fix centroid error for two points and merge with dev.

This commit is contained in:
tamasmeszaros 2018-08-27 16:20:13 +02:00
commit 1c4574d42e
39 changed files with 849 additions and 132 deletions

View File

@ -149,9 +149,16 @@ sub new {
};
# callback to react to gizmo rotate
# omitting last three parameters means rotation around Z
# otherwise they are the components of the rotation axis vector
my $on_gizmo_rotate = sub {
my ($angle_z) = @_;
$self->rotate(rad2deg($angle_z), Z, 'absolute');
my ($angle, $axis_x, $axis_y, $axis_z) = @_;
if (!defined $axis_x) {
$self->rotate(rad2deg($angle), Z, 'absolute');
}
else {
$self->rotate(rad2deg($angle), undef, 'absolute', $axis_x, $axis_y, $axis_z) if $angle != 0;
}
};
# callback to update object's geometry info while using gizmos
@ -1077,9 +1084,10 @@ sub set_number_of_copies {
my $model_object = $self->{model}->objects->[$obj_idx];
# prompt user
my $copies = Wx::GetNumberFromUser("", L("Enter the number of copies of the selected object:"), L("Copies"), $model_object->instances_count, 0, 1000, $self);
my $copies = -1;
$copies = Wx::GetNumberFromUser("", L("Enter the number of copies of the selected object:"), L("Copies"), $model_object->instances_count, 0, 1000, $self);
my $diff = $copies - $model_object->instances_count;
if ($diff == 0) {
if ($diff == 0 || $copies == -1) {
# no variation
$self->resume_background_process;
} elsif ($diff > 0) {
@ -1112,28 +1120,40 @@ sub _get_number_from_user {
}
sub rotate {
my ($self, $angle, $axis, $relative_key) = @_;
my ($self, $angle, $axis, $relative_key, $axis_x, $axis_y, $axis_z) = @_;
$relative_key //= 'absolute'; # relative or absolute coordinates
$axis //= Z; # angle is in degrees
$axis_x //= 0;
$axis_y //= 0;
$axis_z //= 0;
my $relative = $relative_key eq 'relative';
my ($obj_idx, $object) = $self->selected_object;
return if !defined $obj_idx;
my $model_object = $self->{model}->objects->[$obj_idx];
my $model_instance = $model_object->instances->[0];
if (!defined $angle) {
my $axis_name = $axis == X ? 'X' : $axis == Y ? 'Y' : 'Z';
my $default = $axis == Z ? rad2deg($model_instance->rotation) : 0;
$angle = $self->_get_number_from_user(L("Enter the rotation angle:"), L("Rotate around ").$axis_name.(" axis"), L("Invalid rotation angle entered"), $default);
return if $angle eq '';
}
# Let's calculate vector of rotation axis (if we don't have it already)
# The minus is there so that the direction is the same as was established
if (defined $axis) {
if ($axis == X) {
$axis_x = -1;
}
if ($axis == Y) {
$axis_y = -1;
}
}
$self->stop_background_process;
if ($axis == Z) {
if (defined $axis && $axis == Z) {
my $new_angle = deg2rad($angle);
foreach my $inst (@{ $model_object->instances }) {
my $rotation = ($relative ? $inst->rotation : 0.) + $new_angle;
@ -1148,19 +1168,24 @@ sub rotate {
}
# $object->transform_thumbnail($self->{model}, $obj_idx);
} else {
# rotation around X and Y needs to be performed on mesh
# so we first apply any Z rotation
if ($model_instance->rotation != 0) {
$model_object->rotate($model_instance->rotation, Z);
$_->set_rotation(0) for @{ $model_object->instances };
if (defined $axis) {
# rotation around X and Y needs to be performed on mesh
# so we first apply any Z rotation
if ($model_instance->rotation != 0) {
$model_object->rotate($model_instance->rotation, Slic3r::Pointf3->new(0, 0, -1));
$_->set_rotation(0) for @{ $model_object->instances };
}
}
$model_object->rotate(deg2rad($angle), $axis);
$model_object->rotate(deg2rad($angle), Slic3r::Pointf3->new($axis_x, $axis_y, $axis_z));
# # realign object to Z = 0
# $model_object->center_around_origin;
# $self->reset_thumbnail($obj_idx);
}
Slic3r::GUI::update_rotation_value(deg2rad($angle), $axis == X ? "x" : ($axis == Y ? "y" : "z"));
if (defined $axis) {
Slic3r::GUI::update_rotation_value(deg2rad($angle), $axis == X ? "x" : ($axis == Y ? "y" : "z"));
}
# update print and start background processing
$self->{print}->add_model_object($model_object, $obj_idx);
@ -1181,7 +1206,7 @@ sub mirror {
# apply Z rotation before mirroring
if ($model_instance->rotation != 0) {
$model_object->rotate($model_instance->rotation, Z);
$model_object->rotate($model_instance->rotation, Slic3r::Pointf3->new(0, 0, 1));
$_->set_rotation(0) for @{ $model_object->instances };
}
@ -1228,7 +1253,7 @@ sub changescale {
# apply Z rotation before scaling
if ($model_instance->rotation != 0) {
$model_object->rotate($model_instance->rotation, Z);
$model_object->rotate($model_instance->rotation, Slic3r::Pointf3->new(0, 0, 1));
$_->set_rotation(0) for @{ $model_object->instances };
}

View File

@ -137,7 +137,7 @@ sub new {
# Adjust position / orientation of the split object halves.
if ($self->{new_model_objects}{lower}) {
if ($self->{cut_options}{rotate_lower}) {
$self->{new_model_objects}{lower}->rotate(PI, X);
$self->{new_model_objects}{lower}->rotate(PI, Slic3r::Pointf3->new(1,0,0));
$self->{new_model_objects}{lower}->center_around_origin; # align to Z = 0
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.7 KiB

View File

@ -2,6 +2,10 @@
#include <deque>
#include <thread>
#include <cstring>
#include <cstdlib>
#include <new>
#include <exception>
extern "C" {
#include "ac_cfg.h"
@ -28,6 +32,11 @@ static void avrdude_progress_handler_closure(const char *task, unsigned progress
(*progress_fn)(task, progress);
}
static void avrdude_oom_handler(const char *context, void *user_p)
{
throw std::bad_alloc();
}
// Private
@ -47,16 +56,22 @@ struct AvrDude::priv
priv(std::string &&sys_config) : sys_config(sys_config) {}
void set_handlers();
void unset_handlers();
int run_one(const std::vector<std::string> &args);
int run();
struct HandlerGuard
{
priv &p;
HandlerGuard(priv &p) : p(p) { p.set_handlers(); }
~HandlerGuard() { p.unset_handlers(); }
};
};
int AvrDude::priv::run_one(const std::vector<std::string> &args) {
std::vector<char*> c_args {{ const_cast<char*>(PACKAGE_NAME) }};
for (const auto &arg : args) {
c_args.push_back(const_cast<char*>(arg.data()));
}
void AvrDude::priv::set_handlers()
{
if (message_fn) {
::avrdude_message_handler_set(avrdude_message_handler_closure, reinterpret_cast<void*>(&message_fn));
} else {
@ -69,10 +84,27 @@ int AvrDude::priv::run_one(const std::vector<std::string> &args) {
::avrdude_progress_handler_set(nullptr, nullptr);
}
const auto res = ::avrdude_main(static_cast<int>(c_args.size()), c_args.data(), sys_config.c_str());
::avrdude_oom_handler_set(avrdude_oom_handler, nullptr);
}
void AvrDude::priv::unset_handlers()
{
::avrdude_message_handler_set(nullptr, nullptr);
::avrdude_progress_handler_set(nullptr, nullptr);
::avrdude_oom_handler_set(nullptr, nullptr);
}
int AvrDude::priv::run_one(const std::vector<std::string> &args) {
std::vector<char*> c_args {{ const_cast<char*>(PACKAGE_NAME) }};
for (const auto &arg : args) {
c_args.push_back(const_cast<char*>(arg.data()));
}
HandlerGuard guard(*this);
const auto res = ::avrdude_main(static_cast<int>(c_args.size()), c_args.data(), sys_config.c_str());
return res;
}
@ -134,7 +166,7 @@ AvrDude& AvrDude::on_complete(CompleteFn fn)
int AvrDude::run_sync()
{
return p->run();
return p ? p->run() : -1;
}
AvrDude::Ptr AvrDude::run()
@ -143,19 +175,46 @@ AvrDude::Ptr AvrDude::run()
if (self->p) {
auto avrdude_thread = std::thread([self]() {
bool cancel = false;
int res = -1;
try {
if (self->p->run_fn) {
self->p->run_fn(self);
}
if (self->p->run_fn) {
self->p->run_fn();
}
if (! self->p->cancelled) {
self->p->exit_code = self->p->run();
}
if (! self->p->cancelled) {
self->p->exit_code = self->p->run();
}
if (self->p->complete_fn) {
self->p->complete_fn();
}
} catch (const std::exception &ex) {
self->p->exit_code = EXIT_EXCEPTION;
if (self->p->complete_fn) {
self->p->complete_fn();
static const char *msg = "An exception was thrown in the background thread:\n";
const char *what = ex.what();
auto &message_fn = self->p->message_fn;
if (message_fn) {
message_fn(msg, sizeof(msg));
message_fn(what, std::strlen(what));
message_fn("\n", 1);
}
if (self->p->complete_fn) {
self->p->complete_fn();
}
} catch (...) {
self->p->exit_code = EXIT_EXCEPTION;
static const char *msg = "An unkown exception was thrown in the background thread.\n";
if (self->p->message_fn) {
self->p->message_fn(msg, sizeof(msg));
}
if (self->p->complete_fn) {
self->p->complete_fn();
}
}
});

View File

@ -11,8 +11,13 @@ namespace Slic3r {
class AvrDude
{
public:
enum {
EXIT_SUCCEESS = 0,
EXIT_EXCEPTION = -1000,
};
typedef std::shared_ptr<AvrDude> Ptr;
typedef std::function<void()> RunFn;
typedef std::function<void(Ptr /* avrdude */)> RunFn;
typedef std::function<void(const char * /* msg */, unsigned /* size */)> MessageFn;
typedef std::function<void(const char * /* task */, unsigned /* progress */)> ProgressFn;
typedef std::function<void()> CompleteFn;
@ -49,10 +54,18 @@ public:
// This has no effect when using run_sync().
AvrDude& on_complete(CompleteFn fn);
// Perform AvrDude invocation(s) synchronously on the current thread
int run_sync();
// Perform AvrDude invocation(s) on a background thread.
// Current instance is moved into a shared_ptr which is returned (and also passed in on_run, if any).
Ptr run();
// Cancel current operation
void cancel();
// If there is a background thread and it is joinable, join() it,
// that is, wait for it to finish.
void join();
bool cancelled(); // Whether avrdude run was cancelled

View File

@ -39,6 +39,12 @@ typedef void (*avrdude_progress_handler_t)(const char *task, unsigned progress,
void avrdude_progress_handler_set(avrdude_progress_handler_t newhandler, void *user_p);
void avrdude_progress_external(const char *task, unsigned progress);
// OOM handler
typedef void (*avrdude_oom_handler_t)(const char *context, void *user_p);
void avrdude_oom_handler_set(avrdude_oom_handler_t newhandler, void *user_p);
void avrdude_oom(const char *context);
// Cancellation
void avrdude_cancel();

View File

@ -36,8 +36,9 @@ OPCODE * avr_new_opcode(void)
m = (OPCODE *)malloc(sizeof(*m));
if (m == NULL) {
avrdude_message(MSG_INFO, "avr_new_opcode(): out of memory\n");
exit(1);
// avrdude_message(MSG_INFO, "avr_new_opcode(): out of memory\n");
// exit(1);
avrdude_oom("avr_new_opcode(): out of memory\n");
}
memset(m, 0, sizeof(*m));
@ -56,8 +57,9 @@ static OPCODE * avr_dup_opcode(OPCODE * op)
m = (OPCODE *)malloc(sizeof(*m));
if (m == NULL) {
avrdude_message(MSG_INFO, "avr_dup_opcode(): out of memory\n");
exit(1);
// avrdude_message(MSG_INFO, "avr_dup_opcode(): out of memory\n");
// exit(1);
avrdude_oom("avr_dup_opcode(): out of memory\n");
}
memcpy(m, op, sizeof(*m));
@ -249,8 +251,9 @@ AVRMEM * avr_new_memtype(void)
m = (AVRMEM *)malloc(sizeof(*m));
if (m == NULL) {
avrdude_message(MSG_INFO, "avr_new_memtype(): out of memory\n");
exit(1);
// avrdude_message(MSG_INFO, "avr_new_memtype(): out of memory\n");
// exit(1);
avrdude_oom("avr_new_memtype(): out of memory\n");
}
memset(m, 0, sizeof(*m));
@ -300,9 +303,10 @@ AVRMEM * avr_dup_mem(AVRMEM * m)
if (m->buf != NULL) {
n->buf = (unsigned char *)malloc(n->size);
if (n->buf == NULL) {
avrdude_message(MSG_INFO, "avr_dup_mem(): out of memory (memsize=%d)\n",
n->size);
exit(1);
// avrdude_message(MSG_INFO, "avr_dup_mem(): out of memory (memsize=%d)\n",
// n->size);
// exit(1);
avrdude_oom("avr_dup_mem(): out of memory");
}
memcpy(n->buf, m->buf, n->size);
}
@ -310,9 +314,10 @@ AVRMEM * avr_dup_mem(AVRMEM * m)
if (m->tags != NULL) {
n->tags = (unsigned char *)malloc(n->size);
if (n->tags == NULL) {
avrdude_message(MSG_INFO, "avr_dup_mem(): out of memory (memsize=%d)\n",
n->size);
exit(1);
// avrdude_message(MSG_INFO, "avr_dup_mem(): out of memory (memsize=%d)\n",
// n->size);
// exit(1);
avrdude_oom("avr_dup_mem(): out of memory");
}
memcpy(n->tags, m->tags, n->size);
}
@ -441,8 +446,9 @@ AVRPART * avr_new_part(void)
p = (AVRPART *)malloc(sizeof(AVRPART));
if (p == NULL) {
avrdude_message(MSG_INFO, "new_part(): out of memory\n");
exit(1);
// avrdude_message(MSG_INFO, "new_part(): out of memory\n");
// exit(1);
avrdude_oom("new_part(): out of memory\n");
}
memset(p, 0, sizeof(*p));

View File

@ -1135,9 +1135,10 @@ static void buspirate_setup(struct programmer_t *pgm)
{
/* Allocate private data */
if ((pgm->cookie = calloc(1, sizeof(struct pdata))) == 0) {
avrdude_message(MSG_INFO, "%s: buspirate_initpgm(): Out of memory allocating private data\n",
progname);
exit(1);
// avrdude_message(MSG_INFO, "%s: buspirate_initpgm(): Out of memory allocating private data\n",
// progname);
// exit(1);
avrdude_oom("buspirate_initpgm(): Out of memory allocating private data\n");
}
PDATA(pgm)->serial_recv_timeout = 100;
}

View File

@ -63,9 +63,10 @@ struct pdata
static void butterfly_setup(PROGRAMMER * pgm)
{
if ((pgm->cookie = malloc(sizeof(struct pdata))) == 0) {
avrdude_message(MSG_INFO, "%s: butterfly_setup(): Out of memory allocating private data\n",
progname);
exit(1);
// avrdude_message(MSG_INFO, "%s: butterfly_setup(): Out of memory allocating private data\n",
// progname);
// exit(1);
avrdude_oom("butterfly_setup(): Out of memory allocating private data\n");
}
memset(pgm->cookie, 0, sizeof(struct pdata));
}

View File

@ -2834,7 +2834,8 @@ YY_BUFFER_STATE yy_scan_bytes (const char * yybytes, int _yybytes_len )
n = (yy_size_t) (_yybytes_len + 2);
buf = (char *) yyalloc( n );
if ( ! buf )
YY_FATAL_ERROR( "out of dynamic memory in yy_scan_bytes()" );
// YY_FATAL_ERROR( "out of dynamic memory in yy_scan_bytes()" );
avrdude_oom("out of dynamic memory in yy_scan_bytes()");
for ( i = 0; i < _yybytes_len; ++i )
buf[i] = yybytes[i];
@ -2859,8 +2860,9 @@ YY_BUFFER_STATE yy_scan_bytes (const char * yybytes, int _yybytes_len )
static void yynoreturn yy_fatal_error (const char* msg )
{
fprintf( stderr, "%s\n", msg );
exit( YY_EXIT_FAILURE );
fprintf( stderr, "%s\n", msg );
// exit( YY_EXIT_FAILURE );
abort();
}
/* Redefine yyless() so it works in section 3 code. */

View File

@ -144,6 +144,33 @@ void avrdude_progress_external(const char *task, unsigned progress)
avrdude_progress_handler(task, progress, avrdude_progress_handler_user_p);
}
static void avrdude_oom_handler_null(const char *context, void *user_p)
{
// Output a message and just exit
fputs("avrdude: Out of memory: ", stderr);
fputs(context, stderr);
exit(99);
}
static void *avrdude_oom_handler_user_p = NULL;
static avrdude_oom_handler_t avrdude_oom_handler = avrdude_oom_handler_null;
void avrdude_oom_handler_set(avrdude_oom_handler_t newhandler, void *user_p)
{
if (newhandler != NULL) {
avrdude_oom_handler = newhandler;
avrdude_oom_handler_user_p = user_p;
} else {
avrdude_oom_handler = avrdude_oom_handler_null;
avrdude_oom_handler_user_p = NULL;
}
}
void avrdude_oom(const char *context)
{
avrdude_oom_handler(context, avrdude_oom_handler_user_p);
}
void avrdude_cancel()
{
cancel_flag = true;

View File

@ -172,9 +172,10 @@ PROGRAMMER * pgm_dup(const PROGRAMMER * const src)
for (ln = lfirst(src->usbpid); ln; ln = lnext(ln)) {
int *ip = malloc(sizeof(int));
if (ip == NULL) {
avrdude_message(MSG_INFO, "%s: out of memory allocating programmer structure\n",
progname);
exit(1);
// avrdude_message(MSG_INFO, "%s: out of memory allocating programmer structure\n",
// progname);
// exit(1);
avrdude_oom("out of memory allocating programmer structure\n");
}
*ip = *(int *) ldata(ln);
ladd(pgm->usbpid, ip);

View File

@ -246,10 +246,11 @@ static int ser_open(char * port, union pinfo pinfo, union filedescriptor *fdp)
newname = malloc(strlen("\\\\.\\") + strlen(port) + 1);
if (newname == 0) {
avrdude_message(MSG_INFO, "%s: ser_open(): out of memory\n",
progname);
exit(1);
}
// avrdude_message(MSG_INFO, "%s: ser_open(): out of memory\n",
// progname);
// exit(1);
avrdude_oom("ser_open(): out of memory\n");
}
strcpy(newname, "\\\\.\\");
strcat(newname, port);

View File

@ -295,9 +295,10 @@ static int stk600_xprog_program_enable(PROGRAMMER * pgm, AVRPART * p);
void stk500v2_setup(PROGRAMMER * pgm)
{
if ((pgm->cookie = malloc(sizeof(struct pdata))) == 0) {
avrdude_message(MSG_INFO, "%s: stk500v2_setup(): Out of memory allocating private data\n",
progname);
exit(1);
// avrdude_message(MSG_INFO, "%s: stk500v2_setup(): Out of memory allocating private data\n",
// progname);
// exit(1);
avrdude_oom("stk500v2_setup(): Out of memory allocating private data\n");
}
memset(pgm->cookie, 0, sizeof(struct pdata));
PDATA(pgm)->command_sequence = 1;

View File

@ -38,8 +38,9 @@ UPDATE * parse_op(char * s)
upd = (UPDATE *)malloc(sizeof(UPDATE));
if (upd == NULL) {
avrdude_message(MSG_INFO, "%s: out of memory\n", progname);
exit(1);
// avrdude_message(MSG_INFO, "%s: out of memory\n", progname);
// exit(1);
avrdude_oom("parse_op: out of memory\n");
}
i = 0;
@ -53,8 +54,9 @@ UPDATE * parse_op(char * s)
upd->op = DEVICE_WRITE;
upd->filename = (char *)malloc(strlen(buf) + 1);
if (upd->filename == NULL) {
avrdude_message(MSG_INFO, "%s: out of memory\n", progname);
exit(1);
// avrdude_message(MSG_INFO, "%s: out of memory\n", progname);
// exit(1);
avrdude_oom("parse_op: out of memory\n");
}
strcpy(upd->filename, buf);
upd->format = FMT_AUTO;
@ -63,8 +65,9 @@ UPDATE * parse_op(char * s)
upd->memtype = (char *)malloc(strlen(buf)+1);
if (upd->memtype == NULL) {
avrdude_message(MSG_INFO, "%s: out of memory\n", progname);
exit(1);
// avrdude_message(MSG_INFO, "%s: out of memory\n", progname);
// exit(1);
avrdude_oom("parse_op: out of memory\n");
}
strcpy(upd->memtype, buf);
@ -179,8 +182,9 @@ UPDATE * dup_update(UPDATE * upd)
u = (UPDATE *)malloc(sizeof(UPDATE));
if (u == NULL) {
avrdude_message(MSG_INFO, "%s: out of memory\n", progname);
exit(1);
// avrdude_message(MSG_INFO, "%s: out of memory\n", progname);
// exit(1);
avrdude_oom("dup_update: out of memory\n");
}
memcpy(u, upd, sizeof(UPDATE));
@ -200,8 +204,9 @@ UPDATE * new_update(int op, char * memtype, int filefmt, char * filename, unsign
u = (UPDATE *)malloc(sizeof(UPDATE));
if (u == NULL) {
avrdude_message(MSG_INFO, "%s: out of memory\n", progname);
exit(1);
// avrdude_message(MSG_INFO, "%s: out of memory\n", progname);
// exit(1);
avrdude_oom("new_update: out of memory\n");
}
u->memtype = strdup(memtype);

View File

@ -85,9 +85,10 @@ static void wiring_setup(PROGRAMMER * pgm)
* Now prepare our data
*/
if ((mycookie = malloc(sizeof(struct wiringpdata))) == 0) {
avrdude_message(MSG_INFO, "%s: wiring_setup(): Out of memory allocating private data\n",
progname);
exit(1);
// avrdude_message(MSG_INFO, "%s: wiring_setup(): Out of memory allocating private data\n",
// progname);
// exit(1);
avrdude_oom("wiring_setup(): Out of memory allocating private data\n");
}
memset(mycookie, 0, sizeof(struct wiringpdata));
WIRINGPDATA(mycookie)->snoozetime = 0;

View File

@ -793,11 +793,16 @@ void WipeTowerPrusaMM::toolchange_Unload(
float turning_point = (!m_left_to_right ? xl : xr );
float total_retraction_distance = m_cooling_tube_retraction + m_cooling_tube_length/2.f - 15.f; // the 15mm is reserved for the first part after ramming
writer.suppress_preview()
.load_move_x_advanced(turning_point, -15.f, 83.f, 50.f) // this is done at fixed speed
.retract(15.f, m_filpar[m_current_tool].unloading_speed_start * 60.f) // feedrate 5000mm/min = 83mm/s
.retract(0.70f * total_retraction_distance, 1.0f * m_filpar[m_current_tool].unloading_speed * 60.f)
.retract(0.20f * total_retraction_distance, 0.5f * m_filpar[m_current_tool].unloading_speed * 60.f)
.retract(0.10f * total_retraction_distance, 0.3f * m_filpar[m_current_tool].unloading_speed * 60.f)
/*.load_move_x_advanced(turning_point, -15.f, 83.f, 50.f) // this is done at fixed speed
.load_move_x_advanced(old_x, -0.70f * total_retraction_distance, 1.0f * m_filpar[m_current_tool].unloading_speed)
.load_move_x_advanced(turning_point, -0.20f * total_retraction_distance, 0.5f * m_filpar[m_current_tool].unloading_speed)
.load_move_x_advanced(old_x, -0.10f * total_retraction_distance, 0.3f * m_filpar[m_current_tool].unloading_speed)
.travel(old_x, writer.y()) // in case previous move was shortened to limit feedrate
.travel(old_x, writer.y()) // in case previous move was shortened to limit feedrate*/
.resume_preview();
if (new_temperature != 0 && new_temperature != m_old_temperature ) { // Set the extruder temperature, but don't wait.
@ -874,10 +879,15 @@ void WipeTowerPrusaMM::toolchange_Load(
writer.append("; CP TOOLCHANGE LOAD\n")
.suppress_preview()
.load_move_x_advanced(turning_point, 0.2f * edist, 0.3f * m_filpar[m_current_tool].loading_speed) // Acceleration
/*.load_move_x_advanced(turning_point, 0.2f * edist, 0.3f * m_filpar[m_current_tool].loading_speed) // Acceleration
.load_move_x_advanced(oldx, 0.5f * edist, m_filpar[m_current_tool].loading_speed) // Fast phase
.load_move_x_advanced(turning_point, 0.2f * edist, 0.3f * m_filpar[m_current_tool].loading_speed) // Slowing down
.load_move_x_advanced(oldx, 0.1f * edist, 0.1f * m_filpar[m_current_tool].loading_speed) // Super slow
.load_move_x_advanced(oldx, 0.1f * edist, 0.1f * m_filpar[m_current_tool].loading_speed) // Super slow*/
.load(0.2f * edist, 60.f * m_filpar[m_current_tool].loading_speed_start)
.load_move_x_advanced(turning_point, 0.7f * edist, m_filpar[m_current_tool].loading_speed) // Fast phase
.load_move_x_advanced(oldx, 0.1f * edist, 0.1f * m_filpar[m_current_tool].loading_speed) // Super slow*/
.travel(oldx, writer.y()) // in case last move was shortened to limit x feedrate
.resume_preview();

View File

@ -65,9 +65,9 @@ public:
// Set the extruder properties.
void set_extruder(size_t idx, material_type material, int temp, int first_layer_temp, float loading_speed,
float unloading_speed, float delay, int cooling_moves, float cooling_initial_speed,
float cooling_final_speed, std::string ramming_parameters, float nozzle_diameter)
void set_extruder(size_t idx, material_type material, int temp, int first_layer_temp, float loading_speed, float loading_speed_start,
float unloading_speed, float unloading_speed_start, float delay, int cooling_moves,
float cooling_initial_speed, float cooling_final_speed, std::string ramming_parameters, float nozzle_diameter)
{
//while (m_filpar.size() < idx+1) // makes sure the required element is in the vector
m_filpar.push_back(FilamentParameters());
@ -76,7 +76,9 @@ public:
m_filpar[idx].temperature = temp;
m_filpar[idx].first_layer_temperature = first_layer_temp;
m_filpar[idx].loading_speed = loading_speed;
m_filpar[idx].loading_speed_start = loading_speed_start;
m_filpar[idx].unloading_speed = unloading_speed;
m_filpar[idx].unloading_speed_start = unloading_speed_start;
m_filpar[idx].delay = delay;
m_filpar[idx].cooling_moves = cooling_moves;
m_filpar[idx].cooling_initial_speed = cooling_initial_speed;
@ -216,7 +218,9 @@ private:
int temperature = 0;
int first_layer_temperature = 0;
float loading_speed = 0.f;
float loading_speed_start = 0.f;
float unloading_speed = 0.f;
float unloading_speed_start = 0.f;
float delay = 0.f ;
int cooling_moves = 0;
float cooling_initial_speed = 0.f;

View File

@ -195,47 +195,110 @@ using namespace boost::polygon; // provides also high() and low()
namespace Slic3r { namespace Geometry {
static bool
sort_points (Point a, Point b)
static bool sort_points(const Point& a, const Point& b)
{
return (a(0) < b(0)) || (a(0) == b(0) && a(1) < b(1));
}
/* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */
static bool sort_pointfs(const Vec3d& a, const Vec3d& b)
{
return (a(0) < b(0)) || (a(0) == b(0) && a(1) < b(1));
}
// This implementation is based on Andrew's monotone chain 2D convex hull algorithm
Polygon
convex_hull(Points points)
{
assert(points.size() >= 3);
// sort input points
std::sort(points.begin(), points.end(), sort_points);
int n = points.size(), k = 0;
Polygon hull;
if (n >= 3) {
hull.points.resize(2*n);
hull.points.resize(2 * n);
// Build lower hull
for (int i = 0; i < n; i++) {
while (k >= 2 && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--;
hull.points[k++] = points[i];
while (k >= 2 && points[i].ccw(hull[k-2], hull[k-1]) <= 0) k--;
hull[k++] = points[i];
}
// Build upper hull
for (int i = n-2, t = k+1; i >= 0; i--) {
while (k >= t && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--;
hull.points[k++] = points[i];
while (k >= t && points[i].ccw(hull[k-2], hull[k-1]) <= 0) k--;
hull[k++] = points[i];
}
hull.points.resize(k);
assert( hull.points.front() == hull.points.back() );
assert(hull.points.front() == hull.points.back());
hull.points.pop_back();
}
return hull;
}
Pointf3s
convex_hull(Pointf3s points)
{
assert(points.size() >= 3);
// sort input points
std::sort(points.begin(), points.end(), sort_pointfs);
int n = points.size(), k = 0;
Pointf3s hull;
if (n >= 3)
{
hull.resize(2 * n);
// Build lower hull
for (int i = 0; i < n; ++i)
{
Point p = Point::new_scale(points[i](0), points[i](1));
while (k >= 2)
{
Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
if (p.ccw(k2, k1) <= 0)
--k;
else
break;
}
hull[k++] = points[i];
}
// Build upper hull
for (int i = n - 2, t = k + 1; i >= 0; --i)
{
Point p = Point::new_scale(points[i](0), points[i](1));
while (k >= t)
{
Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
if (p.ccw(k2, k1) <= 0)
--k;
else
break;
}
hull[k++] = points[i];
}
hull.resize(k);
assert(hull.front() == hull.back());
hull.pop_back();
}
return hull;
}
Polygon
convex_hull(const Polygons &polygons)
{
@ -243,7 +306,7 @@ convex_hull(const Polygons &polygons)
for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) {
pp.insert(pp.end(), p->points.begin(), p->points.end());
}
return convex_hull(pp);
return convex_hull(std::move(pp));
}
/* accepts an arrayref of points and returns a list of indices

View File

@ -108,8 +108,10 @@ inline bool segment_segment_intersection(const Vec2d &p1, const Vec2d &v1, const
return true;
}
Pointf3s convex_hull(Pointf3s points);
Polygon convex_hull(Points points);
Polygon convex_hull(const Polygons &polygons);
void chained_path(const Points &points, std::vector<Points::size_type> &retval, Point start_near);
void chained_path(const Points &points, std::vector<Points::size_type> &retval);
template<class T> void chained_path_items(Points &points, T &items, T &retval);

View File

@ -715,7 +715,21 @@ void ModelObject::scale(const Vec3d &versor)
this->invalidate_bounding_box();
}
void ModelObject::rotate(float angle, const Axis &axis)
void ModelObject::rotate(float angle, const Axis& axis)
{
for (ModelVolume *v : this->volumes)
{
v->mesh.rotate(angle, axis);
v->m_convex_hull.rotate(angle, axis);
}
center_around_origin();
this->origin_translation = Vec3d::Zero();
this->invalidate_bounding_box();
}
void ModelObject::rotate(float angle, const Vec3d& axis)
{
for (ModelVolume *v : this->volumes)
{

View File

@ -121,7 +121,8 @@ public:
void translate(coordf_t x, coordf_t y, coordf_t z);
void scale(const Vec3d &versor);
void rotate(float angle, const Axis &axis);
void transform(const float* matrix3x4);
void rotate(float angle, const Vec3d& axis);
void transform(const float* matrix3x4); // <<<<<<<<< FIXME (using eigen)
void mirror(const Axis &axis);
size_t materials_count() const;
size_t facets_count() const;

View File

@ -204,7 +204,9 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
|| opt_key == "filament_soluble"
|| opt_key == "first_layer_temperature"
|| opt_key == "filament_loading_speed"
|| opt_key == "filament_loading_speed_start"
|| opt_key == "filament_unloading_speed"
|| opt_key == "filament_unloading_speed_start"
|| opt_key == "filament_toolchange_delay"
|| opt_key == "filament_cooling_moves"
|| opt_key == "filament_minimal_purge_on_wipe_tower"
@ -1127,7 +1129,9 @@ void Print::_make_wipe_tower()
this->config.temperature.get_at(i),
this->config.first_layer_temperature.get_at(i),
this->config.filament_loading_speed.get_at(i),
this->config.filament_loading_speed_start.get_at(i),
this->config.filament_unloading_speed.get_at(i),
this->config.filament_unloading_speed_start.get_at(i),
this->config.filament_toolchange_delay.get_at(i),
this->config.filament_cooling_moves.get_at(i),
this->config.filament_cooling_initial_speed.get_at(i),

View File

@ -511,6 +511,14 @@ void PrintConfigDef::init_fff_params()
def->min = 0;
def->default_value = new ConfigOptionFloats { 28. };
def = this->add("filament_loading_speed_start", coFloats);
def->label = L("Loading speed at the start");
def->tooltip = L("Speed used at the very beginning of loading phase. ");
def->sidetext = L("mm/s");
def->cli = "filament-loading-speed-start=f@";
def->min = 0;
def->default_value = new ConfigOptionFloats { 3. };
def = this->add("filament_unloading_speed", coFloats);
def->label = L("Unloading speed");
def->tooltip = L("Speed used for unloading the filament on the wipe tower (does not affect "
@ -520,6 +528,14 @@ void PrintConfigDef::init_fff_params()
def->min = 0;
def->default_value = new ConfigOptionFloats { 90. };
def = this->add("filament_unloading_speed_start", coFloats);
def->label = L("Unloading speed at the start");
def->tooltip = L("Speed used for unloading the tip of the filament immediately after ramming. ");
def->sidetext = L("mm/s");
def->cli = "filament-unloading-speed-start=f@";
def->min = 0;
def->default_value = new ConfigOptionFloats { 100. };
def = this->add("filament_toolchange_delay", coFloats);
def->label = L("Delay after unloading");
def->tooltip = L("Time to wait after the filament is unloaded. "
@ -2064,7 +2080,7 @@ void PrintConfigDef::init_fff_params()
def = this->add("wipe_into_infill", coBool);
def->category = L("Extruders");
def->label = L("Purge into this object's infill");
def->label = L("Wipe into this object's infill");
def->tooltip = L("Purging after toolchange will done inside this object's infills. "
"This lowers the amount of waste but may result in longer print time "
" due to additional travel moves.");
@ -2073,7 +2089,7 @@ void PrintConfigDef::init_fff_params()
def = this->add("wipe_into_objects", coBool);
def->category = L("Extruders");
def->label = L("Purge into this object");
def->label = L("Wipe into this object");
def->tooltip = L("Object will be used to purge the nozzle after a toolchange to save material "
"that would otherwise end up in the wipe tower and decrease print time. "
"Colours of the objects will be mixed as a result.");

View File

@ -563,8 +563,10 @@ public:
ConfigOptionFloats filament_cost;
ConfigOptionFloats filament_max_volumetric_speed;
ConfigOptionFloats filament_loading_speed;
ConfigOptionFloats filament_loading_speed_start;
ConfigOptionFloats filament_load_time;
ConfigOptionFloats filament_unloading_speed;
ConfigOptionFloats filament_unloading_speed_start;
ConfigOptionFloats filament_toolchange_delay;
ConfigOptionFloats filament_unload_time;
ConfigOptionInts filament_cooling_moves;
@ -629,8 +631,10 @@ protected:
OPT_PTR(filament_cost);
OPT_PTR(filament_max_volumetric_speed);
OPT_PTR(filament_loading_speed);
OPT_PTR(filament_loading_speed_start);
OPT_PTR(filament_load_time);
OPT_PTR(filament_unloading_speed);
OPT_PTR(filament_unloading_speed_start);
OPT_PTR(filament_unload_time);
OPT_PTR(filament_toolchange_delay);
OPT_PTR(filament_cooling_moves);

View File

@ -357,10 +357,20 @@ inline ExPolygons unify(const ExPolygons& shapes) {
}
inline Point centroid(Points& pp) {
Polygon p;
p.points.swap(pp);
Point c = p.centroid();
pp.swap(p.points);
Point c;
switch(pp.size()) {
case 0: break;
case 1: c = pp.front(); break;
case 2: c = (pp[0] + pp[1]) / 2; break;
default: {
Polygon p;
p.points.swap(pp);
c = p.centroid();
pp.swap(p.points);
break;
}
}
return c;
}

View File

@ -13,6 +13,7 @@
#include <utility>
#include <algorithm>
#include <math.h>
#include <type_traits>
#include <boost/log/trivial.hpp>
@ -255,6 +256,17 @@ void TriangleMesh::rotate(float angle, const Axis &axis)
stl_invalidate_shared_vertices(&this->stl);
}
void TriangleMesh::rotate(float angle, const Vec3d& axis)
{
if (angle == 0.f)
return;
Vec3f axis_norm = axis.cast<float>().normalized();
Transform3f m = Transform3f::Identity();
m.rotate(Eigen::AngleAxisf(angle, axis_norm));
stl_transform(&stl, (float*)m.data());
}
void TriangleMesh::mirror(const Axis &axis)
{
if (axis == X) {
@ -459,6 +471,11 @@ ExPolygons TriangleMesh::horizontal_projection() const
return union_ex(offset(pp, scale_(0.01)), true);
}
const float* TriangleMesh::first_vertex() const
{
return this->stl.facet_start ? &this->stl.facet_start->vertex[0](0) : nullptr;
}
Polygon TriangleMesh::convex_hull()
{
this->require_shared_vertices();
@ -597,6 +614,7 @@ TriangleMesh TriangleMesh::convex_hull_3d() const
TriangleMesh output_mesh(dst_vertices, facets);
output_mesh.repair();
output_mesh.require_shared_vertices();
return output_mesh;
}

View File

@ -40,6 +40,7 @@ public:
void scale(const Vec3d &versor);
void translate(float x, float y, float z);
void rotate(float angle, const Axis &axis);
void rotate(float angle, const Vec3d& axis);
void rotate_x(float angle) { this->rotate(angle, X); }
void rotate_y(float angle) { this->rotate(angle, Y); }
void rotate_z(float angle) { this->rotate(angle, Z); }
@ -53,6 +54,7 @@ public:
TriangleMeshPtrs split() const;
void merge(const TriangleMesh &mesh);
ExPolygons horizontal_projection() const;
const float* first_vertex() const;
Polygon convex_hull();
BoundingBoxf3 bounding_box() const;
// Returns the bbox of this TriangleMesh transformed by the given transformation

View File

@ -14,7 +14,7 @@
#include <boost/thread.hpp>
#define SLIC3R_FORK_NAME "Slic3r Prusa Edition"
#define SLIC3R_VERSION "1.41.0-beta"
#define SLIC3R_VERSION "1.41.0-beta2"
#define SLIC3R_BUILD "UNKNOWN"
typedef int32_t coord_t;

View File

@ -551,8 +551,10 @@ void FirmwareDialog::priv::perform_upload()
// because the dialog ensures it doesn't exit before the background thread is done.
auto q = this->q;
this->avrdude = avrdude
.on_run([this]() {
avrdude
.on_run([this](AvrDude::Ptr avrdude) {
this->avrdude = std::move(avrdude);
try {
switch (this->hex_file.device) {
case HexFile::DEV_MK3:

View File

@ -1,5 +1,6 @@
#include "GLCanvas3D.hpp"
#include "../../admesh/stl.h"
#include "../../libslic3r/libslic3r.h"
#include "../../slic3r/GUI/3DScene.hpp"
#include "../../slic3r/GUI/GLShader.hpp"
@ -1165,6 +1166,18 @@ bool GLCanvas3D::Gizmos::init(GLCanvas3D& parent)
m_gizmos.insert(GizmosMap::value_type(Rotate, gizmo));
gizmo = new GLGizmoFlatten(parent);
if (gizmo == nullptr)
return false;
if (!gizmo->init()) {
_reset();
return false;
}
m_gizmos.insert(GizmosMap::value_type(Flatten, gizmo));
return true;
}
@ -1414,11 +1427,32 @@ reinterpret_cast<GLGizmoRotate3D*>(it->second)->set_angle_z(angle_z);
#endif // ENABLE_GIZMOS_3D
}
Vec3d GLCanvas3D::Gizmos::get_flattening_normal() const
{
if (!m_enabled)
return Vec3d::Zero();
GizmosMap::const_iterator it = m_gizmos.find(Flatten);
return (it != m_gizmos.end()) ? reinterpret_cast<GLGizmoFlatten*>(it->second)->get_flattening_normal() : Vec3d::Zero();
}
void GLCanvas3D::Gizmos::set_flattening_data(const ModelObject* model_object)
{
if (!m_enabled)
return;
GizmosMap::const_iterator it = m_gizmos.find(Flatten);
if (it != m_gizmos.end())
reinterpret_cast<GLGizmoFlatten*>(it->second)->set_flattening_data(model_object);
}
void GLCanvas3D::Gizmos::render_current_gizmo(const BoundingBoxf3& box) const
{
if (!m_enabled)
return;
::glDisable(GL_DEPTH_TEST);
if (box.radius() > 0.0)
_render_current_gizmo(box);
}
@ -2319,6 +2353,7 @@ void GLCanvas3D::update_gizmos_data()
{
m_gizmos.set_scale(model_instance->scaling_factor);
m_gizmos.set_angle_z(model_instance->rotation);
m_gizmos.set_flattening_data(model_object);
}
}
}
@ -2326,6 +2361,7 @@ void GLCanvas3D::update_gizmos_data()
{
m_gizmos.set_scale(1.0f);
m_gizmos.set_angle_z(0.0f);
m_gizmos.set_flattening_data(nullptr);
}
}
@ -2367,7 +2403,6 @@ void GLCanvas3D::render()
_render_axes(false);
}
_render_objects();
if (!is_custom_bed) // textured bed needs to be rendered after objects
{
_render_axes(true);
@ -2982,6 +3017,17 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
update_gizmos_data();
m_gizmos.start_dragging();
m_mouse.drag.gizmo_volume_idx = _get_first_selected_volume_id(selected_object_idx);
if (m_gizmos.get_current_type() == Gizmos::Flatten) {
// Rotate the object so the normal points downward:
Vec3d normal = m_gizmos.get_flattening_normal();
if (normal != Vec3d::Zero()) {
Vec3d axis = normal(2) > 0.999f ? Vec3d::UnitX() : normal.cross(-Vec3d::UnitZ());
float angle = -acos(-normal(2));
m_on_gizmo_rotate_callback.call(angle, (float)axis(0), (float)axis(1), (float)axis(2));
}
}
m_dirty = true;
}
else if (toolbar_contains_mouse != -1)
@ -3602,7 +3648,7 @@ BoundingBoxf3 GLCanvas3D::_selected_volumes_bounding_box() const
{
for (const GLVolume* volume : selected_volumes)
{
bb.merge(volume->transformed_convex_hull_bounding_box());
bb.merge(volume->transformed_bounding_box());
}
}

View File

@ -338,6 +338,7 @@ public:
Undefined,
Scale,
Rotate,
Flatten,
Num_Types
};
@ -382,7 +383,11 @@ public:
float get_angle_z() const;
void set_angle_z(float angle_z);
void set_flattening_data(const ModelObject* model_object);
Vec3d get_flattening_normal() const;
void render_current_gizmo(const BoundingBoxf3& box) const;
void render_current_gizmo_for_picking_pass(const BoundingBoxf3& box) const;
void render_overlay(const GLCanvas3D& canvas) const;

View File

@ -4,10 +4,12 @@
#include "../../slic3r/GUI/GLCanvas3D.hpp"
#include <Eigen/Dense>
#include "../../libslic3r/Geometry.hpp"
#include <GL/glew.h>
#include <iostream>
#include <numeric>
static const float DEFAULT_BASE_COLOR[3] = { 0.625f, 0.625f, 0.625f };
static const float DEFAULT_DRAG_COLOR[3] = { 1.0f, 1.0f, 1.0f };
@ -163,7 +165,6 @@ GLGizmoBase::GLGizmoBase(GLCanvas3D& parent)
, m_group_id(-1)
, m_state(Off)
, m_hover_id(-1)
, m_is_container(false)
{
::memcpy((void*)m_base_color, (const void*)DEFAULT_BASE_COLOR, 3 * sizeof(float));
::memcpy((void*)m_drag_color, (const void*)DEFAULT_DRAG_COLOR, 3 * sizeof(float));
@ -172,7 +173,7 @@ GLGizmoBase::GLGizmoBase(GLCanvas3D& parent)
void GLGizmoBase::set_hover_id(int id)
{
if (m_is_container || (id < (int)m_grabbers.size()))
if (m_grabbers.empty() || (id < (int)m_grabbers.size()))
{
m_hover_id = id;
on_set_hover_id();
@ -602,8 +603,6 @@ GLGizmoRotate3D::GLGizmoRotate3D(GLCanvas3D& parent)
, m_y(parent, GLGizmoRotate::Y)
, m_z(parent, GLGizmoRotate::Z)
{
m_is_container = true;
m_x.set_group_id(0);
m_y.set_group_id(1);
m_z.set_group_id(2);
@ -1165,5 +1164,323 @@ double GLGizmoScale3D::calc_ratio(unsigned int preferred_plane_id, const Linef3&
return ratio;
}
GLGizmoFlatten::GLGizmoFlatten(GLCanvas3D& parent)
: GLGizmoBase(parent)
, m_normal(0.0, 0.0, 0.0)
{
}
bool GLGizmoFlatten::on_init()
{
std::string path = resources_dir() + "/icons/overlay/";
std::string filename = path + "layflat_off.png";
if (!m_textures[Off].load_from_file(filename, false))
return false;
filename = path + "layflat_hover.png";
if (!m_textures[Hover].load_from_file(filename, false))
return false;
filename = path + "layflat_on.png";
if (!m_textures[On].load_from_file(filename, false))
return false;
return true;
}
void GLGizmoFlatten::on_start_dragging()
{
if (m_hover_id != -1)
m_normal = m_planes[m_hover_id].normal;
}
void GLGizmoFlatten::on_render(const BoundingBoxf3& box) const
{
// the dragged_offset is a vector measuring where was the object moved
// with the gizmo being on. This is reset in set_flattening_data and
// does not work correctly when there are multiple copies.
if (!m_center) // this is the first bounding box that we see
m_center.reset(new Vec3d(box.center()));
Vec3d dragged_offset = box.center() - *m_center;
bool blending_was_enabled = ::glIsEnabled(GL_BLEND);
bool depth_test_was_enabled = ::glIsEnabled(GL_DEPTH_TEST);
::glEnable(GL_BLEND);
::glEnable(GL_DEPTH_TEST);
for (int i=0; i<(int)m_planes.size(); ++i) {
if (i == m_hover_id)
::glColor4f(0.9f, 0.9f, 0.9f, 0.75f);
else
::glColor4f(0.9f, 0.9f, 0.9f, 0.5f);
for (Vec2d offset : m_instances_positions) {
offset += to_2d(dragged_offset);
::glBegin(GL_POLYGON);
for (const Vec3d& vertex : m_planes[i].vertices)
::glVertex3f((GLfloat)(vertex(0) + offset(0)), (GLfloat)(vertex(1) + offset(1)), (GLfloat)vertex(2));
::glEnd();
}
}
if (!blending_was_enabled)
::glDisable(GL_BLEND);
if (!depth_test_was_enabled)
::glDisable(GL_DEPTH_TEST);
}
void GLGizmoFlatten::on_render_for_picking(const BoundingBoxf3& box) const
{
static const GLfloat INV_255 = 1.0f / 255.0f;
::glDisable(GL_DEPTH_TEST);
for (unsigned int i = 0; i < m_planes.size(); ++i)
{
::glColor3f(1.0f, 1.0f, (254.0f - (float)i) * INV_255);
for (const Vec2d& offset : m_instances_positions) {
::glBegin(GL_POLYGON);
for (const Vec3d& vertex : m_planes[i].vertices)
::glVertex3f((GLfloat)(vertex(0) + offset(0)), (GLfloat)vertex(1) + offset(1), (GLfloat)vertex(2));
::glEnd();
}
}
}
// TODO - remove and use Eigen instead
static Vec3d super_rotation(Vec3d axis, float angle, const Vec3d& point)
{
axis.normalize();
float x = (float)axis(0);
float y = (float)axis(1);
float z = (float)axis(2);
float s = sin(angle);
float c = cos(angle);
float D = 1 - c;
float matrix[3][3] = { { c + x*x*D, x*y*D - z*s, x*z*D + y*s },
{ y*x*D + z*s, c + y*y*D, y*z*D - x*s },
{ z*x*D - y*s, z*y*D + x*s, c + z*z*D } };
float in[3] = { (float)point(0), (float)point(1), (float)point(2) };
float out[3] = { 0, 0, 0 };
for (unsigned char i = 0; i<3; ++i)
for (unsigned char j = 0; j<3; ++j)
out[i] += matrix[i][j] * in[j];
return Vec3d((double)out[0], (double)out[1], (double)out[2]);
}
void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object)
{
m_center.release(); // object is not being dragged (this would not be called otherwise) - we must forget about the bounding box position...
m_model_object = model_object;
// ...and save the updated positions of the object instances:
if (m_model_object && !m_model_object->instances.empty()) {
m_instances_positions.clear();
for (const auto* instance : m_model_object->instances)
m_instances_positions.emplace_back(instance->offset);
}
if (is_plane_update_necessary())
update_planes();
}
void GLGizmoFlatten::update_planes()
{
TriangleMesh ch;
for (const ModelVolume* vol : m_model_object->volumes)
ch.merge(vol->get_convex_hull());
ch = ch.convex_hull_3d();
ch.scale(m_model_object->instances.front()->scaling_factor);
ch.rotate_z(m_model_object->instances.front()->rotation);
m_planes.clear();
// Now we'll go through all the facets and append Points of facets sharing the same normal:
const int num_of_facets = ch.stl.stats.number_of_facets;
std::vector<int> facet_queue(num_of_facets, 0);
std::vector<bool> facet_visited(num_of_facets, false);
int facet_queue_cnt = 0;
const stl_normal* normal_ptr = nullptr;
while (1) {
// Find next unvisited triangle:
int facet_idx = 0;
for (; facet_idx < num_of_facets; ++ facet_idx)
if (!facet_visited[facet_idx]) {
facet_queue[facet_queue_cnt ++] = facet_idx;
facet_visited[facet_idx] = true;
normal_ptr = &ch.stl.facet_start[facet_idx].normal;
m_planes.emplace_back();
break;
}
if (facet_idx == num_of_facets)
break; // Everything was visited already
while (facet_queue_cnt > 0) {
int facet_idx = facet_queue[-- facet_queue_cnt];
const stl_normal& this_normal = ch.stl.facet_start[facet_idx].normal;
if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) {
stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex;
for (int j=0; j<3; ++j)
m_planes.back().vertices.emplace_back(first_vertex[j](0), first_vertex[j](1), first_vertex[j](2));
facet_visited[facet_idx] = true;
for (int j = 0; j < 3; ++ j) {
int neighbor_idx = ch.stl.neighbors_start[facet_idx].neighbor[j];
if (! facet_visited[neighbor_idx])
facet_queue[facet_queue_cnt ++] = neighbor_idx;
}
}
}
m_planes.back().normal = Vec3d((double)(*normal_ptr)(0), (double)(*normal_ptr)(1), (double)(*normal_ptr)(2));
// if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected anyway):
if (m_planes.back().vertices.size() == 3 &&
(m_planes.back().vertices[0] - m_planes.back().vertices[1]).norm() < 1.f
|| (m_planes.back().vertices[0] - m_planes.back().vertices[2]).norm() < 1.f)
m_planes.pop_back();
}
// Now we'll go through all the polygons, transform the points into xy plane to process them:
for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) {
Pointf3s& polygon = m_planes[polygon_id].vertices;
const Vec3d& normal = m_planes[polygon_id].normal;
// We are going to rotate about z and y to flatten the plane
float angle_z = 0.f;
float angle_y = 0.f;
if (std::abs(normal(1)) > 0.001)
angle_z = -atan2(normal(1), normal(0)); // angle to rotate so that normal ends up in xz-plane
if (std::abs(normal(0)*cos(angle_z) - normal(1)*sin(angle_z)) > 0.001)
angle_y = -atan2(normal(0)*cos(angle_z) - normal(1)*sin(angle_z), normal(2)); // angle to rotate to make normal point upwards
else {
// In case it already was in z-direction, we must ensure it is not the wrong way:
angle_y = normal(2) > 0.f ? 0 : -PI;
}
// Rotate all points to the xy plane:
for (auto& vertex : polygon) {
vertex = super_rotation(Vec3d::UnitZ(), angle_z, vertex);
vertex = super_rotation(Vec3d::UnitY(), angle_y, vertex);
}
polygon = Slic3r::Geometry::convex_hull(polygon); // To remove the inner points
// We will calculate area of the polygon and discard ones that are too small
// The limit is more forgiving in case the normal is in the direction of the coordinate axes
const float minimal_area = (std::abs(normal(0)) > 0.999f || std::abs(normal(1)) > 0.999f || std::abs(normal(2)) > 0.999f) ? 1.f : 20.f;
float& area = m_planes[polygon_id].area;
area = 0.f;
for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula
area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1);
area = std::abs(area / 2.f);
if (area < minimal_area) {
m_planes.erase(m_planes.begin()+(polygon_id--));
continue;
}
// We will shrink the polygon a little bit so it does not touch the object edges:
Vec3d centroid = std::accumulate(polygon.begin(), polygon.end(), Vec3d(0.0, 0.0, 0.0));
centroid /= (double)polygon.size();
for (auto& vertex : polygon)
vertex = 0.9f*vertex + 0.1f*centroid;
// Polygon is now simple and convex, we'll round the corners to make them look nicer.
// The algorithm takes a vertex, calculates middles of respective sides and moves the vertex
// towards their average (controlled by 'aggressivity'). This is repeated k times.
// In next iterations, the neighbours are not always taken at the middle (to increase the
// rounding effect at the corners, where we need it most).
const unsigned int k = 10; // number of iterations
const float aggressivity = 0.2f; // agressivity
const unsigned int N = polygon.size();
std::vector<std::pair<unsigned int, unsigned int>> neighbours;
if (k != 0) {
Pointf3s points_out(2*k*N); // vector long enough to store the future vertices
for (unsigned int j=0; j<N; ++j) {
points_out[j*2*k] = polygon[j];
neighbours.push_back(std::make_pair((int)(j*2*k-k) < 0 ? (N-1)*2*k+k : j*2*k-k, j*2*k+k));
}
for (unsigned int i=0; i<k; ++i) {
// Calculate middle of each edge so that neighbours points to something useful:
for (unsigned int j=0; j<N; ++j)
if (i==0)
points_out[j*2*k+k] = 0.5f * (points_out[j*2*k] + points_out[j==N-1 ? 0 : (j+1)*2*k]);
else {
float r = 0.2+0.3/(k-1)*i; // the neighbours are not always taken in the middle
points_out[neighbours[j].first] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].first-1];
points_out[neighbours[j].second] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].second+1];
}
// Now we have a triangle and valid neighbours, we can do an iteration:
for (unsigned int j=0; j<N; ++j)
points_out[2*k*j] = (1-aggressivity) * points_out[2*k*j] +
aggressivity*0.5f*(points_out[neighbours[j].first] + points_out[neighbours[j].second]);
for (auto& n : neighbours) {
++n.first;
--n.second;
}
}
polygon = points_out; // replace the coarse polygon with the smooth one that we just created
}
// Transform back to 3D;
for (auto& b : polygon) {
b(0) += 0.1f; // raise a bit above the object surface to avoid flickering
b = super_rotation(Vec3d::UnitY(), -angle_y, b);
b = super_rotation(Vec3d::UnitZ(), -angle_z, b);
}
}
// We'll sort the planes by area and only keep the 255 largest ones (because of the picking pass limitations):
std::sort(m_planes.rbegin(), m_planes.rend(), [](const PlaneData& a, const PlaneData& b) { return a.area < b.area; });
m_planes.resize(std::min((int)m_planes.size(), 255));
// Planes are finished - let's save what we calculated it from:
m_source_data.bounding_boxes.clear();
for (const auto& vol : m_model_object->volumes)
m_source_data.bounding_boxes.push_back(vol->get_convex_hull().bounding_box());
m_source_data.scaling_factor = m_model_object->instances.front()->scaling_factor;
m_source_data.rotation = m_model_object->instances.front()->rotation;
const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
m_source_data.mesh_first_point = Vec3d((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]);
}
// Check if the bounding boxes of each volume's convex hull is the same as before
// and that scaling and rotation has not changed. In that case we don't have to recalculate it.
bool GLGizmoFlatten::is_plane_update_necessary() const
{
if (m_state != On || !m_model_object || m_model_object->instances.empty())
return false;
if (m_model_object->volumes.size() != m_source_data.bounding_boxes.size()
|| m_model_object->instances.front()->scaling_factor != m_source_data.scaling_factor
|| m_model_object->instances.front()->rotation != m_source_data.rotation)
return true;
// now compare the bounding boxes:
for (unsigned int i=0; i<m_model_object->volumes.size(); ++i)
if (m_model_object->volumes[i]->get_convex_hull().bounding_box() != m_source_data.bounding_boxes[i])
return true;
const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
Vec3d first_point((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]);
if (first_point != m_source_data.mesh_first_point)
return true;
return false;
}
Vec3d GLGizmoFlatten::get_flattening_normal() const {
Transform3d m = Transform3d::Identity();
m.rotate(Eigen::AngleAxisd(-m_model_object->instances.front()->rotation, Vec3d::UnitZ()));
Vec3d normal = m * m_normal;
m_normal = Vec3d::Zero();
return normal;
}
} // namespace GUI
} // namespace Slic3r

View File

@ -13,6 +13,7 @@ namespace Slic3r {
class BoundingBoxf3;
class Linef3;
class ModelObject;
namespace GUI {
@ -74,7 +75,6 @@ protected:
float m_drag_color[3];
float m_highlight_color[3];
mutable std::vector<Grabber> m_grabbers;
bool m_is_container;
public:
explicit GLGizmoBase(GLCanvas3D& parent);
@ -312,6 +312,54 @@ private:
double calc_ratio(unsigned int preferred_plane_id, const Linef3& mouse_ray, const Vec3d& center) const;
};
class GLGizmoFlatten : public GLGizmoBase
{
// This gizmo does not use grabbers. The m_hover_id relates to polygon managed by the class itself.
private:
mutable Vec3d m_normal;
struct PlaneData {
std::vector<Vec3d> vertices;
Vec3d normal;
float area;
};
struct SourceDataSummary {
std::vector<BoundingBoxf3> bounding_boxes; // bounding boxes of convex hulls of individual volumes
float scaling_factor;
float rotation;
Vec3d mesh_first_point;
};
// This holds information to decide whether recalculation is necessary:
SourceDataSummary m_source_data;
std::vector<PlaneData> m_planes;
std::vector<Vec2d> m_instances_positions;
mutable std::unique_ptr<Vec3d> m_center = nullptr;
const ModelObject* m_model_object = nullptr;
void update_planes();
bool is_plane_update_necessary() const;
public:
explicit GLGizmoFlatten(GLCanvas3D& parent);
void set_flattening_data(const ModelObject* model_object);
Vec3d get_flattening_normal() const;
protected:
virtual bool on_init();
virtual void on_start_dragging();
virtual void on_update(const Linef3& mouse_ray) {}
virtual void on_render(const BoundingBoxf3& box) const;
virtual void on_render_for_picking(const BoundingBoxf3& box) const;
virtual void on_set_state() {
if (m_state == On && is_plane_update_necessary())
update_planes();
}
};
} // namespace GUI
} // namespace Slic3r

View File

@ -316,13 +316,12 @@ const std::vector<std::string>& Preset::filament_options()
{
static std::vector<std::string> s_opts {
"filament_colour", "filament_diameter", "filament_type", "filament_soluble", "filament_notes", "filament_max_volumetric_speed",
"extrusion_multiplier", "filament_density", "filament_cost",
"filament_loading_speed", "filament_load_time", "filament_unloading_speed", "filament_unload_time", "filament_toolchange_delay",
"filament_cooling_moves", "filament_cooling_initial_speed", "filament_cooling_final_speed", "filament_ramming_parameters",
"filament_minimal_purge_on_wipe_tower", "temperature", "first_layer_temperature", "bed_temperature", "first_layer_bed_temperature",
"fan_always_on", "cooling", "min_fan_speed", "max_fan_speed", "bridge_fan_speed", "disable_fan_first_layers", "fan_below_layer_time",
"slowdown_below_layer_time", "min_print_speed", "start_filament_gcode", "end_filament_gcode","compatible_printers", "compatible_printers_condition",
"inherits"
"extrusion_multiplier", "filament_density", "filament_cost", "filament_loading_speed", "filament_loading_speed_start", "filament_load_time",
"filament_unloading_speed", "filament_unloading_speed_start", "filament_unload_time", "filament_toolchange_delay", "filament_cooling_moves",
"filament_cooling_initial_speed", "filament_cooling_final_speed", "filament_ramming_parameters", "filament_minimal_purge_on_wipe_tower",
"temperature", "first_layer_temperature", "bed_temperature", "first_layer_bed_temperature", "fan_always_on", "cooling", "min_fan_speed",
"max_fan_speed", "bridge_fan_speed", "disable_fan_first_layers", "fan_below_layer_time", "slowdown_below_layer_time", "min_print_speed",
"start_filament_gcode", "end_filament_gcode","compatible_printers", "compatible_printers_condition", "inherits"
};
return s_opts;
}

View File

@ -1326,7 +1326,9 @@ void TabFilament::build()
optgroup->append_line(line);
optgroup = page->new_optgroup(_(L("Toolchange parameters with single extruder MM printers")));
optgroup->append_single_option_line("filament_loading_speed");
optgroup->append_single_option_line("filament_loading_speed_start");
optgroup->append_single_option_line("filament_loading_speed");
optgroup->append_single_option_line("filament_unloading_speed_start");
optgroup->append_single_option_line("filament_unloading_speed");
optgroup->append_single_option_line("filament_load_time");
optgroup->append_single_option_line("filament_unload_time");

View File

@ -301,7 +301,8 @@ ModelMaterial::attributes()
void translate(double x, double y, double z);
void scale_xyz(Vec3d* versor)
%code{% THIS->scale(*versor); %};
void rotate(float angle, Axis axis);
void rotate(float angle, Vec3d* axis)
%code{% THIS->rotate(angle, *axis); %};
void mirror(Axis axis);
Model* cut(double z)