
// Create Item from Arrangeable
auto process_arrangeable = [](const ArrangePolygon &arrpoly,
std::vector<Item> & outp)
{
Polygon p = arrpoly.poly.contour;
const Vec2crd &offs = arrpoly.translation;
double rotation = arrpoly.rotation;
if (p.is_counter_clockwise()) p.reverse();
clppr::Polygon clpath(Slic3rMultiPoint_to_ClipperPath(p));
if (!clpath.Contour.empty()) {
auto firstp = clpath.Contour.front();
clpath.Contour.emplace_back(firstp);
}
outp.emplace_back(std::move(clpath));
outp.back().rotation(rotation);
outp.back().translation({offs.x(), offs.y()});
outp.back().binId(arrpoly.bed_idx);
outp.back().priority(arrpoly.priority);
};
for (ArrangePolygon &arrangeable : arrangables) for (ArrangePolygon &arrangeable : arrangables)
process_arrangeable(arrangeable, items); process_arrangeable(arrangeable, items);
@ -649,45 +595,10 @@ void arrange(ArrangePolygons & arrangables,
for (Item &itm : fixeditems) itm.inflate(scaled(-2. * EPSILON)); for (Item &itm : fixeditems) itm.inflate(scaled(-2. * EPSILON));
auto &cfn = stopcondition; auto &cfn = params.stopcondition;
auto &pri = progressind; auto &pri = params.progressind;
switch (bedhint.get_type()) { _arrange(items, fixeditems, to_nestbin(bed), params, pri, cfn);
case bsBox: {
// Create the arranger for the box shaped bed
BoundingBox bbb = bedhint.get_box();
Box binbb{{bbb.min(X), bbb.min(Y)}, {bbb.max(X), bbb.max(Y)}};
_arrange(items, fixeditems, binbb, min_obj_dist, pri, cfn);
break;
}
case bsCircle: {
auto cc = to_lnCircle(bedhint.get_circle());
_arrange(items, fixeditems, cc, min_obj_dist, pri, cfn);
break;
}
case bsIrregular: {
auto ctour = Slic3rMultiPoint_to_ClipperPath(bedhint.get_irregular());
auto irrbed = sl::create<clppr::Polygon>(std::move(ctour));
BoundingBox polybb(bedhint.get_irregular());
_arrange(items, fixeditems, irrbed, min_obj_dist, pri, cfn);
break;
}
case bsInfinite: {
const InfiniteBed& nobin = bedhint.get_infinite();
auto infbb = Box::infinite({nobin.center.x(), nobin.center.y()});
_arrange(items, fixeditems, infbb, min_obj_dist, pri, cfn);
break;
}
case bsUnknown: {
// We know nothing about the bed, let it be infinite and zero centered
_arrange(items, fixeditems, Box::infinite(), min_obj_dist, pri, cfn);
break;
}
}
for(size_t i = 0; i < items.size(); ++i) { for(size_t i = 0; i < items.size(); ++i) {
clppr::IntPoint tr = items[i].translation(); clppr::IntPoint tr = items[i].translation();
@ -697,15 +608,10 @@ void arrange(ArrangePolygons & arrangables,
} }
} }
// Arrange, without the fixed items (excludes) template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const BoundingBox &bed, const ArrangeParams &params);
void arrange(ArrangePolygons & inp, template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const CircleBed &bed, const ArrangeParams &params);
coord_t min_d, template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const Polygon &bed, const ArrangeParams &params);
const BedShapeHint & bedhint, template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const InfiniteBed &bed, const ArrangeParams &params);
std::function<void(unsigned)> prfn,
std::function<bool()> stopfn)
{
arrange(inp, {}, min_d, bedhint, prfn, stopfn);
}
} // namespace arr } // namespace arr
} // namespace Slic3r } // namespace Slic3r

View File

@ -1,12 +1,10 @@
#ifndef MODELARRANGE_HPP #ifndef ARRANGE_HPP
#define MODELARRANGE_HPP #define ARRANGE_HPP
#include "ExPolygon.hpp" #include "ExPolygon.hpp"
#include "BoundingBox.hpp" #include "BoundingBox.hpp"
namespace Slic3r { namespace Slic3r { namespace arrangement {
namespace arrangement {
/// A geometry abstraction for a circular print bed. Similarly to BoundingBox. /// A geometry abstraction for a circular print bed. Similarly to BoundingBox.
class CircleBed { class CircleBed {
@ -15,96 +13,16 @@ class CircleBed {
public: public:
inline CircleBed(): center_(0, 0), radius_(std::nan("")) {} inline CircleBed(): center_(0, 0), radius_(std::nan("")) {}
inline CircleBed(const Point& c, double r): center_(c), radius_(r) {} explicit inline CircleBed(const Point& c, double r): center_(c), radius_(r) {}
inline double radius() const { return radius_; } inline double radius() const { return radius_; }
inline const Point& center() const { return center_; } inline const Point& center() const { return center_; }
inline operator bool() { return !std::isnan(radius_); }
}; };
/// Representing an unbounded bed. /// Representing an unbounded bed.
struct InfiniteBed { Point center; }; struct InfiniteBed {
Point center;
/// Types of print bed shapes. explicit InfiniteBed(const Point &p = {0, 0}): center{p} {}
enum BedShapes {
bsBox,
bsCircle,
bsIrregular,
bsInfinite,
bsUnknown
};
/// Info about the print bed for the arrange() function. This is a variant
/// holding one of the four shapes a bed can be.
class BedShapeHint {
BedShapes m_type = BedShapes::bsInfinite;
// The union neither calls constructors nor destructors of its members.
// The only member with non-trivial constructor / destructor is the polygon,
// a placement new / delete needs to be called over it.
union BedShape_u { // TODO: use variant from cpp17?
CircleBed circ;
BoundingBox box;
Polyline polygon;
InfiniteBed infbed{};
~BedShape_u() {}
BedShape_u() {}
} m_bed;
// Reset the type, allocate m_bed properly
void reset(BedShapes type);
public:
BedShapeHint(){}
/// Get a bed shape hint for arrange() from a naked Polyline.
explicit BedShapeHint(const Polyline &polyl);
explicit BedShapeHint(const BoundingBox &bb)
{
m_type = bsBox; m_bed.box = bb;
}
explicit BedShapeHint(const CircleBed &c)
{
m_type = bsCircle; m_bed.circ = c;
}
explicit BedShapeHint(const InfiniteBed &ibed)
{
m_type = bsInfinite; m_bed.infbed = ibed;
}
~BedShapeHint()
{
if (m_type == BedShapes::bsIrregular)
m_bed.polygon.Slic3r::Polyline::~Polyline();
}
BedShapeHint(const BedShapeHint &cpy) { *this = cpy; }
BedShapeHint(BedShapeHint &&cpy) { *this = std::move(cpy); }
BedShapeHint &operator=(const BedShapeHint &cpy);
BedShapeHint& operator=(BedShapeHint &&cpy);
BedShapes get_type() const { return m_type; }
const BoundingBox &get_box() const
{
assert(m_type == bsBox); return m_bed.box;
}
const CircleBed &get_circle() const
{
assert(m_type == bsCircle); return m_bed.circ;
}
const Polyline &get_irregular() const
{
assert(m_type == bsIrregular); return m_bed.polygon;
}
const InfiniteBed &get_infinite() const
{
assert(m_type == bsInfinite); return m_bed.infbed;
}
}; };
/// A logical bed representing an object not being arranged. Either the arrange /// A logical bed representing an object not being arranged. Either the arrange
@ -125,9 +43,14 @@ struct ArrangePolygon {
ExPolygon poly; /// The 2D silhouette to be arranged ExPolygon poly; /// The 2D silhouette to be arranged
Vec2crd translation{0, 0}; /// The translation of the poly Vec2crd translation{0, 0}; /// The translation of the poly
double rotation{0.0}; /// The rotation of the poly in radians double rotation{0.0}; /// The rotation of the poly in radians
coord_t inflation = 0; /// Arrange with inflated polygon
int bed_idx{UNARRANGED}; /// To which logical bed does poly belong... int bed_idx{UNARRANGED}; /// To which logical bed does poly belong...
int priority{0}; int priority{0};
// If empty, any rotation is allowed (currently unsupported)
// If only a zero is there, no rotation is allowed
std::vector<double> allowed_rotations = {0.};
/// Optional setter function which can store arbitrary data in its closure /// Optional setter function which can store arbitrary data in its closure
std::function<void(const ArrangePolygon&)> setter = nullptr; std::function<void(const ArrangePolygon&)> setter = nullptr;
@ -140,6 +63,30 @@ struct ArrangePolygon {
using ArrangePolygons = std::vector<ArrangePolygon>; using ArrangePolygons = std::vector<ArrangePolygon>;
struct ArrangeParams {
/// The minimum distance which is allowed for any
/// pair of items on the print bed in any direction.
coord_t min_obj_distance = 0.;
/// The accuracy of optimization.
/// Goes from 0.0 to 1.0 and scales performance as well
float accuracy = 0.65f;
/// Allow parallel execution.
bool parallel = true;
/// Progress indicator callback called when an object gets packed.
/// The unsigned argument is the number of items remaining to pack.
std::function<void(unsigned)> progressind;
/// A predicate returning true if abort is needed.
std::function<bool(void)> stopcondition;
ArrangeParams() = default;
explicit ArrangeParams(coord_t md) : min_obj_distance(md) {}
};
/** /**
* \brief Arranges the input polygons. * \brief Arranges the input polygons.
* *
@ -150,33 +97,23 @@ using ArrangePolygons = std::vector<ArrangePolygon>;
* \param items Input vector of ArrangePolygons. The transformation, rotation * \param items Input vector of ArrangePolygons. The transformation, rotation
* and bin_idx fields will be changed after the call finished and can be used * and bin_idx fields will be changed after the call finished and can be used
* to apply the result on the input polygon. * to apply the result on the input polygon.
*
* \param min_obj_distance The minimum distance which is allowed for any
* pair of items on the print bed in any direction.
*
* \param bedhint Info about the shape and type of the bed.
*
* \param progressind Progress indicator callback called when
* an object gets packed. The unsigned argument is the number of items
* remaining to pack.
*
* \param stopcondition A predicate returning true if abort is needed.
*/ */
void arrange(ArrangePolygons & items, template<class TBed> void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const TBed &bed, const ArrangeParams &params = {});
coord_t min_obj_distance,
const BedShapeHint & bedhint,
std::function<void(unsigned)> progressind = nullptr,
std::function<bool(void)> stopcondition = nullptr);
/// Same as the previous, only that it takes unmovable items as an // A dispatch function that determines the bed shape from a set of points.
/// additional argument. Those will be considered as already arranged objects. template<> void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const Points &bed, const ArrangeParams &params);
void arrange(ArrangePolygons & items,
const ArrangePolygons & excludes, extern template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const BoundingBox &bed, const ArrangeParams &params);
coord_t min_obj_distance, extern template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const CircleBed &bed, const ArrangeParams &params);
const BedShapeHint & bedhint, extern template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const Polygon &bed, const ArrangeParams &params);
std::function<void(unsigned)> progressind = nullptr, extern template void arrange(ArrangePolygons &items, const ArrangePolygons &excludes, const InfiniteBed &bed, const ArrangeParams &params);
std::function<bool(void)> stopcondition = nullptr);
inline void arrange(ArrangePolygons &items, const Points &bed, const ArrangeParams &params = {}) { arrange(items, {}, bed, params); }
inline void arrange(ArrangePolygons &items, const BoundingBox &bed, const ArrangeParams &params = {}) { arrange(items, {}, bed, params); }
inline void arrange(ArrangePolygons &items, const CircleBed &bed, const ArrangeParams &params = {}) { arrange(items, {}, bed, params); }
inline void arrange(ArrangePolygons &items, const Polygon &bed, const ArrangeParams &params = {}) { arrange(items, {}, bed, params); }
inline void arrange(ArrangePolygons &items, const InfiniteBed &bed, const ArrangeParams &params = {}) { arrange(items, {}, bed, params); }
}} // namespace Slic3r::arrangement
} // arr
} // Slic3r
#endif // MODELARRANGE_HPP #endif // MODELARRANGE_HPP

View File

@ -120,6 +120,8 @@ add_library(libslic3r STATIC
Line.hpp Line.hpp
Model.cpp Model.cpp
Model.hpp Model.hpp
ModelArrange.hpp
ModelArrange.cpp
CustomGCode.cpp CustomGCode.cpp
CustomGCode.hpp CustomGCode.hpp
Arrange.hpp Arrange.hpp

View File

@ -1,4 +1,5 @@
#include "Model.hpp" #include "Model.hpp"
#include "ModelArrange.hpp"
#include "Geometry.hpp" #include "Geometry.hpp"
#include "MTUtils.hpp" #include "MTUtils.hpp"
@ -355,116 +356,6 @@ TriangleMesh Model::mesh() const
return mesh; return mesh;
} }
static bool _arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf* bb, Pointfs &out)
{
if (sizes.empty())
// return if the list is empty or the following call to BoundingBoxf constructor will lead to a crash
return true;
// we supply unscaled data to arrange()
bool result = Slic3r::Geometry::arrange(
sizes.size(), // number of parts
BoundingBoxf(sizes).max, // width and height of a single cell
dist, // distance between cells
bb, // bounding box of the area to fill
out // output positions
);
if (!result && bb != nullptr) {
// Try to arrange again ignoring bb
result = Slic3r::Geometry::arrange(
sizes.size(), // number of parts
BoundingBoxf(sizes).max, // width and height of a single cell
dist, // distance between cells
nullptr, // bounding box of the area to fill
out // output positions
);
}
return result;
}
/* arrange objects preserving their instance count
but altering their instance positions */
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
{
size_t count = 0;
for (auto obj : objects) count += obj->instances.size();
arrangement::ArrangePolygons input;
ModelInstancePtrs instances;
input.reserve(count);
instances.reserve(count);
for (ModelObject *mo : objects)
for (ModelInstance *minst : mo->instances) {
input.emplace_back(minst->get_arrange_polygon());
instances.emplace_back(minst);
}
arrangement::BedShapeHint bedhint;
coord_t bedwidth = 0;
if (bb) {
bedwidth = scaled(bb->size().x());
bedhint = arrangement::BedShapeHint(
BoundingBox(scaled(bb->min), scaled(bb->max)));
}
arrangement::arrange(input, scaled(dist), bedhint);
bool ret = true;
coord_t stride = bedwidth + bedwidth / 5;
for(size_t i = 0; i < input.size(); ++i) {
if (input[i].bed_idx != 0) ret = false;
if (input[i].bed_idx >= 0) {
input[i].translation += Vec2crd{input[i].bed_idx * stride, 0};
instances[i]->apply_arrange_result(input[i].translation.cast<double>(),
input[i].rotation);
}
}
return ret;
}
// Duplicate the entire model preserving instance relative positions.
void Model::duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb)
{
Pointfs model_sizes(copies_num-1, to_2d(this->bounding_box().size()));
Pointfs positions;
if (! _arrange(model_sizes, dist, bb, positions))
throw std::invalid_argument("Cannot duplicate part as the resulting objects would not fit on the print bed.\n");
// note that this will leave the object count unaltered
for (ModelObject *o : this->objects) {
// make a copy of the pointers in order to avoid recursion when appending their copies
ModelInstancePtrs instances = o->instances;
for (const ModelInstance *i : instances) {
for (const Vec2d &pos : positions) {
ModelInstance *instance = o->add_instance(*i);
instance->set_offset(instance->get_offset() + Vec3d(pos(0), pos(1), 0.0));
}
}
o->invalidate_bounding_box();
}
}
/* this will append more instances to each object
and then automatically rearrange everything */
void Model::duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb)
{
for (ModelObject *o : this->objects) {
// make a copy of the pointers in order to avoid recursion when appending their copies
ModelInstancePtrs instances = o->instances;
for (const ModelInstance *i : instances)
for (size_t k = 2; k <= copies_num; ++ k)
o->add_instance(*i);
}
this->arrange_objects(dist, bb);
}
void Model::duplicate_objects_grid(size_t x, size_t y, coordf_t dist) void Model::duplicate_objects_grid(size_t x, size_t y, coordf_t dist)
{ {
if (this->objects.size() > 1) throw "Grid duplication is not supported with multiple objects"; if (this->objects.size() > 1) throw "Grid duplication is not supported with multiple objects";
@ -1991,6 +1882,7 @@ void check_model_ids_equal(const Model &model1, const Model &model2)
} }
} }
} }
#endif /* NDEBUG */ #endif /* NDEBUG */
} }

View File

@ -802,11 +802,9 @@ public:
bool center_instances_around_point(const Vec2d &point); bool center_instances_around_point(const Vec2d &point);
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); } void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
TriangleMesh mesh() const; TriangleMesh mesh() const;
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL);
// Croaks if the duplicated objects do not fit the print bed. // Croaks if the duplicated objects do not fit the print bed.
void duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL); void duplicate_objects_grid(size_t x, size_t y, coordf_t dist);
void duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
void duplicate_objects_grid(size_t x, size_t y, coordf_t dist);
bool looks_like_multipart_object() const; bool looks_like_multipart_object() const;
void convert_multipart_object(unsigned int max_extruders); void convert_multipart_object(unsigned int max_extruders);
@ -822,6 +820,7 @@ public:
std::string propose_export_file_name_and_path(const std::string &new_extension) const; std::string propose_export_file_name_and_path(const std::string &new_extension) const;
private: private:
explicit Model(int) : ObjectBase(-1) { assert(this->id().invalid()); }; explicit Model(int) : ObjectBase(-1) { assert(this->id().invalid()); };
void assign_new_unique_ids_recursive(); void assign_new_unique_ids_recursive();
void update_links_bottom_up_recursive(); void update_links_bottom_up_recursive();
@ -831,7 +830,7 @@ private:
template<class Archive> void serialize(Archive &ar) { template<class Archive> void serialize(Archive &ar) {
Internal::StaticSerializationWrapper<ModelWipeTower> wipe_tower_wrapper(wipe_tower); Internal::StaticSerializationWrapper<ModelWipeTower> wipe_tower_wrapper(wipe_tower);
ar(materials, objects, wipe_tower_wrapper); ar(materials, objects, wipe_tower_wrapper);
} }
}; };
#undef OBJECTBASE_DERIVED_COPY_MOVE_CLONE #undef OBJECTBASE_DERIVED_COPY_MOVE_CLONE

View File

@ -0,0 +1,83 @@
#include "ModelArrange.hpp"
#include "MTUtils.hpp"
namespace Slic3r {
arrangement::ArrangePolygons get_arrange_polys(const Model &model, ModelInstancePtrs &instances)
{
size_t count = 0;
for (auto obj : model.objects) count += obj->instances.size();
ArrangePolygons input;
input.reserve(count);
instances.clear(); instances.reserve(count);
for (ModelObject *mo : model.objects)
for (ModelInstance *minst : mo->instances) {
input.emplace_back(minst->get_arrange_polygon());
instances.emplace_back(minst);
}
return input;
}
bool apply_arrange_polys(ArrangePolygons &input, ModelInstancePtrs &instances, VirtualBedFn vfn)
{
bool ret = true;
for(size_t i = 0; i < input.size(); ++i) {
if (input[i].bed_idx != 0) { ret = false; if (vfn) vfn(input[i]); }
if (input[i].bed_idx >= 0)
instances[i]->apply_arrange_result(input[i].translation,
input[i].rotation);
}
return ret;
}
Slic3r::arrangement::ArrangePolygon get_arrange_poly(const Model &model)
{
ArrangePolygon ap;
Points &apts = ap.poly.contour.points;
for (const ModelObject *mo : model.objects)
for (const ModelInstance *minst : mo->instances) {
ArrangePolygon obj_ap = minst->get_arrange_polygon();
ap.poly.contour.rotate(obj_ap.rotation);
ap.poly.contour.translate(obj_ap.translation.x(), obj_ap.translation.y());
const Points &pts = obj_ap.poly.contour.points;
std::copy(pts.begin(), pts.end(), std::back_inserter(apts));
}
apts = Geometry::convex_hull(apts);
return ap;
}
void duplicate(Model &model, Slic3r::arrangement::ArrangePolygons &copies, VirtualBedFn vfn)
{
for (ModelObject *o : model.objects) {
// make a copy of the pointers in order to avoid recursion when appending their copies
ModelInstancePtrs instances = o->instances;
o->instances.clear();
for (const ModelInstance *i : instances) {
for (arrangement::ArrangePolygon &ap : copies) {
if (ap.bed_idx != 0) vfn(ap);
ModelInstance *instance = o->add_instance(*i);
Vec2d pos = unscale(ap.translation);
instance->set_offset(instance->get_offset() + to_3d(pos, 0.));
}
}
o->invalidate_bounding_box();
}
}
void duplicate_objects(Model &model, size_t copies_num)
{
for (ModelObject *o : model.objects) {
// make a copy of the pointers in order to avoid recursion when appending their copies
ModelInstancePtrs instances = o->instances;
for (const ModelInstance *i : instances)
for (size_t k = 2; k <= copies_num; ++ k)
o->add_instance(*i);
}
}
} // namespace Slic3r

View File

@ -0,0 +1,68 @@
#ifndef MODELARRANGE_HPP
#define MODELARRANGE_HPP
#include <libslic3r/Model.hpp>
#include <libslic3r/Arrange.hpp>
namespace Slic3r {
using arrangement::ArrangePolygon;
using arrangement::ArrangePolygons;
using arrangement::ArrangeParams;
using arrangement::InfiniteBed;
using arrangement::CircleBed;
// Do something with ArrangePolygons in virtual beds
using VirtualBedFn = std::function<void(arrangement::ArrangePolygon&)>;
[[noreturn]] inline void throw_if_out_of_bed(arrangement::ArrangePolygon&)
{
throw std::runtime_error("Objects could not fit on the bed");
}
ArrangePolygons get_arrange_polys(const Model &model, ModelInstancePtrs &instances);
ArrangePolygon get_arrange_poly(const Model &model);
bool apply_arrange_polys(ArrangePolygons &polys, ModelInstancePtrs &instances, VirtualBedFn);
void duplicate(Model &model, ArrangePolygons &copies, VirtualBedFn);
void duplicate_objects(Model &model, size_t copies_num);
template<class TBed>
bool arrange_objects(Model & model,
const TBed & bed,
const ArrangeParams &params,
VirtualBedFn vfn = throw_if_out_of_bed)
{
ModelInstancePtrs instances;
auto&& input = get_arrange_polys(model, instances);
arrangement::arrange(input, bed, params);
return apply_arrange_polys(input, instances, vfn);
}
template<class TBed>
void duplicate(Model & model,
size_t copies_num,
const TBed & bed,
const ArrangeParams &params,
VirtualBedFn vfn = throw_if_out_of_bed)
{
ArrangePolygons copies(copies_num, get_arrange_poly(model));
arrangement::arrange(copies, bed, params);
duplicate(model, copies, vfn);
}
template<class TBed>
void duplicate_objects(Model & model,
size_t copies_num,
const TBed & bed,
const ArrangeParams &params,
VirtualBedFn vfn = throw_if_out_of_bed)
{
duplicate_objects(model, copies_num);
arrange_objects(model, bed, params, vfn);
}
}
#endif // MODELARRANGE_HPP

View File

@ -48,7 +48,7 @@ int64_t Polygon::area2x() const
} }
*/ */
double Polygon::area() const double Polygon::area(const Points &points)
{ {
size_t n = points.size(); size_t n = points.size();
if (n < 3) if (n < 3)
@ -62,6 +62,11 @@ double Polygon::area() const
return 0.5 * a; return 0.5 * a;
} }
double Polygon::area() const
{
return Polygon::area(points);
}
bool Polygon::is_counter_clockwise() const bool Polygon::is_counter_clockwise() const
{ {
return ClipperLib::Orientation(Slic3rMultiPoint_to_ClipperPath(*this)); return ClipperLib::Orientation(Slic3rMultiPoint_to_ClipperPath(*this));

View File

@ -22,6 +22,7 @@ public:
const Point& operator[](Points::size_type idx) const { return this->points[idx]; } const Point& operator[](Points::size_type idx) const { return this->points[idx]; }
Polygon() {} Polygon() {}
virtual ~Polygon() = default;
explicit Polygon(const Points &points) : MultiPoint(points) {} explicit Polygon(const Points &points) : MultiPoint(points) {}
Polygon(std::initializer_list<Point> points) : MultiPoint(points) {} Polygon(std::initializer_list<Point> points) : MultiPoint(points) {}
Polygon(const Polygon &other) : MultiPoint(other.points) {} Polygon(const Polygon &other) : MultiPoint(other.points) {}
@ -47,6 +48,7 @@ public:
Polyline split_at_first_point() const { return this->split_at_index(0); } Polyline split_at_first_point() const { return this->split_at_index(0); }
Points equally_spaced_points(double distance) const { return this->split_at_first_point().equally_spaced_points(distance); } Points equally_spaced_points(double distance) const { return this->split_at_first_point().equally_spaced_points(distance); }
static double area(const Points &pts);
double area() const; double area() const;
bool is_counter_clockwise() const; bool is_counter_clockwise() const;
bool is_clockwise() const; bool is_clockwise() const;

View File

@ -12,6 +12,7 @@
#include <boost/nowide/cstdio.hpp> #include <boost/nowide/cstdio.hpp>
#include <boost/filesystem.hpp> #include <boost/filesystem.hpp>
#include <libslic3r/ModelArrange.hpp>
using namespace std; using namespace std;
@ -167,8 +168,7 @@ void init_print(std::vector<TriangleMesh> &&meshes, Slic3r::Print &print, Slic3r
object->add_volume(std::move(t)); object->add_volume(std::move(t));
object->add_instance(); object->add_instance();
} }
model.arrange_objects(min_object_distance(config)); arrange_objects(model, InfiniteBed{}, ArrangeParams{ scaled(min_object_distance(config))});
model.center_instances_around_point(Slic3r::Vec2d(100, 100));
for (ModelObject *mo : model.objects) { for (ModelObject *mo : model.objects) {
mo->ensure_on_bed(); mo->ensure_on_bed();
print.auto_assign_extruders(mo); print.auto_assign_extruders(mo);

View File

@ -2,6 +2,7 @@
#include "libslic3r/libslic3r.h" #include "libslic3r/libslic3r.h"
#include "libslic3r/Model.hpp" #include "libslic3r/Model.hpp"
#include "libslic3r/ModelArrange.hpp"
#include <boost/nowide/cstdio.hpp> #include <boost/nowide/cstdio.hpp>
#include <boost/filesystem.hpp> #include <boost/filesystem.hpp>
@ -41,8 +42,7 @@ SCENARIO("Model construction", "[Model]") {
} }
} }
model_object->add_instance(); model_object->add_instance();
model.arrange_objects(min_object_distance(config)); arrange_objects(model, InfiniteBed{scaled(Vec2d(100, 100))}, ArrangeParams{scaled(min_object_distance(config))});
model.center_instances_around_point(Slic3r::Vec2d(100, 100));
model_object->ensure_on_bed(); model_object->ensure_on_bed();
print.auto_assign_extruders(model_object); print.auto_assign_extruders(model_object);
THEN("Print works?") { THEN("Print works?") {

View File

@ -3,6 +3,7 @@
%{ %{
#include <xsinit.h> #include <xsinit.h>
#include "libslic3r/Model.hpp" #include "libslic3r/Model.hpp"
#include "libslic3r/ModelArrange.hpp"
#include "libslic3r/Print.hpp" #include "libslic3r/Print.hpp"
#include "libslic3r/PrintConfig.hpp" #include "libslic3r/PrintConfig.hpp"
#include "libslic3r/Slicing.hpp" #include "libslic3r/Slicing.hpp"
@ -80,9 +81,9 @@
ModelObjectPtrs* objects() ModelObjectPtrs* objects()
%code%{ RETVAL = &THIS->objects; %}; %code%{ RETVAL = &THIS->objects; %};
bool arrange_objects(double dist, BoundingBoxf* bb = NULL); bool arrange_objects(double dist, BoundingBoxf* bb = NULL) %code%{ ArrangeParams ap{scaled(dist)}; if (bb) arrange_objects(*THIS, scaled(*bb), ap); else arrange_objects(*THIS, InfiniteBed{}, ap); %};
void duplicate(unsigned int copies_num, double dist, BoundingBoxf* bb = NULL); void duplicate(unsigned int copies_num, double dist, BoundingBoxf* bb = NULL) %code%{ ArrangeParams ap{scaled(dist)}; if (bb) duplicate(*THIS, copies_num, scaled(*bb), ap); else duplicate(*THIS, copies_num, InfiniteBed{}, ap); %};
void duplicate_objects(unsigned int copies_num, double dist, BoundingBoxf* bb = NULL); void duplicate_objects(unsigned int copies_num, double dist, BoundingBoxf* bb = NULL) %code%{ ArrangeParams ap{scaled(dist)}; if (bb) duplicate_objects(*THIS, copies_num, scaled(*bb), ap); else duplicate_objects(*THIS, copies_num, InfiniteBed{}, ap); %};
void duplicate_objects_grid(unsigned int x, unsigned int y, double dist); void duplicate_objects_grid(unsigned int x, unsigned int y, double dist);
bool looks_like_multipart_object() const; bool looks_like_multipart_object() const;