Add working version of triangle trimming for hollowed meshes

This commit is contained in:
tamasmeszaros 2021-03-02 18:24:57 +01:00
parent b8c1c13666
commit 1ec154012e

View file

@ -29,11 +29,21 @@ inline void _scale(S s, Contour3D &m) { for (auto &p : m.points) p *= s; }
struct Interior {
TriangleMesh mesh;
openvdb::FloatGrid::Ptr gridptr;
mutable std::optional<openvdb::FloatGrid::ConstAccessor> accessor;
double closing_distance = 0.;
double thickness = 0.;
double voxel_scale = 1.;
double nb_in = 3.;
double nb_out = 3.;
double nb_in = 3.; // narrow band width inwards
double nb_out = 3.; // narrow band width outwards
// Full narrow band is the sum of the two above values.
void reset_accessor() const // This resets the accessor and its cache
// Not a thread safe call!
{
if (gridptr)
accessor = gridptr->getConstAccessor();
}
};
void InteriorDeleter::operator()(Interior *p)
@ -313,16 +323,243 @@ void hollow_mesh(TriangleMesh &mesh, const Interior &interior, int flags)
{
if (mesh.empty() || interior.mesh.empty()) return;
// if (flags & hfRemoveInsideTriangles && interior.gridptr)
// erase_inside_triangles_2(mesh, interior);
if (flags & hfRemoveInsideTriangles && interior.gridptr)
remove_inside_triangles(mesh, interior);
mesh.merge(interior.mesh);
mesh.require_shared_vertices();
}
// Get the distance of p to the interior's zero iso_surface. Interior should
// have its zero isosurface positioned at offset + closing_distance inwards form
// the model surface.
static double get_distance_raw(const Vec3f &p, const Interior &interior)
{
assert(interior.gridptr);
if (!interior.accessor) interior.reset_accessor();
auto v = (p * interior.voxel_scale).cast<double>();
auto grididx = interior.gridptr->transform().worldToIndexCellCentered(
{v.x(), v.y(), v.z()});
return interior.accessor->getValue(grididx) ;
}
struct TriangleBubble { Vec3f center; double R; };
// Return the distance of bubble center to the interior boundary or NaN if the
// triangle is too big to be measured.
static double get_distance(const TriangleBubble &b, const Interior &interior)
{
double R = b.R * interior.voxel_scale;
double D = get_distance_raw(b.center, interior);
return (D > 0. && R >= interior.nb_out) ||
(D < 0. && R >= interior.nb_in) ||
((D - R) < 0. && 2 * R > interior.thickness) ?
std::nan("") :
// FIXME: Adding interior.voxel_scale is a compromise supposed
// to prevent the deletion of the triangles forming the interior
// itself. This has a side effect that a small portion of the
// bad triangles will still be visible.
D - interior.closing_distance /*+ 2 * interior.voxel_scale*/;
}
double get_distance(const Vec3f &p, const Interior &interior)
{
double d = get_distance_raw(p, interior) - interior.closing_distance;
return d / interior.voxel_scale;
}
// A face that can be divided. Stores the indices into the original mesh if its
// part of that mesh and the vertices it consists of.
enum { NEW_FACE = -1};
struct DivFace {
Vec3i indx;
std::array<Vec3f, 3> verts;
long faceid = NEW_FACE;
long parent = NEW_FACE;
};
// Divide a face recursively and call visitor on all the sub-faces.
template<class Fn>
void divide_triangle(const DivFace &face, Fn &&visitor)
{
std::array<Vec3f, 3> edges = {(face.verts[0] - face.verts[1]),
(face.verts[1] - face.verts[2]),
(face.verts[2] - face.verts[0])};
std::array<size_t, 3> edgeidx = {0, 1, 2};
std::sort(edgeidx.begin(), edgeidx.end(), [&edges](size_t e1, size_t e2) {
return edges[e1].squaredNorm() > edges[e2].squaredNorm();
});
DivFace child1, child2;
child1.parent = face.faceid == NEW_FACE ? face.parent : face.faceid;
child1.indx(0) = -1;
child1.indx(1) = face.indx(edgeidx[1]);
child1.indx(2) = face.indx((edgeidx[1] + 1) % 3);
child1.verts[0] = (face.verts[edgeidx[0]] + face.verts[(edgeidx[0] + 1) % 3]) / 2.;
child1.verts[1] = face.verts[edgeidx[1]];
child1.verts[2] = face.verts[(edgeidx[1] + 1) % 3];
if (visitor(child1))
divide_triangle(child1, std::forward<Fn>(visitor));
child2.parent = face.faceid == NEW_FACE ? face.parent : face.faceid;
child2.indx(0) = -1;
child2.indx(1) = face.indx(edgeidx[2]);
child2.indx(2) = face.indx((edgeidx[2] + 1) % 3);
child2.verts[0] = child1.verts[0];
child2.verts[1] = face.verts[edgeidx[2]];
child2.verts[2] = face.verts[(edgeidx[2] + 1) % 3];
if (visitor(child2))
divide_triangle(child2, std::forward<Fn>(visitor));
}
void remove_inside_triangles(TriangleMesh &mesh, const Interior &interior)
{
enum TrPos { posInside, posTouch, posOutside };
auto &faces = mesh.its.indices;
auto &vertices = mesh.its.vertices;
auto bb = mesh.bounding_box();
// TODO: Parallel mode not working yet
using exec_policy = ccr_seq;
// Info about the needed modifications on the input mesh.
struct MeshMods {
// Just a thread safe wrapper for a vector of triangles.
struct {
std::vector<std::array<Vec3f, 3>> data;
exec_policy::SpinningMutex mutex;
void emplace_back(const std::array<Vec3f, 3> &pts)
{
std::lock_guard lk{mutex};
data.emplace_back(pts);
}
size_t size() const { return data.size(); }
const std::array<Vec3f, 3>& operator[](size_t idx) const
{
return data[idx];
}
} new_triangles;
// A vector of bool for all faces signaling if it needs to be removed
// or not.
std::vector<bool> to_remove;
MeshMods(const TriangleMesh &mesh):
to_remove(mesh.its.indices.size(), false) {}
// Number of triangles that need to be removed.
size_t to_remove_cnt() const
{
return std::accumulate(to_remove.begin(), to_remove.end(), size_t(0));
}
} mesh_mods{mesh};
// Must return true if further division of the face is needed.
auto divfn = [&interior, bb, &mesh_mods](const DivFace &f) {
BoundingBoxf3 facebb { f.verts.begin(), f.verts.end() };
// Face is certainly outside the cavity
if (! facebb.intersects(bb) && f.faceid != NEW_FACE) {
return false;
}
TriangleBubble bubble{facebb.center().cast<float>(), facebb.radius()};
double D = get_distance(bubble, interior);
double R = bubble.R * interior.voxel_scale;
if (std::isnan(D)) // The distance cannot be measured, triangle too big
return true;
// Distance of the bubble wall to the interior wall. Negative if the
// bubble is overlapping with the interior
double bubble_distance = D - R;
// The face is crossing the interior or inside, it must be removed and
// parts of it re-added, that are outside the interior
if (bubble_distance < 0.) {
if (f.faceid != NEW_FACE)
mesh_mods.to_remove[f.faceid] = true;
if (f.parent != NEW_FACE) // Top parent needs to be removed as well
mesh_mods.to_remove[f.parent] = true;
// If the outside part is between the interior end the exterior
// (inside the wall being invisible), no further division is needed.
if ((R + D) < interior.thickness)
return false;
return true;
} else if (f.faceid == NEW_FACE) {
// New face completely outside needs to be re-added.
mesh_mods.new_triangles.emplace_back(f.verts);
}
return false;
};
interior.reset_accessor();
exec_policy::for_each(size_t(0), faces.size(), [&] (size_t face_idx) {
const Vec3i &face = faces[face_idx];
std::array<Vec3f, 3> pts =
{ vertices[face(0)], vertices[face(1)], vertices[face(2)] };
BoundingBoxf3 facebb { pts.begin(), pts.end() };
// Face is certainly outside the cavity
if (! facebb.intersects(bb)) return;
DivFace df{face, pts, long(face_idx)};
if (divfn(df))
divide_triangle(df, divfn);
}, exec_policy::max_concurreny());
auto new_faces = reserve_vector<Vec3i>(faces.size() +
mesh_mods.new_triangles.size());
for (size_t face_idx = 0; face_idx < faces.size(); ++face_idx) {
if (!mesh_mods.to_remove[face_idx])
new_faces.emplace_back(faces[face_idx]);
}
for(size_t i = 0; i < mesh_mods.new_triangles.size(); ++i) {
size_t o = vertices.size();
vertices.emplace_back(mesh_mods.new_triangles[i][0]);
vertices.emplace_back(mesh_mods.new_triangles[i][1]);
vertices.emplace_back(mesh_mods.new_triangles[i][2]);
new_faces.emplace_back(int(o), int(o + 1), int(o + 2));
}
BOOST_LOG_TRIVIAL(info)
<< "Trimming: " << mesh_mods.to_remove_cnt() << " triangles removed";
BOOST_LOG_TRIVIAL(info)
<< "Trimming: " << mesh_mods.new_triangles.size() << " triangles added";
faces.swap(new_faces);
new_faces = {};
mesh = TriangleMesh{mesh.its};
mesh.repaired = true;
mesh.require_shared_vertices();
}
}} // namespace Slic3r::sla